

http://www.imedea.uib.es/~victor

Complexity and social dynamics

Víctor M. Eguíluz

victor@imedea.uib.es

\Box Introduction to complex systems

- □ Social modeling
- \Box Complex Networks: Networks are the skeleton of a complex system
- □ Conclusions

Complex Systems

- \Box What is a complex system?
- A few preliminary *(and incorrect)* remarks:
	- **Contract Contract Co** Simple systems display simple dynamics; Complex behavior is a consequence of complicated systems.
		- *Chaos*
	- Different systems behave in a different way. *Universality*
- \Box An intuition: The global behavior cannot be reduced to the addition of the individual components.
	- For instance, the society cannot be reduced to the psychology of the individuals. In many situations the individual features are irrelevant to explain the collective behavior.
- \Box Complex behavior lies between order and disorder.
	- **EXample: the growth of a city.**

A few examples

Density of employment in London (M. Batty, U.C., London)

Gas-liquid critical point (A. Bruce)

Urban growth Urban growth

Berlin 1875-1945 Percolation model

H. Makse (P. Ball, The Self-Made Tapestry, 1999).

Complex systems: collective phenomena

- Individuals, agents, ….:
	- Psychology

 \Box

Ξ

 \mathbb{R}^3

 \mathbb{R}^3

 \mathbb{R}^n

an
M

- Preferences
- **Now What do they do?**
- Interaction networks:
	- How do agents interact?
	- Making decision

□ Society: large number of interacting individuals □ Brain: 10⁹ neurons that interact via chemicals□ Internet: computers that exchange information

bout the idea of complex vs. complicated

Critical: sandpile toy model

E

 Drop sand slowly… nothing happen …eventually the pile will reach a state in which the addition of a single grain will produce avalanches of all sizes:

 $N(S)$ is the number of avalanches of size S and α is the critical exponent.

Another example: Rain as

'Earthquakes in the Sky'*

 Rain dynamics is equivalent to the Gutenberg-Richter law for earthquakes and the scale-free distribution of avalanche sizes in sandpiles

***Figures from www.cmth.ph.ic.ac.uk/kim O. Peters, C. Hertlein, and K. Christensen,** *A complexity view of rainfall, Phys. Rev.*

Another example: 'Earthquakes in the cortex'

Complexity & Criticality

- The sandpile is a metaphor describing systems with *many nonlinear units interacting locally*.
- It reaches a dynamical attractor characterized by *long- range correlations*.
- \Box There is no way we can study one grain of sand and infer anything relevant about the behavior of the resulting sandpile (*Emergence*).
- □ A new behavior *emerges* as a result of interactions between the many simple units. In this sense complexity IS criticality.
- *Power laws* (heterogeneity) are signatures of complexity & criticality.
- \Box Non linear interactions of many degrees of freedom. Lessons:
	- **Letaber 1** Look for the interaction in the whole and nonlinearity in the individual

Single scale vs scale-free distributions

 \Box Most of the distributions we learnt describes uniformity (Gaussian, exponential). E.g. heights, weights.

□ However complex systems display heterogeneity. E.g. wealth, population.

Hospital waiting-lists

Nature **410**, 652 (20

Part I: Nonlinear dynamics

- Prisoner's Dilemma:
	- **P** rational players?
	- **lacal interaction?**
- □ Voting & opinion formation.
- □ Imitation leads to herd behavior
	- **Stock market**
	- **Ranic**

Opinion formation

- **Binary opinion ((** ↑**,**↓**),(0,1),(,))**
- **Competition between**
	- **- Order (interaction): neighbors want to be similar**
	- **- Disorder (fluctuation): opinion changes randomly**

 $T\smallsetminus T$

Disorder Critical Point

 $T-T$

Social Cooperation

Emergence of cooperation areas: M.A. Nowak y R. May, *Evolutionary games and Spatial Chaos,* **Nature 359, 6398 (1992)**

A model of social influence *(J. Conflict Res. 41, 203 (1997))*

Question: "if people tend to become more alike in their beliefs, attitudes and behavior when they interact, why do not all differences eventually disappear?"

Proposal: Model to explore mechanisms of competition between **globalization** and persistence of **cultural diversity ("polarization")**

•**Definition of culture:** Set of individual attributes subject to social influence

•**Basic premise:** The more similar an actor is to a neighbor, the more likely the actor will adopt one of neighbor's traits (communication mos effective between similar people).

•**Novelty in social modeling:** it takes into account interaction between different cultural features.

