



# Jet-like Lagrangian Coherent Structures in the Madagascar plankton bloom

F. Huhn, A. von Kameke, V. Pérez-Muñuzuri

University of Santiago de Compostela, Spain

M.J. Olascoaga, and F.J. Beron-Vera

Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami, USA

2nd International Workshop NLOA - Madrid – 04/07/2012

- Madagascar plankton bloom
- Lagrangian methods
- Results
  - Jet-like LCS
  - Eastward propagation
- Summary & Outlook

### **Motivation**





Laboratory reaction-advection-diffusion system Excitable Belousov-Zhabotinsky reaction in turbulent 2D Faraday flow

von Kameke et al. (2010), PRE von Kameke et al. (2011), PRL

Advection by chaotic flow decisive for pattern formation!

Phytoplankton bloom SeaWiFS - http://oceancolor.gsfc.nasa.gov

### **Remarkable eastward propagation!**

**Reaction-Diffusion-Advection System?** 

### **Controlled by advection?**

### Madagascar plankton bloom - Intermittency





### from: Raj et al.(2010)

### Madagascar plankton bloom - Eastward propagation A review

- Longhurst (2001): First description based on SeaWiFS data
  "...deepening of mixed layer within a strong mesoscale eddy field..."
- Srokosz et al. (2004): "A possible plankton wave...The chlorophyll feature travels from west to east, in the opposite direction to the mean flow..."
- Uz (2007): "...the intense eddy activity would allow it [high iron concentration] to be stirred eastward against the slow mean current."
- Lévy et al. (2007): "...upwelling along the coast of Madagascar, followed by transport by the retroflection of the South East Madagascar Current."
- Raj et al. (2010): "...associated with long chains of mesoscale eddies..."



### South Indian Ocean Countercurrent (SICC)

- Palastanga et al. (2007): "...existence of a shallow eastward jet with its core around 25°S..." ٠
- Siedler et al. (2006): "...evidence for a narrow SICC being embedded in a planetary wave and ٠ eddy flow pattern."



Geostrophic currents 5 year mean

WOCE section SICC ~25cm/s

### Aim of study





2. Mesoscale geostrophic currents



- What is the impact of advective transport on the Madagascar plankton bloom?
- Does the plankton bloom go with the flow?
- Compare 2D chlorophyll patterns with Lagrangian patterns of passive transport in the horizontal mesoscale flow

### Do take into account...

### Do not take into account...

- Plankton
  - Measured chlorophyl concentration, spatio-temporal patterns

- Flow
  - Geostrophic mesoscale flow (2D),
    Lagrangian patterns

- Plankton
  - Biological reaction
  - Chemical cycles
  - Different species
  - Different nutrients
  - Light limitation
  - Temperature
  - Local upwelling
  - Mixed layer depth
  - Atmospheric events

Coupling

- Flow
  - Vertical flow (3D)
  - Non-geostrophic flow

- ..

- Madagascar plankton bloom
- Lagrangian methods
- Results
  - Jet-like LCS
  - Eastward propagation
- Summary & Outlook

### Lagrangian view – detect coherent structures

Given geostrophic velocity field – integrate trajectories

$$\begin{split} \dot{\lambda} &= -\frac{g}{R^2 f(\theta) \cos \theta} \partial_{\theta} \eta(\lambda, \theta, t), \\ \dot{\theta} &= +\frac{g}{R^2 f(\theta) \cos \theta} \partial_{\lambda} \eta(\lambda, \theta, t). \end{split}$$

- Time dependent flow chaotic transport
- Streamlines not closed
- Adjust duration of advection to typical time scale of the problem. Here: several weeks (plankton growth)



### Finite-Time Lyapunov Exponents (FTLE)

- Exponential growth rate of infinitesimal perturbations for finite time
- Compute FTLE from Cauchy-Green deformation matrix [Haller, Beron-Vera (2010)]
- Finite time  $\tau = 12$  weeks
- Ridges in FTLE field as estimates of Lagrangian Coherent Structures (LCS) – material lines – transport barriers

