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Normal Mode Analysis (NMA) 

Chesapeake Bay focused

Calculate eigenmodes using a Helmholtz decomposition

Use the eigenmodes as an orthonormal basis set

Decompose a data set (velocity fields) into their     modal 
components (amplitudes)

Produce a time-dependent power spectrum

Make predictions using eigenmodes over full domain
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Previous Work

Zel’Dovich - 1985 - vector decomposition

Eremeev, Kirwan, et al. - 1992 - Black Sea

Lipphardt, Kirwan, et al. - 2000 - Monterey Bay
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NMA - Difficulties

Computing eigenmodes over complex boundaries can be 
questionable (how close to ortho-normal).

NMA requires full data sets (in space).

Hardware sensors collect data sporadically (time irregular).

Eigenmodes exhibit two behaviors (global and local).

Differing methods exist to extract amplitudes (Galerkin, 
LSHA, other fitting).
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NMA – Non-Optimal Conditions
Chesapeake Bay – less than perfect

Large estuary – 180x50 miles 
Significant sources – Atlantic Ocean, large watershed, five major 
rivers 
Boundary – fractal
Geometric variation – many regions of varying sizes
Man-made sources – several major cities, nuclear reactor
Salinity variation – southern – salty, northern – fresh
Shallow water bathymetry – average depth 8.4m, max ~30m
Significant biological component – hypoxia
Community/Political pressure to act – Executive Order (2009)
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NMA – Non-Optimal Conditions
Few data collection stations – approx. 30 online

At each location, collect time-series of many variables 
(water height, velocity vector, salinity, temperature,…)

Given a limited number of extracted modes, can NMA 
meet  its goals in the Chesapeake Bay?

Previous systems (Black Sea, Monterey Bay) 
Succeeded on simpler geometries.
Enjoyed richer data sets (Monterey has 70% coverage).
Found 85% of kinetic energy populated in low numbers of 
modes (Black Sea).
Nowcasts provide current information of estuary (full domain 
prediction).
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NMA 

Problem Statement:  Can information be taken 
at a few select locations (under-sampled) over 
long periods of time (full time series) such that 
the spatio-temporal data set is full enough to 
extract amplitudes well.
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Eigenmodes – features

Helmholtz Decomposition
Eigenmodes are the solution to Helmholtz equation.
Dirichlet (vorticity) / Neuman (divergence) boundary 
conditions used
Velocity vector fields calculated – uD,n(x,t),  uN,n(x,t)

Eigenvalues track with geometric length scales.
Leads to global modes and local modes.

In order to provide 10+ eigenmodes over all regions of 
the Chesapeake Bay, 100+ eigenmodes need to be 
used.
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Eigenmodes - Interpretation
A simple ortho-normal basis set (an alphabet).

A physical mode related to dynamics of the system.

Physical modes should exhibit differing time-scales 
(diffusion).

Question:  What are the appropriate time-scales 
associated with modal structure?

How quickly can energy be transferred from one mode 
to (FPU):

Another mode?

Many modes?

All modes (thermalize)?
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Eigenmodes – global/local 

Global modes – 
normal kind which 
cover the domain 

Local modes – 
only fit spatially in 
one location in the 
domain
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Very 
sensitive to 
eigenvales 
(lengths).

λ = π2 /L2

*(nx
2+ny

2)
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• The connecting path does not matter.
• There can be degenerate modes which 

are global/local.
• When allowed, modes can exist which stretch one wavelength 

and compress another to accommodate a compromised mode.
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• Toy models demonstrate the global/local modes exist for 
many simple geometries.  Such as:
• Two geometries “connected” by waterway.
• Bay/Ocean.
• River/Bay.

• Global/local mode structures should be expected whenever 
lengths cover multi-scales.
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Cavity Driven Flow

By increasing the forcing along the main channel, do 
any higher modes ever occur other than lowest?

How fast can one mode “relax” into other modes?

