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Aperiodic Time Dependence
Phase space can no longer be “compactified” in time direction.

Strategies to identify coherent structures
Look for local instability & distinguished hyperbolicity

Look for (Lagrangian) coherent structures (LCS)
regions bounded by “material lines with locally the longest or shortest stability or instability 
time”

Look for approximately invariant regions or “resonance zones” 
regions bounded by nearly invariant sets have small “flux” through boundaries...

Look for “locally least stretching closed material lines”

Haller, G. and A. C. Poje (1997). "Finite Time Transport in Aperiodic Flows." Physica D 119: 352-380.
Shadden, S. C., F. Lekien, et al. (2005). "Definition and properties of Lagrangian coherent structures..." Phys. D 212(3-4): 
271-304.
Mancho, A. M., D. Small, et al. (2006). "A tutorial on ... Lagrangian transport..." Physics Reports 437(3-4): 55-124.

Haller, G. and G. Yuan (2000). "Lagrangian coherent structures and mixing in two-dimensional turbulence." Phys. 
D 147: 352-370.

Froyland, G. and K. Padberg (2009). "Almost-invariant sets and invariant manifolds..." Physica D 238: 1507-1523.

Haller, G. and Beron-Vera, J. (2012). "Geodesic Theory of Transport Barriers..." Physica D  in press.



Transitory Dynamics
Past and Future autonomous dynamics:

for a transition time τ.

Transition function 

For example:
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Mosovsky, B. A. and J. D. Meiss (2011). “Transport in Transitory Dynamical Systems.” SIAM J. Dyn. Sys. 10(1): 35-65.
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ẋ = � @

@y

 , ẏ =
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Flow and Transition Map
Time Dependent Flow

Since V is autonomous for  t ∉ [0,τ], 

the Transition map

encapsulates the switch
t

V( ,0) V���Ĳ�
ĳt,0

W� 
�Ĳ

t =
 0

T

d

dt

't,t0(x) = V ('t,t0(x), t), 't0,t0(x) = x

T = '⌧,0

Similar case—Asymptotically Autonomous
see: Markus, L. (1956). Asymptotically Autonomous Differential Systems. Contributions to the Theory of Nonlinear 
Oscillations. S. Lefschetz. Princeton, Princeton Univ. Press. 3: 17-29.
Samelson, R. M. and S. Wiggins (2007). Lagrangian transport in geophysical jets and waves : the dynamical systems approach. New 
York, Springer.



Adiabatic Case
Adiabatic theory for 
τ>> dynamical timescales
uniform hyperbolicity*

E.g.: Kaper, T. J. and S. Wiggins (1991). “Lobe Area in 
Adiabatic Hamiltonian Systems.” Physica D 51: 205-212.

Tracking contours 
with varying  τ 

* not satisfied here!
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Slice: Λs =Λ ∩ {t = s}

past invariant if Λs =Λ0 for all s < 0
future invariant if Λs =Λτ for all s > τ

Invariant Manifolds

An invariant set Λ is 
past hyperbolic if, for t < 0, it is a hyperbolic set of P
future hyperbolic, if for t > τ, it is a hyperbolic set of F

Past & Future Hyperbolicity

W

u
⌧ (⇤) = {x 2 M : lim

t!�1
|'t,⌧ (x)� ⇤t| = 0},
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s
⌧ (⇤) = {x 2 M : lim

t!1
|'t,⌧ (x)� ⇤t| = 0}
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An invariant set Λ is 
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Unstable: look into the past
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Coherent Structures

Past & Future Hyperbolicity

RP0

T(p)

FĲ
p

T

f
h1

h2

t = 0 t = o

T(P0)

! Past-hyperbolic fixed point p with homoclinic loop @P ⇢ Wu(p, P )
! Future-hyperbolic fixed point f with homoclinic loop @F ⇢ W s(f, F )
! Heteroclinic points h1 and h2 ⇢ @P⌧ \ @F⌧ under a transitory flow V .



Rotating Double Gyre
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Past Vector field:

Unstable Manifolds

What is T(U)?

