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A physical motivation for two-dimensional turbulence 

2D Navier-Stokes equations are 
a simple model for large scale 
motion of  atmosphere and oceans: 
thin layers of fluid in which 
stratification and rotation 
supress vertical motions. 

“More easily simulated on digital computers 
than 3d flows [...] a valuable testing ground 
for dynamical theories”        RHK, 1967 



Outline 

* Zero thickness: 2D Navier-Stokes  

•  double cascade theory by Kraichnan  
•  experimental and numerical studies 
•  statistics of the inverse cascade 
 

 
* Finite thickness: 2D or not 2D ? 

•  split energy cascade 
•  2D phenomenology in 3D flows 
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2D Navier-Stokes






Prehistory: 2D Navier-Stokes equations 

Introducing the stream function 

 
 

   

∂u
∂t

+ u ⋅ ∇u = −∇p +ν∇2u

∇ ⋅u =
∂u

x

∂x
+
∂u

y

∂y
= 0

  u = ẑ × ∇ψ
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two inviscid quadratic invariants: 
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f: external forcing 
α: friction coefficient (from boundary 
     conditions on the bottom) 

energy enstrophy 



Pre-Kraichnan studies 

* TD Lee (1951): enstrophy conservation is incompatible 
                           with direct energy cascade (i.e. the energy flux is inverse) 

* Fjørtoft (1953) 

  
dE
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= −2νZ
  
dZ
dt

= −2νP

energy center of mass moves to larger scales 
enstrophy center of mass moves to smaller scales 

* Neuman (1967) 

Define characteristic wavenumbers: 
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from energy/enstrophy balance: 

using Schwarz inequality :  
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A simple argument for cascade directions 
(Kraichnan, 1967; Eyink 1996) 

From energy/enstrophy balance 
in stationary conditions: 

 

ε f = εα + εν
ηf = ηα +ην

Characteristic scales 
in the cascades: 

developed direct cascade: developed inverse cascade: 

we have 

   


ν
= ε

ν
/η

ν( )1/2

f = εf /ηf( )1/2


α
= ε

α
/η

α( )1/2

   

ε
ν

ε
α

=

ν

f

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2
f

α

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2
(

α
/ f )2 − 1

1 − (
ν

/ f )2

   

η
ν

η
α

=
(

α
/ f )2 − 1

1 − (
ν

/ f )2

  ν  f

 

ε
ν

ε
α

→ 0

  f  α

 

η
α

η
ν

→ 0

This argument determines the directions of the cascades but not how the 
characteristic scales depend on the parameter α and ν 
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energy goes to large scales enstrophy goes to small scales 



Kraichnan [Phys. Fluids 10 (1967), J. Fluid Mech. 47 (1971)] 

T(k,p,q)+T(p,q,k)+T(q,k,p)=0 
k2T(k,p,q)+p2T(p,q,k)+q2T(q,k,p)=0 
 

Non-linear transfer of energy and enstrophy at wavenumber k: 

  

dE (k)
dt NL

=T (k)
  

dZ (k)
dt NL

= k2T (k) with 
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and (energy/enstrophy conservation) 

Energy transfer across a given scale 
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characteristic deformation frequency: 
(smaller scales are incoherent)  
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Looking for a scale-independent energy flux ΠE(k)=ε one obtains 

Transfer is local: λk is dominated by  p~k  and  λk~ε1/3k2/3  

Friction IR cutoff: 

  E(k) = C ε2/3k −5/3

   kα
 ε −1/2α3/2



Enstrophy transfer across a given scale 
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Looking for a scale-independent enstrophy flux ΠZ(k)=η one obtains 

  E(k) = C 'η2/3k −3

Problem: transfer is not local: 
λk is dominated by wavenumbers p«k 
(similar to Batchelor regime for passive scalar) 

This argument is not fully consistent as it gives λk~log(k/kmin) and therefore a 
log-k dependent enstrophy flux 

Kraichnan (1971): constant flux using log-corrected spectrum: 

with viscous UV cutoff:    kν
 η1/6ν−1/2

  
E(k) = C 'η2/3k −3 ln(k / k

min
)#

$
%
&

−1/3

The analogy with passive scalar is even stronger when considering the effects of friction 



The double cascade scenario 

A two dimensional fluid forced at intermediate scales is expected to develop the 
two cascades (inverse energy to large scales and direct enstrophy to small scales) 

The double cascade scenario is typical of 2d flows, e.g. plasmas and other geophysical models. 

