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] Introduction to complex systems
] Social modeling

[J Complex Networks: Networks are the
skeleton of a complex system

[1 Conclusions




Complex Systems

[1 What is a complex system?
[0 A few preliminary (and incorrect) remarks:

B Simple systems display simple dynamics; Complex behavior
is a consequence of complicated systems.
Chaos

B Different systems behave in a different way.
Universality

[0 An intuition: The global behavior cannot be reduced to the
addition of the individual components.

B For instance, the society cannot be reduced to the
psychology of the individuals. In many situations the
individual features are irrelevant to explain the collective
behavior.

[0 Complex behavior lies between order and disorder.
B Example: the growth of a city.




A Tew examples

Density of employment in London
(M. Batty, U.C., London)

Berlin 1875-1945 Percolation model
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Complex systems:
collective phenomena

Ll

O

Individuals, agents, ....:
B Psychology

B Preferences

B What do they do?

Interaction networks:
B How do agents interact?
B Making decision

Ll

=

[

Society:

large number of
interacting individuals
Brain:

10° neurons that interact
via chemicals

Internet;

computers that exchange
information




bout the idea of complex vs. complicated

nLinear

Non linearity

| inear

Emerger

Comple
System

o e i

Linear Stochastic
Processes

Degrees of Freedom

Few
Many



Critical:
sandpile toy model

the pile will reach a state in which the addition
of a single grain will produce avalanches of all

sizes: 2
N(S) = oy — & N

Log S
N(S) is the number of avalanches of size S and ¢¥
is the critical exponent.
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‘Earthquakes in the Sky’*
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Gutenberg-Richter law for earthquakes  § ]
and the scale-free distribution of 2
avalanche sizes in sandpiles al
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Complexity & Criticality

The sandpile is a metaphor describing systems with
many nonlinear units interacting locally.

It reaches a dynamical attractor characterized by /ong-
range correlations.

There is no way we can study one grain of sand and infer
anything relevant about the behavior of the resulting
sandpile (Emergence).

[0 A new behavior emerges as a result of interactions
between the many simple units. In this sense complexity
IS criticality.

[0 Power laws (heterogeneity) are signatures of complexity
& criticality.

Non linear interactions of many degrees of freedom.
Lessons:

B Look for the interaction in the whole and nonlinearity in
the individual




Single scale vs scale-free distributions

[0 Most of the distributions we learnt
describes uniformity (Gaussian,
exponential). E.g. heights, weights.

[0 However complex systems display
heterogeneity. E.g. wealth, population.

1000 b .

World population
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Hospital waiting-lists
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Part |: Nonlinear dynamics

1 Prisoner’s Dilemma:
B rational players?
B |[ocal interaction?
[0 Voting & opinion formation.

] Imitation leads to herd behavior
B Stock market
B Panic




)pinion formation

' T
. Binary opinion ((T,{),(0,1),(0,m)) - st mmm
> Competition between g \ O
= n
- Order (interaction): neighbors want to be ’ T Temperature
similar

- Disorder (fluctuation): opinion changes

randoml
y e Order Parameter.
* Symmetry breaking.
Disorder Critical Point Order

Crit S
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Emergence of cooperation areas:

M.A. Nowak y R. May, Evolutionary games and
Spatial Chaos, Nature 359, 6398 (1992)

Prisoner’s Dilemma:

Prisoner 2
Cooperation  Defection

=
=
°§ 1 year Free
3,
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model of social influence . confiict res. 41, 203 (1997))

Question: “/f people tend to become more alike in their beliefs,
attitudes and behavior when they interact, why do not all
differences eventually disappear?”

Proposal: Model to explore mechanisms of competition between
globalization and persistence of cultural diversity (" polarization®)

‘Definition of culture: Set of individual attributes subject to social
influence

‘Basic premise: The more similar an actor is to a neighbor, the more
likely the actor will adopt one of neighbor's traits (communication mos
effective between similar people).

‘Novelty in social modeling: it takes into account interaction betweer
different cultural features.

Physics paradigm: Cooperative behavior and order-disorder transition

“This work is about the mechanisms that translate individual unorganized behavior
intn ~onllartive racrilfe”? (T CQAAballina | Maoath CaAacmcianlacmiy /1071))



ycial influence: interaction
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Visualization of the Dynamics

olorcode for [OY[OY(OY( Y[ 1Y[1)[O0)[ 1) (f=0>R"
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F=3,q=2 oJLiJloJloJlo)JL1JL1)L1y

\. 7 \ 7

e can 1dentify a cultural domain with a given colour.

=2—-B._

general for ¢ >2, g weights the basic colours (R,G,B): 00, /(¢—1)=1

« The model illustrates how locc
convergence can generate globc
polarization.