Dynamics for t < 0

6 past hyperbolic saddles



6 future hyperbolic saddles

Future Vector field:
Stable Manifolds

Rotating Double Gyre
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Double Gyre Flow

Blue = Right Gyre
Red = Left Gyre

Dark & Light  ⇒ Top
Light & Dark  ⇒ Bottom

t = 0

t = τ

T-1(S)

U

τ = 0.7
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FTLE Comparison
τ = 1.0

“Backwards” FTLE 
at t = τ 
integrating for Δt = 
2τ

Precise 
Manifolds



LIOUVILLE 
VECTOR FIELDS



Liouville Vector Fields
Globally Hamiltonian

Symplectic form ω = dq∧dp + Hamiltonian H : M→R

Globally Liouville
Volume form Ω  +  “Hamiltonian form” β ∈Λn-2(Μ)

Example: for standard volume Ω = dx∧dy∧dz  in R3:

Beltrami Case:

ıV ! = q̇dp� ṗdq = dH

ıV ⌦ = d�

~

V = r⇥ ~

V ) � = Vidxi

ẋ = a sin(z) + c cos(y)

ẏ = b sin(x) + a cos(z)

ż = c sin(y) + b cos(x)

ABC Vector Field

Dombre, T., U. Frish, et al. (1986).  J. Fluid Mech. 167: 353.

~V = r⇥ ~�

Locally Hamiltonian

LV ! ⌘ d

dt
'⇤
t,0!

����
t=0

LV ! = ıV d! + d(iV !) = 0
0

ıV ⌦ =ẋdy ^ dz+

ẏdz ^ dx+

żdx ^ dy

LV ! = dq̇ ^ dp+ dq ^ dṗ

= d(q̇dp� ṗdq)

= 0
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Lagrangian Forms

Symplectic Case: if ω is exact (ω =–dν =  –pdq), then

 

Volume Preserving Case: if  Ω = dα is exact, then

d

dt
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V
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Lagrangian Forms

In R3, λ is a one-form
Beltrami Vector field

Analogous forms for exact volume-preserving maps can be used as “generating forms” like 
those for Hamiltonian dynamics

⌦ = dx ^ dy ^ dz

↵ = zdx ^ dy

Lomelí, H. E. and J. D. Meiss (2009). “Generating Forms for Exact Volume-Preserving Maps.” 
Disc. Cont. Dyn. Sys. Series S 2(2): 361-377.
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CALCULATING FLUX



Flux—2D
Transport from a past invariant region P0 to a future invariant region 
Fτis localized to one or more lobes

� = Vol(Pt \ Ft)
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Flux—3D

Transport from a past invariant region P0 to a future invariant region 
Fτis localized to one or more lobes

� = Vol(Pt \ Ft)

@Rt = Ut + St



Flux
Stokes’s Theorem: codimension-one reduction to boundary

Action-Flux Formula: codimension-two reduction (+ time)
Theorem: Suppose that Ω = dα is exact and Γt is a codimension-one slice of an invariant set of a 
globally Liouville flow φ.  Then for any r  ∈R,
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Action Flux: Stable & Unstable Manifolds

If Γ = U an unstable manifold: take r → –∞:

If Γ = S a stable manifold: take r → ∞:

Often: It = @Ut \ @St
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APPLICATION:
DROPLET MIXING 



MicroDroplet Mixers
1090 M. R. Bringer and others
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Figure 1. Formation of plugs from three aqueous solutions in a flow of immiscible fluorinated
fluid in a microfluidic channel. Images also show the effects of the initial conditions of plug
formation on the mixing of plugs moving through straight channels. (a)–(c) Left: a schematic of
the microfluidic network. Right: microphotographs of plugs formed at water fractions of (a) 0.14,
(b) 0.30 and (c) 0.60, respectively, from top to bottom. Plugs were travelling at 50 mm s−1. The
blue box indicates the region of the network shown. Red aqueous streams were solutions of
0.067 M [Fe(SCN)x](3−x)+ and colourless aqueous streams were 0.2 M KNO3. The oil stream
was a solution of water-immiscible fluorinated fluid (perfluorodecalin) with a (10:1) v/v ratio of
1H,1H,2H,2H-perfluoro-1-octanol. The inset in (a) is a schematic defining the sides of the plug
relative to flow velocity U . (d) A graph of the relative optical intensity of red [Fe(SCN)x](3−x)+

complexes in plugs at WF = 0.14, 0.30 and 0.60 (lines). Grey shaded areas represent the walls
of the microchannel on left (x = 1.0) and right (x = 0.0).