  E(k) = C ε2/3k −5/3
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The dimensionless constants  
can be estimated by closures. 
TFM (Kraichnan, 1971): 
C ~ 6.7 
C’~ 2.6 

kf kα kν 

η 

   kα
 ε −1/2α3/2

   kν
 η1/6ν−1/2



The fate of large scales (Kraichnan, 1967) 

In the absence of friction (or with small friction) the inverse cascade is quasi-steady 
because largest scale grows in time as (from energy balance) 

   L(t)  ε1/2t3/2

When L(t) reaches the box size LB , energy 
piles up at scale this scale generating the 
condensate: a large scale structure (a dipole 
in the case of periodic BC). 
 
The condensate interacts non-locally with the 
cascade and modifies the k-5/3 spectrum 

Evolution of energy spetrum in DNS 

velocity field in presence of the condensate 
numerical simulations by L.Smith and V.Yakhot, PRL (1993) 

k-5/3 



results on 2d turbulence






Early laboratory experiments 

Thin layer of mercury with electrical 
forcing in a uniform magnetic field 
suppressing vertical motions (linear 
friction due to Hartmann layer). 
J.Sommeria, JFM 170, 139 (1986) 

Energy spectrum 

Observation of the inverse cascade 
very small inertial range 



Electrolyte cell 

J. Paret, P.Tabeling, PRL 79 4162 (1997) 

(P. Tabeling, M. Rivera, B. Ecke, J. Gollub, G. van Heijst) 

Two layers of different densities 
the lower driven by Lorentz force 
(array of magnets). 
 
Different implementations: 
  * salty water/fresh water 
  * immiscible layers (fluorinert/salt water) 
PIV data acquisition 

courtesy of B. Ecke 

courtesy of S.Espa 

Energy spectrum in inverse cascade 



Soap films (Y. Couder, W. Goldburg, H. Kellay, M.A. Rutgers, M. Rivera, R.E. Ecke) 

M.A. Rutgers, PRL 81, 2244 (1998) 

Soap films are very interesting because of 
the large aspect ratio (~104) 

Evaporation limits the stability of the film: 
continuously running soap film channels 
with different geometries 

M.Gharib, P.Derango, Phys. D 37 (1989) 

Velocity acquisition by LDV and PIV  

Turbulent spectrum in soap film channel 



Direct numerical simulation: the beginning 
2D turbulent is in principle very convenient for numerical simulations 
(e.g. a 10243 simulation corresponds to about 560002 for memory occupation). 
 
Not so convenient for integration time (which is 
proportional to ND+1, i.e. 10243 corresponds to 150002). 
 
Even less convenient if we want to simulate 
both cascades (e.g. resolution of 1002 for each cascade 
requires  >100002 resolution) 

First DNS (R.W.Bray, 1961): 
pure spectral code with 1≤k≤10 
Study of the direct cascade  

G.K.Batchelor, POF 12 (1969) 

Lilly, 1969 
finite difference scheme at 642 
“Observation” of the double cascade 
Kolmogorov constant for inverse C=4.2-6.2 

D.K.Lilly, POF 12 (1969) 



Pseudospectral simulations 
In 1971 Orszag [JAS 28, 1074] shows how to remove aliasing efficiently 
(2/3 rule, after Phillips, 1959) paving the way to the use of (pseudo)-spectral 
codes both in 2D and 3D. 
 
Pseudospectral codes are very efficient: not changed in 35 years of DNS 
 

From Frisch & Sulem (1984) at 2562 to  
Borue (1993) at 40962 the resolution 
growth is fitted by 
 

 N = 267*2(t-1984)/2.8 

Evolution of resolution in 2D simulations 

* 

Doubling time close to Moore’s law: 
t=3x1.07=3.2 



Direct numerical simulations of 2d turbulence 

Set of simulations at 
high resolutions with 
a parallel pseudo 
spectral code. 

G. Boffetta, JFM (2007) 
G.Boffetta and S.Musacchio, PRE (2010) 

N ν α L/rf rf/rν εα/εf ην/ηf 

2048 2x10-5 0.015 100 13 0.54 0.96 

4096 5x10-6 0.024 100 26 0.83 0.92 

8192 2x10-6 0.025 100 40 0.92 0.90 

16384 1x10-6 0.03 100 57 0.95 0.88 

32768 2.5x10-7 0.0 100 116 0.98 0.98 
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Energy and enstrophy fluxes 