Forward FTLE field – repelling LCS





$$FTLE(t,\tau) = \frac{1}{\tau} \ln\left(\frac{d(t+\tau)}{d(t)}\right)$$

$$\mathbf{x}(t+\tau) = \varphi_t^{t+\tau}(\mathbf{x}(t))$$
$$\nabla \varphi_t^{t+\tau}(\mathbf{x_0}) = \begin{pmatrix} \frac{\partial x}{\partial x_0} & \frac{\partial x}{\partial y_0} \\ \frac{\partial y}{\partial x_0} & \frac{\partial y}{\partial y_0} \end{pmatrix}$$
$$\Delta = \nabla \varphi_t^{t+\tau}(\mathbf{x_0})^T \nabla \varphi_t^{t+\tau}(\mathbf{x_0})$$
$$\sigma(\mathbf{x}; t, \tau) = \frac{1}{2|\tau|} \ln \lambda_{max}(\Delta)$$





Bickley jet model

### Forward and backward FTLE fields of perturbed Bickley jet

from: Beron-Vera et al. (2010)

15/Sep/00



Stratospheric winds at 20km – 2D, CMAM model, Austral polar night jet

Forward FSLE



from: Boffetta et al. (2001)

01/Sep/00



- Madagascar plankton bloom
- Lagrangian methods
- Results
  - Jet-like LCS
  - Eastward propagation
- Summary & Outlook

# Zonal jets and associated jet-like LCS

- Bands of parallel fwd and bwd FTLE structures identified as zonal jets [Beron-Vera et al. (2010)]
- Zonal jets as barriers to meridional transport
- Bands of strong zonal eastward drift (~14cm/s)







### Jet-like LCS confine plankton bloom

• Jet-like LCS as transport barriers

- Two jets mark the southern and northern boundary and confine the plankton bloom
- Leakage due to strong perturbation of jet

SeaWiFS chlorophyll concentration



### Jet-like LCS confine plankton bloom



- Madagascar plankton bloom
- Lagrangian methods
- Results
  - Jet-like LCS
  - Eastward propagation
- Summary & Outlook

### **Eastward transport - Passive tracer**

AdGIF UNREGISTERED - www.gif-animator.com

source



- Hypothesis of origin of bloom south of Madagascar [Uz (2007), Lévy et al.(2007), Raj et al.(2012)]
- Known upwelling region
- Clear eastward transport enhanced by SICC jets

### **Front propagation**

### Chlorophyll

### Passive tracer



**BUT**: Tracer must be released very early to resemble extension of plankton bloom (~2 months before first rising of chlorophyll concentration)



- Madagascar plankton bloom
- Lagrangian methods
- Results
  - Jet-like LCS
  - Eastward propagation
- Summary & Outlook

#### GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L06602, doi:10.1029/2012GL051246, 2012

# **Summary & Outlook**

- Plankton bloom shaped by advection. Jets partly act as transport barriers
- Jet provides persistent eastward transport for plankton bloom
- Advection by SICC is key process for large extent of Madagascar plankton bloom
- Hypothesis of origin near the coast supported
- There are more ingredients: What triggers the bloom? Where does nutrient come from?



The impact of advective transport by the South Indian Ocean Countercurrent on the Madagascar plankton bloom

F. Huhn,  $^{1,2}$  A. von Kameke,  $^{1,3}$  V. Pérez-Muñuzuri,  $^{1,4}$  M. J. Olascoaga,  $^2$  and F. J. Beron-Vera $^2$ 

### Zonal Jet



Plankton



### **Other regions**



SeaWiFS - http://oceancolor.gsfc.nasa.gov

Atlantic North Equatorial Countercurrent (Off Brazil, Amazon plume)



from: Christian et al. (2004)

Pacific North Equatorial Countercurrent (Indonesia)

# Thank you for your attention!

RSMAS, Miami