3. Mixing in plugs moving through straight channels

Recirculating flow is induced inside droplets moving through straight microfluidic
channels. When a plug moves through a straight channel, two vortices are formed in

Phil. Trans. R. Soc. Lond. A (2004)
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Kinetics using chaotic mixing in droplets 1095
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Figure 4. Over-twirling causes some mixed aqueous solutions to be left behind in the aqueous
inlet of the plug-forming region after the plug snaps off, resulting in a poorly defined mixing
time. (a) Left: schematic of the microfluidic network. Right: microphotograph of the plug-forming
region of the microfluidic network. The aqueous streams were as in figure 1. The oil stream was
as in figure 3a. The aqueous solution plug forming at the junction is uniform in colour, indicat-
ing that there is mixing at the junction. Mixed aqueous solution remains at the junction after
the detachment of the plug. (b) Left: schematic of the microfluidic network. Right: false-colour
fluorescence microphotograph (0.9 s exposure). The white lines trace the walls of the microchan-
nel. Aqueous streams were solutions of 55.7 µM fluo-4, 150 µM CaCl2 (both in 20 mM MOPS,
pH 7.2) and 20 mM MOPS. The intense green spot at the aqueous inlet of the plug-forming
region reveals that some mixed solutions remains there after each plug snaps off.

(a)

(b)

oil

outlet

water

water

water
200 mm sm −1 50 µm

oil

outlet

water
water

water
180 mm s−1

50 µm

(i)

(ii)

redwhitered

whitered
50 µm

white

Figure 5. Chaotic advection in plugs moving through winding channels of various geometries. The
narrowed channels at the plug-forming junction cause the aqueous solution to remain as distinct
laminar streams until the formation of the plug. Left: schematic of the microfluidic network.
Right: microphotographs of the microfluidic network. (a) Mixing in larger plugs (WF = 0.55).
Arrows indicate ‘flipping’ of coloured solution in the back of the plug from one side to another.
(b) Mixing in smaller plugs (WF = 0.44) is more efficient. In the smaller plugs, ‘flipping’ is not
observed. The aqueous streams were as in figure 1. The oil stream was as in figure 3a.

Phil. Trans. R. Soc. Lond. A (2004)
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Figure 6. Schematic of a fluid element undergoing stretching, folding and reorientation, char-
acteristics of the baker’s transformation (top). Stretching and folding, as defined here, without
reorientation (bottom) does not lead to decrease of the striation thickness, demonstrating the
critical nature of the reorientation step.

(a) (b)

(i) (ii)

flow within plugs

(c)

smooth turns sharp turns

(i) (ii)

stretch
AND fold
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50 µm 50 µm

Figure 7. The baker’s transformation in plugs moving through a microfluidic channel. (a) Sche-
matic illustrating the principle: straight portions of the channel perform stretching and fold-
ing, and turns allow for reorientation. (b) Mixing as represented by a scheme of recirculating
flow in plugs moving through smooth turns (i) and sharp turns (ii). (c) Microphotographs
of the microfluidic network in which flow patterns inside plugs in different positions in the
microchannel demonstrate flow patterns reminiscent of the baker’s transformation. The aque-
ous streams were as in figure 1. The oil stream was 10:1 v/v perfluoro-1,3-dimethylcyclohexane
to 1H,1H,2H,2H-perfluoro-1-octanol. The streams were flowed at 53 mm s−1.

After rearrangement,
2a × n × σ2n ∼ w × U/D = Pe, (8.4)

where Pe is the Péclet number, defined as Pe = w × U/D.
The value of n is determined by taking the logarithm of both sides of equation (8.4)

and assuming large values of the Péclet number:

n ∼ log(Pe). (8.5)

We assume large Pe when deriving the argument to be able to state that log(n) is
much smaller than n × log(σ). By replacing the derived value of n in the equation

Phil. Trans. R. Soc. Lond. A (2004)
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Water injected into oil

Bringer, M., C. J. Gerdts, et al. (2004). “Microfluidic 
systems for chemical kinetics that rely on chaotic 
mixing in droplets.” Phil. Trans. R. Soc. Lond. A 
362(1818): 1087-1104.