Inverse cascade: 
constant flux of energy 

Direct cascade:  
constant flux of enstrophy 

Prediction for fluxes ratio 
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Simultaneous observation of direct and inverse cascades  

k-5/3 

k-3 

Energy spectrum 

* Inverse cascade: 
  k-5/3 spectrum 
 
* Direct cascade: 
  k-(3+δ) spectrum with correction δ  
 which vanishes as νà0 



Direct enstrophy cascade 
 
 
Inverse energy cascade 

Third order structure function of 2D turbulence 

Fluxes of energy and enstrophy in physical space 
  

Sp (r) ≡ δu(r)( )p
δu(r) ≡ u(x + r) − u(x)



Probability density functions of 
 
velocity: close to Gaussian in the  
inverse cascade (left) 
 
vorticity: self-similar in the direct 
cascade (right) 

Higher order structure functions 

  
Sp(r ) = δu/ / (r )( )p =Cp εr( )p/3

compatible with Kolmogorov scaling 
no intermittency 

S5(r) 

S7(r) 

r>rf r<rf 



Conformal invariance in the inverse cascade 
D.Bernard, G.Boffetta, A.Celani and G.Falkovich 
Nature Phys. 2, 124 (2006) 
Phys. Rev. Lett. 98, 024501 (2007).  



Conformal invariance in the inverse cascade 
D.Bernard, G.Boffetta, A.Celani and G.Falkovich 
Nature Phys. 2, 124 (2006) 
Phys. Rev. Lett. 98, 024501 (2007).  

Positive vorticity clusters 
in the inverse cascade of 
2d turbulence 



Positive vorticity cluster 
in the inverse cascade of 
2d turbulence 



¶  Boundary 
¶  Frontier 
¶  Cut points L=side of square 

covering the cluster 

Fractal dimensions of a single 
vorticity cluster 

As in critical percolation 

boundary 
frontier 



Probability distribution of vorticity clusters 

¶  Size 
¶  Boundary 
__ critical percolation 

size s= # connected sites of same sign 
boundary t= # connected sites adjacent to opposite sign 

see Cardy and Ziff, 
J.Stat. Phys. 110, 1 (2003) 

Is the inverse cascade equivalent (geometrically) to critical percolation ? 



Conformal mapping for growth processes: Loewner equation (1923) 

A curve γt growing in H from the origin (t parameterizes the curve). 
The evolution of γt can be mapped on the evolution of the map gt(z) which 
map the complement of γt (or H\K) on H (Riemann theorem) 
(while γ is mapped on R): 

  

dg
t
(z)

dt
= 2

g
t
(z) − ξ

t

K 
γt	



zt	

 H 

trace 

ξt 

with g0(z) = z 
and g(z)~z+O(1/z)  as z->∞ 
driving:   ξt ∈R

Example: solution to LE with ξt=a=const 

  gt (z ) = a + (z − a)2 + 4t

i.e. a vertical segment of length 2√t 

i2√t 

a 0 

  gt (z )

a 0 



An example 
of Loewner evolution 
(from driving to trace) 

driving 

trace 
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Stochastic Loewner Equation 

  

dg
t
(z)

dt
= 2

g
t
(z) − ξ

t

The “diffusion coefficient” κ controls the fractality 
of the generated trace (Rohde & Schramm, 2001) 
* 0 < k < 4  simple curve 
* 4 < k < 8  non-simple curve (∞ intersections) 
* k  > 8   space filling 
 
Fractal dimension of SLE traces (Beffara, 2002) 

  
DF = 1 + κ

8

O.Schramm (2000) 
G.Lawler, O.Schramm, W.Werner (2001) 
see J.Cardy (2005) 

Loewner equation(1923) 
for conformal mapping 
with driving ξt : R->R 

LE describes a conformally invariant curve when  
the driving is proportional to a random walk 

 ξt
= κB

t



Some applications of SLE 

Old conjecture by Mandelbrot (1982): 
the frontier of BM is a SAW with D=4/3 
 
Lawler, Schramm & Werner, 2000 (via SLE): 
•  pioneer points:  D=7/4  (SLE6) 
•  frontier:  D=4/3  (SLE8/3) 
•  cut points  D=3/4 

SLEk and critical systems 
Ø  k=2  loop-erased random walk 

Ø  k=8/3  self avoiding random walk 

Ø  k=3  cluster boundaries in Ising 

Ø  k=4  isolines in O(2) model 

Ø  k=6  cluster boundaries in percolation 

Ø  k=8  uniform spanning trees 



Checking SLE in vorticity clusters 

By inverting SLE one computes driving function 

  

dg
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Driving functions 



Driving ξ(t) is Brownian motion è  zero-vorticity lines are SLEk 

κ = 5.9 ± 0.3   vorticity clusters are equivalent to critical percolation 



Atmospheric data 

Mesoscale wind variability 
(radar and balloon): k-5/3 
K.S. Gage, J.Atmos.Sciences 36 (1979) 