Physics paradigm: Cooperative behavior and order-disorder transition

"This work is about the mechanisms that translate individual unorganized behavior into collective results" (T.Schelling, J. Math. Sociology (1971))

Social influence: interaction

Visualization of the Dynamics

 $\rm 0$

 $\rm 0$

 $\rm 0$

'olor code for

 $F=3$, q=2

1

1

 $\pmb{0}$

1

e can identify a cultural domain with a given colour.

general for $q > 2$, q weights the basic colours (**R**, **G**, **B**): $0 \le$ σ_{if} /(q-1) ≤ 1

1

 $F = 3, q = 10$

 $t = 0$

System freezes in an absorbing

• The model illustrates how loca **convergence** can generate globe **polarization.**

f=2 → **B**

f=1 → **G**

f=0→**R**

•Number of domains taken as measure of cultural diversity

•· Uniform state always prevail

without similarity rule **(Kennedy 1998)**

multicultural state *http://www.imedea.uib.es/PhysDept/*

atistical Physics: a nonequilibrium phase transitions

ontrol parameter: q measures initial degree of disorder.

Beyond the original model

Cultural drift: "Perhaps the most interesting extension and at the same time, the most difficult one to analyze is cultural drift (modeled as spontaneous change in a trait)." R. Axelrod, J. Conflict Res. (1997)

Questions: 1. Measure of heterogeneity. 2. Time scales of evolution. **Role of noise? Role of noise?**

B. Latane et al., Behav. Science (1994)

Social cleavages: "Electronic communication allow us to develop patterns of interaction which are chosen rather than imposed by geography ... With random long distance interactions, the heterogeneity sustained by local interactions cannot be sustained." **R. Axelrod, J. Conflict Res. (1997)**

[⇒]**Network topology**

1. Small-world networks

2. Scale-free networks

Structured scale-free

Part II: networks of interaction

... Currently, there are more than 30 different mathematica descriptions of complexity. However, we have yet to understan the mathematical dependency relating the number of genes with organism complexity. One pragmatic approach to the analysis of biological systems, which are composed of nonidentical element (proteins, protein complexes, interacting cell types, an interacting neuronal populations), is through graph theory. The elements of the system can be represented by the vertices of complex topographies, with the edges representing the interactions between them. Examination of large networks reveal that they can self-organize... there are no "good" genes or "bad genes, but only networks that exist at various levels and a different connectivities, and at different states of sensitivity to perturbation."

The Sequence of the Hum

Biological networks: Genes, proteins, …

Map of protein-protein interactions. The color of a node signifies the phenotypic effect of removing the corresponding protein (red, lethal; green, non-lethal; orange, slow growth; yellow, unknown).

Figure from http://www.cnd.edu/~networks/cell

… and the brain

Network: set of nodes connected by links

nternet

odes: computers, routers, ... nks: physical connections

WWWNodes: web pages Links: links

Communication networks

 20 ure from

Picture from

Power grid

ingle-scale vs. scale-free networks

*Small-world*d networks

Interaction networks…

Again:

- Many natural and social networks are non-uniform, "many forms"!!!
- □ Complexity is heterogeneous.

In random nets most nodes are linked by about the same number of links (k), while in

Directory trees

 $V1$ amm at al, cond-mat/040333

 1001

.
Papa

Anton Re

 $10\,$

Social Networks

Who do you like?

Ego centered view

Who do you dislike?

Co-authorship of scientific papers

Nodes: scientists (authors) **Links**: write a paper together

What do we learn from the topology

- \Box Resilience against failures, weakness to attacks.
- \Box Spreading of rumors, opinions, infectious diseases.
- \Box Communication in organizations.
- \Box Searching for communities.
- \Box They are highly clustered and at the same time have short path length (sort of well connected at all scales).
- □ Faster synchronizability.
- \Box In terms of resistance to damage: they are robust (to random) and fragile (to targeted attack).

Robustness

Complex systems maintain their basic functions even under errors and failures (cell \rightarrow mutations; Internet \rightarrow router breakdowns)

Robustness of scale-free networks

Achilles' Heel of complex networks

Nature **406** 378 (2000)

Optimal communication

How good is a hierarchical organization for exchanging information?

Optimal structures for local search with congestion. (a) Starlike configuration optimal for low load and (b) homogeneousisotropic configuration optimal for large load.

Communities

Conclusions

- □ Society & organizations are complex systems:
	- \blacksquare Nonlinear individuals $+$ interaction
- □ Diversity everywhere: power laws.
- Mathematical and computational tools ready to be used:
	- **I** Improve management of information & knowledge in an organization