For general review: Wiggins, S. and J. M. Ottino (2004). “Foundations of chaotic mixing.” Phil. Trans. R. Soc. Lond. 362(1818): 937-970.



MicroDroplet Mixers

where L and S are the length and the section of the channel,
respectively; C is the volume fraction of the droplets; U is the
local velocity vector; n is the unit vector normal to the surface
element dS; and z is the streamwise coordinate. The computed
velocity is very close to the experimental values. The two flow
rates are also of the same order of magnitude but it is difficult
to obtain the same value through the two methodologies.
Indeed, the computed value results from the imposed pressure
drop, droplet volume, and frequency. The value of the pressure
drop is estimated from continuous flow correlations (Eq. 5) but
cannot a priori take into account the presence of droplets. As
for the experimental velocity, the experimental device presents
constraints that explain the velocity scatter such as (1) the po-
rosity and swelling of the material, (2) the evolution of the
wettability at the droplet generation, and (3) its extreme sensi-
tivity to the pressure drop.

Velocity fields and forced convection inside the droplets

Figure 7 presents the computed velocity field in the refer-
ence frame of the droplet. Figure 7a shows the shape of a cross
section of the droplet. The droplet shape is almost spherical,
even though it is slightly flattened (the channel dimensions are
0.83D ! D). We can notice that, because of capillary effects,
the thickness of the liquid films separating the droplet from the
top and bottom walls is half the thickness of the liquid films
separating the droplet from the lateral walls (these thicknesses
are 0.04D and 0.08D along the x- and y-axes, respectively).
Note that these thicknesses would have been equal if the chan-
nel had a square cross section. In addition, capillary effects are
responsible for the circulation of fluid across the section of the
channel. Indeed, the interface of the droplet pushes the liquid
away from the top and bottom walls, whereas it pulls it from
the lateral walls. This effect might become significant as soon
as either the channel aspect ratio, the confinement, or the sur-
face tension becomes large.

Figure 7b reveals that in the central region of the droplet, the
velocity is oriented toward the front, whereas in the vicinity of

the lateral walls it is oriented towards the back of the droplet.
Here the central region is much wider than the lateral one. The
continuity of viscous stresses makes the liquid film of silicone
oil (which is more viscous than water) drag the water located
near the interface. Figure 8, which makes use of a reference
frame attached to the droplet, compares the instantaneous com-
puted velocity fields with the experimental ones. Five horizon-
tal planes are shown; the first of them corresponds almost to
the midplane of the channel, whereas the last one is located 6
!m down to the top wall. As expected, the central region where
the flow is oriented toward the droplet head shrinks as the plane
of visualization draws closer to the top wall. The computed ve-
locity fields are in qualitative agreement with the experimental
ones as shown in Figure 8.

Figure 7. Velocity field in the reference frame of the
droplet obtained inside the droplet and the
continuous phase by 3D computations.
(a) View of the (xy) section at half of the droplet length. (b)
View in the (yz) plane at x/D ¼ 0.4. The interfacial region is
represented by isovalues (C) of 0.05, 0.5, and 0.95.

Figure 8. Velocity fields in the reference frame of the
droplet in (yz) planes at different channel
heights.
The height x/D ¼ 0.42 corresponds to the horizontal symme-
try plane; x/D ¼ 0 corresponds to the location of the wall. (a)
Micro-PIV experiments; (b) computed velocity fields (3D
computation).

Figure 9. Transverse profiles of the longitudinal velocity
(normalized by the averaged droplet velocity).
(a) In the vertical (xz) symmetry plane: (—) Computed veloc-
ity at half the droplet length; (^) micro-PIV data at half the
droplet length. (b) In the horizontal (yz) symmetry plane: (—)
Computed velocity at 1/4–1/2–3/4 of the total droplet length;
(^) micro-PIV data at half of the droplet length. Walls are
located at normalized positions (a) x/D ¼ 0 and x/D ¼ 0.83,
(b) y/D ¼ (#0.5) and y/D ¼ 0.5.

