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Lagrangian Coherent Structures 

•  Defined by Haller (2000) in terms of FTLE 
(default metric used here) 

•  Other LCS characterizations 
–  Joseph & Legras (2002) - FSLE 
– Mancho & Mendoza (2010) - minimal trajectories 
– Rypina - complexity 
– Mezic et al (2010) - mesohyperbolicity 
– Haller (2011) - geodesic material surfaces 

•  Most studies in GFD confined to 2D velocities 
•  Yet theory applies to Rn 

 



Are LCS important in GFD? 
•  MODE/POLYMODE (circa 1975) - Mesoscale eddies 

transport heat, salinity, and momentum  
But 
–  How do eddies form? 
–  How many eddies are there? 
–  How do eddies exchange heat, etc with environment? 

•  Since MODE/POLYMODE 
–  Growing Lagrangian user community 
–  Dramatic oil spills 

•  Circa 1990 – Little Compton meeting. DST methods 
applied to 2D mesoscale and submesoscale transport 



But Transport is Volume per time 

•  3D computations too costly (Garth et al 2007) 

•  3D velocities not always available in GFD 
(Branicki & Kirwan 2010, Bettencourt et al 2012)  

•  Question:  
Can 3D LCS be estimated from 2D velocities? 



Are LCS Important in Oceanography? 



Are LCS Important in Oceanography? 



Out of Flatland – What if there was a 
3rd Dimension? 

•  Mezic and Wiggins (1994) 
•  Toy Problem 

ẋ = λ1x− ωy

ẏ = ωx+ λ2y

ż = − (λ1 + λ2) z

0 < ω2 − λ2

λ =
λ1 + λ2

2



x = expλt [X cosΩt− (λ2X + ωY ) sinΩt/Ω]

y = expλt [Y cosΩt− (λ1Y − ωX) sinΩt/Ω]

z = Z exp−2λt

Ω2 = ω2 − λ2

Out of Flatland Solution 
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Branicki & Kirwan (IJES 2010) 
 

•  FTLE located DHTs 

•  1D manifolds using 2D velocities (Ide et al, 
2002) from 0 to 250m for eddy Juggernaut  

•  Stitched 1D manifolds into 2D material 
surfaces 



Dynamical Systems Approach  

 



How do manifolds compare 
with FTLEs ?	



Eddy Juggernaut	



DHTs, manifolds, and lobes near the eddy	



Loop Current Ring Exchange"

Forward FTLE!

Backward FTLE!

3 /12/1999	

5–13 /12/1999	









B&K Conclude 

•  Material surfaces stitched from 2D analysis 
revealed coherent lobes with depth 

•  Material surfaces drop nearly vertically.  
No evidence of eddy lens structure 

•  Net inflow at bottom, outflow at top 

Realistic, or artifacts of stitching and/or data 
assimilation? 
 



Feasibility of 3D LCS from 2D 
Velocities 

•  Options 
–  Follow B & K paradigm 
– Extend FTLE calculations to include vertical shear of 

horizontal velocities 
– Calculate 3D trajectories using diagnostic vertical 

velocity 
•  Strategy 
– Test options with toy models to control vertical 

velocity and vertical gradients 
– Apply to data-assimilating OGCMs 



Incompressible Models 

v = ∇× [−Ψk +∇× (Φk)]

u = −∂Ψ
∂y

+
∂2Φ
∂z∂x

v =
∂Ψ
∂x

+
∂2Φ
∂z∂y

w = −∇2
hΨ



ABC & Quadrupole Flows 

ABC 

Quadrupole 

Ψ = − [C sin (y + f (t)) + B cos (x + f (t))]
Φ = A [−x cos (z + f (t)) + y sin (z + f (t))]−Ψ

Ψ = A (z, t) sin (πx/Lx) sin (πy/Ly)

Φ = B (z, t) cos (πx/Lx) cos (πy/Ly)



