
http://www.imedea.uib.es/~victor

Complexity        
and              

social dynamics
Víctor M. Eguíluz

victor@imedea.uib.es



Plan

Introduction to complex systems
Social modeling
Complex Networks: Networks are the Networks are the 
skeleton  of a complex systemskeleton  of a complex system
Conclusions 



Complex Systems
What is a complex system?
A few preliminary (and incorrect) remarks:

Simple systems display simple dynamics; Complex behavior 
is a consequence of complicated systems.
Chaos
Different systems behave in a different way.
Universality

An intuition: The global behavior cannot be reduced to the 
addition of the individual components.

For instance, the society cannot be reduced to the 
psychology of the individuals. In many situations the 
individual features are irrelevant to explain the collective 
behavior.

Complex behavior lies between order and disorder.
Example: the growth of a city.



A few examples

Gas-liquid critical point (A. Bruce)

Density of employment in London
(M. Batty, U.C., London)

H. Makse (P. Ball, The Self-Made Tapestry, 1999).

Urban growthUrban growth

Berlin 1875-1945 Percolation model



Complex systems:
collective phenomena

Individuals, agents, ….:
Psychology
Preferences
What do they do?

Interaction networks:
How do agents interact?
Making decision 

Society:
large number of 
interacting individuals
Brain:
109 neurons that interact 
via chemicals
Internet:
computers that exchange 
information
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Chialvo, cond-mat/0402538



Critical:
sandpile toy model

Drop sand slowly… nothing happen …eventually 
the pile will reach a state in which the addition 
of a single grain will produce avalanches of all 
sizes:

N(S) is the number of avalanches of size S and     
is the critical exponent. 
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Another example: Rain as 
‘Earthquakes in the Sky’*

Rain dynamics is equivalent to the 
Gutenberg-Richter law for earthquakes 
and the scale-free distribution of 
avalanche sizes in sandpiles

*Figures from www.cmth.ph.ic.ac.uk/kim O. Peters, C. Hertlein, 
and K. Christensen, A complexity view of rainfall, Phys. Rev. 
Lett. 88, 018701, 1-4 (2002).



From Plenz & Chialvo (Nature Neuroscience, 2004)

Another example: ‘Earthquakes in the cortex’

“Neuronal 
avalanches”



Complexity & Criticality
The sandpile is a metaphor describing systems with 
many nonlinear units interacting locally. 
It reaches a dynamical attractor characterized by long-
range correlations. 
There is no way we can study one grain of sand and infer 
anything relevant about the behavior of the resulting 
sandpile (Emergence). 
A new behavior emerges as a result of interactions 
between the many simple units. In this sense complexity 
IS criticality. 
Power laws (heterogeneity) are signatures of complexity 
& criticality.
Non linear interactions of many degrees of freedom. 
Lessons:

Look for the interaction in the whole and nonlinearity in 
the individual



Single scale vs scale-free distributions

Most of the distributions we learnt 
describes uniformity (Gaussian, 
exponential). E.g. heights, weights.

However complex systems display 
heterogeneity. E.g. wealth, population.

World population



Hospital waiting-lists

Nature 410, 652 (2001)   
Nature 413, 382 (2001) 



Part I: Nonlinear dynamics

Prisoner’s Dilemma:
rational players?
local interaction?

Voting & opinion formation.
Imitation leads to herd behavior

Stock market
Panic



Opinion formation

• Binary opinion ((↑↑↑↑,↓↓↓↓),(0,1),( , ))
• Competition between

- Order (interaction): neighbors want to be 
similar

- Disorder (fluctuation): opinion changes 
randomly • Order Parameter.

• Symmetry breaking.

Disorder Critical Point Order

cTT > cTT = cTT <



Social Cooperation

Blue=C (before C);
Red = D (before D) 

Yellow=D (before C); 
Green = C (before D)

Prisoner’s Dilemma:

Emergence of cooperation areas:
M.A. Nowak y R. May, Evolutionary games and 

Spatial Chaos, Nature 359, 6398 (1992)
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A model of social influence (J. Conflict Res. 41, 203 (1997))

Question: “if people tend to become more alike in their  beliefs,        
attitudes and behavior when they interact, why do not all 
differences eventually disappear?”
Proposal: Model to explore mechanisms of competition between 
globalization and persistence of cultural diversity (“polarization”)

Physics paradigm: Cooperative behavior and order-disorder transition

“This work is about the mechanisms that translate individual unorganized behavior 
into collective results” 

•Definition of culture: Set of individual attributes subject to social 
influence

•Basic premise: The more similar an actor is to a neighbor, the more 
likely the actor will adopt one of neighbor’s traits (communication most 
effective between similar people).

•Novelty in social modeling: it takes into account interaction between     
different cultural features.

(T.Schelling, J. Math. Sociology (1971))



Social influence: interaction

agent i

agent i’s neighbors
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Mechanism of 
local convergence:



f=2→→→→B
f=1→→→→G

Visualization of the Dynamics

• The model illustrates how local 
convergence can generate global 
polarization.
• Number of domains taken as a 
measure of cultural diversity
• Uniform state always prevails
without similarity rule (Kennedy 1998)
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Color code for

F=3, q=2

f=0→→→→R

We can identify a cultural domain with a given colour.