AIChE Journal December 2006 Vol. 52, No. 12 Published on behalf of the AIChE DOI 10.1002/aic 4067

50 x 40 μm rectangular channel
Water Droplet in silicone oil

Sarrazin, F., K. Loubière, et al. (2006). “Experimental and 
numerical study of droplets hydrodynamics in microchannels.” 
AIChE journal 52(12): 4061-4070.

S170 D. Malsch et al. / Chemical Engineering Journal 135S (2008) S166–S172

Fig. 9. Reversed symmetrical flow fields are induced by the translation of micro
droplets through linear micro channels (transport velocity 7.6 mm/s). Mixing is
suppressed. The measured internal flow inside a micro droplet is shown for a
micro channel with dimensions of 780 !m × 260 !m. Internal flow is induced
at the liquid/liquid interface with four regions of maximum flow.

5.3. CFD simulations of phase internal flows

The computational fluid dynamics simulation of phase inter-
nal flow in micro channels has been performed with the CFD
software Fluent®. Segments of water flanked by separation
medium of oil translate through round micro channels with
300 !m in diameter with a transport velocity of 2 mm/s. A con-
tact angle of 160◦ is adjusted via the boundary layer. Calculations
have been conducted with no-slip condition at the channel walls,
resulting in an overestimated contribution of liquid/wall friction.

In elongated segments of water flanked by mineral oil, phase
internal flow consists of six zones with alternating vortices
(Fig. 11). Friction at the liquid/liquid interfaces induces a total of
four vortices next to the interface regions. In the middle region
of the segment, two more vortices are generated by liquid/wall

Fig. 10. Translation of droplets through winding channels (transport velocity
7.6 mm/s) induces complex internal flow for efficient mixing. Maximum flow is
observed at the liquid/liquid interface which dominates the phase internal flow.

friction. In small segments liquid/liquid friction determines the
internal flow and two main vortices are induced (Fig. 12).

5.4. Flow rate dependency of the phase internal flow in
small segments

In small segments the internal flow induction depends on
the flow field in the separation medium which is induced by
liquid/wall friction. Fig. 13 shows this dependence, which is
indicated by the x-components of a vertical column of displace-
ment vectors along the segment middle axis, with regard to flow
rate. Velocity components smaller than zero indicate flow in
transport direction which is found, as already shown, near the
liquid/wall phase boundary. This is also true for very small flow
rates with hardly any flow induction over the liquid/liquid phase
boundary yet also with no measurable flow induction over the

Fig. 11. CFD simulation of the phase internal flow of a long micro droplet translating through a micro channel (transport velocity 2 mm/s). The flow field near
the liquid/liquid interface induced by liquid/liquid friction is clearly seen. Inherent to simulation under computational no slip condition, an influence of liquid/wall
friction is also represented. Six vortex-regions are apparent, four strong vortices at the liquid/liquid interfaces and two in between, determined by the liquid/wall
interface friction.

Malsch, D., M. Kielpinski, et al. (2008). “µPIV-
Analysis of Taylor flow in micro channels.” 
Chem. Eng. J. 135(Suppl. 1): S166-S172.
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Modeling Droplet Flow

Hadamard-Rybczynski Flow
Assume droplet in infinite fluid with steady flow
Surface tension and viscosity difference maintain 
droplet shape and integrity
Velocity field in droplet frame:

Stone, Z. B. and H. A. Stone (2005). “Imaging and quantifying mixing 
in a model droplet micromixer.” Phys. Fluids 17: 063103.
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Hadamard-Rybczynski Flow
Assume droplet in infinite fluid with steady flow
Surface tension and viscosity difference maintain 
droplet shape and integrity
Velocity field in droplet frame:
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Modeling Droplet Flow
Sinuous Channel

Make it 3D!