Strain Tensor and Velocity Gradient 

dx
dt

= v (x, t) ,x ∈ Ω ⊂ R3

Consider 

With Solution 
x = x0 +

� t

t0

v (x, τ) dτ

And Strain Tensor 

∂x
∂x0

= I +
� t

t0

∂v
∂x

· ∂x
∂x0

dτ



Cauchy-Green Tensor and FTLE 
Cauchy-Green 

FTLE 

C =
�

∂x
∂x0

�T �
∂x
∂x0

�

Λ (t; t0,x0) =
log

��
λmax (C)

�

t− t0



Strain Tensor 
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ABC Flow 

3D 

3D2D 

2D 



FTLE Differences 



RMS FTLE Differences 

SV =

��
∂u

∂z

�2

+
�

∂v

∂z

�2



It Doesn’t Look Good for Reduced 
Representations of Cauchy - Green 

SV =

��
∂u

∂z

�2

+
�

∂v

∂z

�2



Quadrupole - Eulerian View 



Lagrangian View at - 450m 



FTLE Comparison – 450m 

3D 3D2D Difference 



Effect of Vertical Shear on FTLE 

SV =

��
∂u

∂z

�2

+

�
∂v

∂z

�2

SV ≤ 2N



FTLE Comparison 

Figure 4. Profiles of FTLE3d (red) and FTLE2d (blue) at z = - 450 m. Left: Profile 
along y = - 100 km; right: Profile along x = - 12.5 km. 



What to Expect in Ocean 
For large FTLE ∂x ≈ ∂y = �H ≈ 50 km and ∂z = �V ≈ 0.4km

Then 

And 

�
∂x
∂x0

�T �
∂x
∂x0

�
=




a2 + c2 ab + cd Γ (a + b)
ab + cd b2 + d2 Γ (b + d)
Γ (a + c) Γ (b + d) 2Γ2 + e2





And ∂x0 ≈ ∂y0 = �H0 ≈ 5km and ∂z0 ≈ �V0 ≈ 0.03km


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Application to GoM HYCOM 



What We Get 

These matrices borderline ill-conditioned. 
  
But only need largest eigenvalue, which is nearly:  

C33 = 1 +
�

∂x

∂z0

�2

+
�

∂y

∂z0

�2

= 6.5 · 104

∂x
∂x0

=
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0 0 1
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3D2D FTLE vs C33 



3D2D Eigendirections 

rep
elli
ng

ma
ter
ial

lin
e

x

y

x

y

o

o

γ
rep

elli
ng

ma
ter
ial

lin
e

x

z

x

z

o

o
α



Vertical Angle of Max Stretch 



3D2D FTLE Directions 



Horizontal Angle of Max Stretch 



Discussion 
•  In the ocean 
–  2D velocity fields capture essence of 3D FTLE fields 
–  Large stretch is nearly horizontal 

•  In GoM 3D FTLE Surrogate: SV = 
 

•  Next  
–  Test SV with other metrics 
–  Construct 2D transport barriers from data-assimilating 

OGCMs 
–  No more Mr Nice Guy on 2D pictures!   
–  Eddy formation, census, and 3D transport 

 

!x !z0( )2 + !y !z0( )2



Lagrangian Predictability 
 

Ensembles 



RELO in the Northern GoM:  Ensemble Spread"

June 8, 2010"
3-day trajectories"
Depth = 12.5 m"

16 Ensemble Members"

Background color"
Lagrangian velocity standard deviation"

"
"

�vstd =
�
u2
std + v2std

Deepwater!
Horizon!



RELO in the Northern GoM:  Ensemble Spread"

June 8, 2010"
3-day trajectories, Depth = 12.5 m"

16 Ensemble Members"

Background color"
Lagrangian velocity standard deviation"

"
"

�vstd =
�
u2
std + v2std

Deepwater!
Horizon!



Example RELO Ensemble 
Trajectory Groups"

Observed trajectory!
Control run trajectory!
Launch point!
Ensemble trajectory end 
points!
Mean ensemble end point!
!



Example RELO Ensemble 
Trajectory Groups"

Observed trajectory!
Control run trajectory!
Launch point!
Ensemble trajectory end 
points!
Mean ensemble end point!
!



All is Based on Data Assimilating 
Models – How Good are They? 