* Number of domains taken as
measure of cultural diversity

- Uniform state always prevail
without similarity rule ennedy 1998,

System freezes in
t = 0 —> an absorbing
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atistical Physics: a nonequilibrium phase transitio

rder parameter: S

size of the largest homogeneous domain

Lewenstein et al (19!

max

ontrol parameter: g measures initial degree of disorder.
"

-F=10

L ; .
g< g .+ Monocultural | g> g.: Multicultural
Global culture g. | Cultural diversity
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peyond the original moael

Cultural drift: ‘Perhaps the most interesting extension and at the
same time, the most difficult one to analyze is cultural drift (modelec
as spontaneous change in a trait).”  R. Axelrod, J. Conflict Res. (1997)

Questions: 1. Measure of heterogeneity. Role of noise?

2- T|me SCC(I@S Of €VO|UT|On. B. Latane et al., Behav. Science (1994)

Social cleavages: “Electronic communication allow us to develop
patterns of interaction which are chosen rather than imposed by
geography ... With random long distance interactions, the

heterogeneity sustained by local interactions cannot be sustained.”
R. Axelrod, J. Conflict Res. (1997)

~

1. -
Small-world networks Structured

—=Network topology < :
2 Gecale-free networks scale-free




Part |l: networks of interaction

Currently, there are more than 30 different mathematic:
descriptions of complexity. However, we have yet to understan
the mathematical dependency relating the number of genes wit
organism complexity. One pragmatic approach to the analysis
biological systems, which are composed of nonidentical element
(proteins, protein complexes, interacting cell types, an
interacting neuronal populations), is through graph theory. Th
elements of the system can be represented by the vertices
complex topographies, with the edges representing th
interactions between them. Examination of large networks revea
that they can self-organize... there are no "good” genes or "bac
genes, but only networks that exist at various levels and
different connectivities, and at different states of sensitivity t
perturbation.”

The Sequence of the Hum
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fly,
s0 human complexity seems unlikely to come from a sheer guantity of genes.
Rather, some scientists suggest, each human has a network with different parts
like genes, proteins and groups

DROSOPHILA MELANDGASTER HOMO SAPIENS
(Fruit fly)

n JH" II.[H' Jq AP} AV In this example the fly has
Al Ll Ll Nl Ll sl 40 genes, and the human

In the generic networks shown, the points

represent the elements of each organism’s
genetic network, and the dotted lines show the inter-
actions between them. Humans have many more ele-

es: Or. Albert-Laszio Barabdsl, University of Notre Dame; Sclence; Celera Genomics

Complex systems

Made of many
non-identical elements
connected by diverse
interactions.

v

NETWORK

Steve Duenes The Hey



Biological networks: Genes, proteins, ...

Jeong et al,sNature 411, 41 (2001

Map of protein-protein
interactions. The color
of a node signifies the
phenotypic effect of
removing the
corresponding protein -
(red, lethal;

, hon-lethal;

, slow growth;

, unknown).

igure from
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Network:

set of nodes connected by links

nternet WWW

odes: computers, routers, ... Nodes: web pages

nks: physical connections Links: links
_| /
N
/ =

N

\\ -
—_— ™~
/




Communication networks

Code: from mask IP addressess World-Wide
Internet traff

ure from Picture from



Power grid

Mallorca Island . et
Power Grid AP ! s

(Spain) ;_.7,;:_,.- /3 X ’gn _,-«"" Ny
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Sex-web
Nodes: people (Females; Males

Links: sexual relationships

N '

2 Females
A Males

10° 10°

10

Total number of partners, k_

4781 Swedes; 18-74;

59% response rate.

Liljeros et al. Nature 2001



ngle-scale vs. scale-free networks
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Interaction networks...

Again:

[0 Many natural and social networks are

non-uniform, "many forms”!!!
[0 Complexity is heterogeneous.

lomogeneous

P(k)

log P(k)

log(k)

| Scale-free

In random nets most nodes are linked by about the same number of links (k), while in



Directory trees
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Social Networks

’
5./ [Hacramming
. an Intimate
Network

Who do you like?
Who do you dislike?

Ego centered view




Co-authorship of scientific papers

Nodes: scientists (authors)
Links: write a paper together
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What do we learn from the topology

Resilience against failures, weakness to attacks.
Spreading of rumors, opinions, infectious diseases.
Communication in organizations.
Searching for communities.

They are highly clustered and at the same time
have short path length (sort of well connected at
all scales).

Faster synchronizability.

In terms of resistance to damage: they are robust
(to random) and fragile (to targeted attack).




Robustness

Complex systems maintain their basic functions
even under errors and failures
(cell = mutations; Internet — router breakdowns)

= nodefaiure_ ¢ % w
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Achilles’ Heel of complex networks

—— failure
— attack
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Nature 406 378 (2000)



Optimal communication

How good is a
hierarchical
organization for
exchanging
information?

Optimal structures for
local search with
congestion. (a) Star-
like configuration
optimal for low load
and (b) homogeneous-
isotropic configuration
optimal for large load.
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Communities

E-mail network |

How to obtain communities
from a network




Conclusions

[1 Society & organizations are complex
systems:

B Nonlinear individuals + interaction
[1 Diversity everywhere: power laws.

[1 Mathematical and computational tools
ready to be used:

B Improve management of information &
knowledge in an organization