S170 D. Malsch et al. / Chemical Engineering Journal 135S (2008) S166–S172

Fig. 9. Reversed symmetrical flow fields are induced by the translation of micro
droplets through linear micro channels (transport velocity 7.6 mm/s). Mixing is
suppressed. The measured internal flow inside a micro droplet is shown for a
micro channel with dimensions of 780 !m × 260 !m. Internal flow is induced
at the liquid/liquid interface with four regions of maximum flow.

5.3. CFD simulations of phase internal flows

The computational fluid dynamics simulation of phase inter-
nal flow in micro channels has been performed with the CFD
software Fluent®. Segments of water flanked by separation
medium of oil translate through round micro channels with
300 !m in diameter with a transport velocity of 2 mm/s. A con-
tact angle of 160◦ is adjusted via the boundary layer. Calculations
have been conducted with no-slip condition at the channel walls,
resulting in an overestimated contribution of liquid/wall friction.

In elongated segments of water flanked by mineral oil, phase
internal flow consists of six zones with alternating vortices
(Fig. 11). Friction at the liquid/liquid interfaces induces a total of
four vortices next to the interface regions. In the middle region
of the segment, two more vortices are generated by liquid/wall

Fig. 10. Translation of droplets through winding channels (transport velocity
7.6 mm/s) induces complex internal flow for efficient mixing. Maximum flow is
observed at the liquid/liquid interface which dominates the phase internal flow.

friction. In small segments liquid/liquid friction determines the
internal flow and two main vortices are induced (Fig. 12).

5.4. Flow rate dependency of the phase internal flow in
small segments

In small segments the internal flow induction depends on
the flow field in the separation medium which is induced by
liquid/wall friction. Fig. 13 shows this dependence, which is
indicated by the x-components of a vertical column of displace-
ment vectors along the segment middle axis, with regard to flow
rate. Velocity components smaller than zero indicate flow in
transport direction which is found, as already shown, near the
liquid/wall phase boundary. This is also true for very small flow
rates with hardly any flow induction over the liquid/liquid phase
boundary yet also with no measurable flow induction over the

Fig. 11. CFD simulation of the phase internal flow of a long micro droplet translating through a micro channel (transport velocity 2 mm/s). The flow field near
the liquid/liquid interface induced by liquid/liquid friction is clearly seen. Inherent to simulation under computational no slip condition, an influence of liquid/wall
friction is also represented. Six vortex-regions are apparent, four strong vortices at the liquid/liquid interfaces and two in between, determined by the liquid/wall
interface friction.
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Modeling Droplet Flow
Sinuous Pipe: Push Forward velocity

Transitory Case:

Simple Example:
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Transport
Inject fluid in x < 0 hemisphere

Injection plane:

Extract fluid in x > 0 or y > 0 hemisphere
Extraction planes 

U0 = {(0, y, z)}

S⌧ = {(0, y, z)} or S⌧ = {(x, 0, z)}

Goal: Find Fraction of injected fluid extracted



Transitory Transport: Particle Tracking



Transitory Transport: Boundary Tracking

I int
⌧ = T (U0) \ S⌧ .

Action-Flux Formula
Computation relies on finding
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Intersection Curves



Intersection Curves
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Flux

� ⇡ 2

3
⇡
Nin

N

Comparison with Monte Carlo

N = 106 particles to give M.C. 
errors O(10-3) when Φ = O(1).

✓(t) =  (t) = ⇠ sin(2⇡t/⌧)



Flux

� ⇡ 2

3
⇡
Nin

N

Comparison with Monte Carlo

N = 106 particles to give M.C. 
errors O(10-3) when Φ = O(1).

Optimal Shapes!

Future Goal: Optimize Channel Shape

✓(t) =  (t) = ⇠ sin(2⇡t/⌧)



Conclusions  /  Future Work

Globally Liouville Flows have 
Lagrangian Forms 

Action-Flux Formulas reduce 
Lagrangian information 
needed for transport 
computations

Optimal bend may be 
intermediate.

Develop techniques for 
computing Lagrangians from 
data? 

Optimize channel shape for 
transport?

Measure mixing instead of 
transport?

See http://arXiv.org/abs/1203.3821

http://arxiv.org/abs/1203.3821
http://arxiv.org/abs/1203.3821