In order for physical gyres to be found, DHTs are 
required to guide the BVP.
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INLET:

V=1 m/s

V= 100 m/s

V=10000 m/s

V = 10 m/s

V = 1000 m/s

V=10^6 m/s
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INLET:  V=1 m/s                                       V=10 m/s                                          V=100 m/s

INLET:      V=1000 m/s                                 V=10000 m/s                              V=10^6 m/s
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V=1m/s V=102m/s

V=103m/s V=105m/s
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V=1m/s V=100m/s V=10000m/s

3 Modes Deep

Tuesday, July 10, 12



Data Collection for 3D modes

Assume most of data is collected regularly on the surface 
of the water.

At a limited set of locations, data is collected at depth 
down to a limited depth and for a finite number of 
depths.

Lagrangian drifter/glider data exists along transects of 
the domain (specific to one location at one time).

Satellite feature extraction only works when coverage 
permits.
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Most of this data will be taken on 
the top layer (surface).

Some data at depth is taken.

Glider data taken along a transect.

*Jack Cook WHOI
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3D Modes - limitations

Most of the data is collected on one face of a 3D mode.

Coverage of the face will be limited (less than 100%).

A few lines along at depth (less than 10% coverage).

Drifter/glider data force issue of how to incorporate spatio-temporal 
information in a meaningful way to extract amplitudes of modes.

Shannon sampling theorem – need as many spatial points as modes to 
extract (more or less).

Compressive sensing addresses this partially.

Can times-series data be used as additional data points – effectively 
increasing the size of the data set spatially – providing enough coverage 
to be useful?
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3D Mode Data Collection

Most of this data will be 
taken on the top layer 
(surface).

Some data at depth is 
taken.
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Possible Solution

Collect data at a limited number of locations/times

Select a set of times for a window (      in window)

Treat all data within the time window as if constant wrt. 
amplitudes of the modes.

Fit the amplitudes                   to the extended data set. 

f(ri, tj) u(ri, tj)

t1. . . tj . . . .tNt

Nt

(An, Bn)
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Power Spectrum over Time

Assume spectrum is constant over a time window

Calculate the spectra over multiple overlapping windows.

Power

Modes

Window 1

Window 2

Window 3
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Fitting the Data
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Simplified...

Where:
p   = number of locations
Nt = number of time 
samples
N  = number of modes 
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Fitting and the Pseudo-inverse

~y = A ~x

~x = A

�1
~y

~x =
�
A

T
A

��1
A

T
~y

~x

�~x = A

�1
�~y

Classic fitting problem for a data set:  (xi, yi)

                                                                 if A is rectangular

Rows and columns cannot have zero or repeated entries

Poor condition number for A leads to unstable solution,

                                   where small variations in y lead to large 
variations in x
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t3

Backing out the Time Dependence
  

Define a new position for each time by successively 
“backing out” the current.

Prevents rows from repeating.

Lowers the condition number of A.

For currents at r1, where is the current at t2?

r1, t1

t2

u(r1, t)
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force errors in ~x.

Monte Carlo

  

Repeat the process 1000+ times and 
average the answer.

By adding a slight variation to either ~y or A,
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Power Spectra over Time 
Given a set of constant amplitudes for each 
time window, over all windows, assign a time 
dependence to each mode,  A1(t)...

Re-adjust the modal matrix at each position 
based on the extracted time dependence for 
each mode.

Repeat entire process until the time 
dependence for each mode becomes stable.
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Data State Vector
Whether 2D or 3D, state vector of the data is re-formatted 
as a column vector (rasterized).

Number of populated terms in the state vector is always 
very sparse (typically 1%).
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Conclusions
Realistic Normal Mode Analysis must utilize 
sparse data over space.

NMA provides an alphabet for how to discuss 
the power spectrum for a system - not a physical 
gyre representation.

NMA - when successful provides full domain 
coverage given a limited number of spatially 
sampled locations.
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