In general for q >2, q weights the basic colours (R,G,B): 1)1/(0 ≤−≤ qifσ

F = 3, q = 10

t = 0
System  freezes in 
an absorbing 
multicultural state http://www.imedea.uib.es/PhysDept/

research_topics/socio/culture.html



Statistical Physics: a nonequilibrium phase transition
• Order parameter: Smax size of the largest homogeneous domain

• Control parameter: q measures initial degree of disorder.

1st order transition well defined as N → ∞

q < qc : Monocultural

Global culture
q > qc : Multicultural

Cultural diversity

Global polarization
qc

F = 10

Lewenstein et al (1992)



Beyond the original model

Cultural drift: “Perhaps the most interesting extension and at the 
same time, the most difficult one to analyze is cultural drift (modeled 
as spontaneous change in a trait).”       R. Axelrod, J. Conflict Res. (1997)

Questions: 1. Measure of heterogeneity.
2. Time scales of evolution.

Role of noise?Role of noise?

Social cleavages: “Electronic communication allow us to develop 
patterns of interaction which are chosen rather than imposed by 
geography ... With random long distance interactions, the 
heterogeneity sustained by local interactions cannot be sustained.”

⇒Network topology
1. Small-world networks

2. Scale-free networks

R. Axelrod, J. Conflict Res. (1997)

B. Latane et al., Behav. Science (1994)

Structured  
scale-free



Part II: networks of interaction

“… Currently, there are more than 30 different mathematical 
descriptions of complexity. However, we have yet to understand 
the mathematical dependency relating the number of genes with 
organism complexity. One pragmatic approach to the analysis of 
biological systems, which are composed of nonidentical elements 
(proteins, protein complexes, interacting cell types, and 
interacting neuronal populations), is through graph theory. The 
elements of the system can be represented by the vertices of 
complex topographies, with the edges representing the 
interactions between them. Examination of large networks reveals
that they can self-organize… there are no "good" genes or "bad" 
genes, but only networks that exist at various levels and at 
different connectivities, and at different states of sensitivity to 
perturbation.”

The Sequence of the Human 
Genome, Science 292, 1838 (2001)



Complex systems
Made of                      many 

non-identical elements
connected by diverse 

interactions.

NETWORK
from www.nd.edu/~networks



Biological networks: Genes, proteins, …

Map of protein-protein 
interactions. The color 
of a node signifies the 
phenotypic effect of 
removing the 
corresponding protein 
(red, lethal;        
green, non-lethal; 
orange, slow growth; 
yellow, unknown). 

Figure from 
http://www.cnd.edu/~networks/cell

Jeong et al, Nature 411, 41 (2001)



… and the brain



Network:
set of nodes connected by links

Internet
Nodes: computers, routers, …
Links: physical connections

WWW
Nodes: web pages
Links: links



Communication networks

Picture from

www.cs.bell-labs.com/~ches/map/index.html

Picture from

www.bell-labs.com/user/eick/index.html

IP addressess World-wide 
Internet traffic 



Power grid

Source: 
Planificació i 
Qualitat de Xarxa, 
GESA-ENDESA 
Spain

Mallorca Island 
Power Grid

(Spain)



Sex-web
Nodes: people (Females; Males)
Links: sexual relationships

Liljeros et al. Nature 2001

4781 Swedes; 18-74; 
59% response rate.



Exponential 
Network

Scale-free 
Network

Watts, Strogatz, Nature 393, 440 (1998)

Single-scale vs. scale-free networks

Small-world networks



Interaction networks…
Again:

Many natural and social networks are 
non-uniform, “many forms”!!!
Complexity is heterogeneous.

In random nets most nodes are linked by about the same number of links (k), while in 
scale-free nets a few are extremely well connected.

Scale-free
Homogeneous

Networks in nature are heterogeneous!



N=604

N=107 Klemm et al, cond-mat/0403239

Directory trees



Social Networks

Ego centered viewWho do you like?

Who do you dislike?



Nodes: scientists (authors)      
Links: write a paper together

(Newman, 2000, H. Jeong et al 2001)

Co-authorship of scientific papers



What do we learn from the topology

Resilience against failures, weakness to attacks.
Spreading of rumors, opinions, infectious diseases.
Communication in organizations.
Searching for communities.
They are highly clustered and at the same time 
have short path length (sort of well connected at 
all scales).
Faster synchronizability.
In terms of resistance to damage: they are robust 
(to random) and fragile (to targeted attack).



Robustness
Complex systems maintain their basic functions                  

even under errors and failures                                  
(cell → mutations; Internet → router breakdowns)

node failure



Robustness of scale-free networks

1

S

0 1ffc

Attacks

γ ≤ 3 : fc=1
(R. Cohen et al PRL, 2000)

Failures
Topological 

error tolerance



Achilles’ Heel of complex networks

Internet

failure
attack

Nature 406 378 (2000)



Optimal communication

Optimal structures for 
local search with 
congestion. (a) Star-
like configuration 
optimal for low load 
and (b) homogeneous-
isotropic configuration 
optimal for large load. 

How good is a 
hierarchical 
organization for 
exchanging 
information?



Communities 

E-mail network

How to obtain communities 
from a network



Conclusions

Society & organizations are complex 
systems:

Nonlinear individuals + interaction

Diversity everywhere: power laws.
Mathematical and computational tools 
ready to be used:

Improve management of information & 
knowledge in an organization