Global Atmospheric Sampling Program 
(6900 Boing 747 flights): 
k-5/3 for wavelenghts 10-500 km 
k-3 for wavelenghts 500-2000 km 
 
see also Mozaic (on Airbus) Kinetic energy (zonal and meridional 

wind) and potential energy spectra 
Nastrom, Gage, Jasperson, Nature 310 (1984) 
Gage, Nastrom, JAS 43 (1986) 

Two-dimensional turbulence in the stratosphere ? 



Interpretations of Gage-Nastrom spectrum 

* Stratified turbulence (Gage, Lilly) 
 
* Gravity wave cascade (Dewan) 
 
* 2-level quasi-geostrophic model (Tung, Orlando) 
 
* Rotation + stratification (Lindborg) 

* Two-dimensional turbulence with condensation (Falkovich, Shats) 
 
  large scale spectrum steeper, close to k-3 

  energy flux changes sign (nonlocal interactions) 
 
 



Statistics of the condensate 

Experimental/numerical studies on the evolution and the statistics of the condensate 

self-similar evolution of the condensate 
Chertkov et al. Phys. Rev. Lett. 99 (2007) 

experiments by Xia et al., Nat. Phys. 7 (2011) 



full field 

without 
condensate 

Experimental studies by Shats group 
[Xia, Punzmann, Falkovich, Shats, PRL 101 (2008)] 
 
show that the condensate 
* makes the spectrum steeper at large scales 
* changes sign in the 3rd order velocity SF 

Gage-Nastrom spectrum: 
2d turbulence + condensate ? 



Thin fluid layer:

transition 2d-3d







Lz 

Lx 

Lf 

Transition from 2D to 3D turbulence 
as the thickness Lz increases 

Lx  
horizontal scale 

η   
viscous scale 

0 Lf  
forcing scale 

Lx  η   0 Lf  Lz  

Lx  η   0 Lf  

Lx  η   0 Lf  

Lz  

Lz  

2D inverse cascade 

3D direct cascade 

Dimensional transition in thin fluid layers 

? 

Lx = Ly = horizontal scale 
Lf = forcing correlation scale 
Lz = vertical scale (thickness) 
η  = viscous scale 



3D Navier-Stokes equation for a 
thin layer of incompressible fluid.  

Lz 

Lx 

Ly 

Lf 

Two-dimensional random force f 
No friction 

Aspect ratios  Ly / Lx  = 1   Lx / Lf  = 16   Lx / Lz  = [ 32 -128 ]   Lf / Lz  = [ 2 - 8 ]  
Periodic b.c.: no material walls 
Nx x Ny x Nz = 4096 x 4096 x Nz grid points  

Celani et al. (2010) PRL 104, 184506 

Numerical simulations of thin fluid layers 



2D 

3D 

Energy grows linearly in time 
(in the absence of friction) 
 
The growth rate decreases 
as the thickness is increased 

Lz < η  energy growth rate = power injected  
Lz > ½ Lf  energy growth rate = 0  

Lz / Lf 

Celani et al. (2010) PRL 104, 184506 

Smith et al. (1996) PRL 77, 2467    

Kinetic energy growth 



Part of the energy is transferred toward large scale in an inverse cascade 
(as in 2D). The remnant energy gives rise to a direct cascade (as in 3D)  

3D 

2D 

As the thickness increases 
the energy flux in the 
inverse cascade reduces, 
and the flux in the direct 
cascade grows.  

Split energy cascade 



2D 

3D 

Lz / Lf=1/4 

When the thickness of the layer is larger than viscous scale 
and smaller than forcing scale there is coexistence of  

2D inverse cascade at large scales and 

3D direct cascade at small scales 

connected by an intermediate enstrophy cascade. 

Energy spectrum 

k-3 



3D-NS equation for vorticity  Vortex stretching  
Enstrophy flux = 

kz/kf 
2D 

3D 

Vortex stretching analysis 

At large scales thin layers are efffectively two-dimensional 



Collaborators 

S. Berti, M.Shats, R. Ecke, I. Kolokolov, S. Musacchio 
G. Falkovich, M. Cencini, P. Muratore-Ginanneschi, A. Mazzino, A. Celani, A. Vulpiani 


