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Abstract

Monitoring migration flows is crucial to respond to humanitarian crisis and to design efficient

policies. This information usually comes from surveys and border controls, but timely acces-

sibility and methodological concerns reduce its usefulness. Here, we propose a method to

detect migration flows worldwide using geolocated Twitter data. We focus on the migration

crisis in Venezuela and show that the calculated flows are consistent with official statistics at

country level. Our method is versatile and far-reaching, as it can be used to study different

features of migration as preferred routes, settlement areas, mobility through several coun-

tries, spatial integration in cities, etc. It provides finer geographical and temporal resolutions,

allowing the exploration of issues not contemplated in official records. It is our hope that

these new sources of information can complement official ones, helping authorities and

humanitarian organizations to better assess when and where to intervene on the ground.

Introduction

Migration is an ubiquitous phenomenon in human history. People move to improve living

conditions or, simply, to escape social distress [1] and natural disasters [2]. The collection of

data on migration flows dates back at least to 1871, when the United Kingdom registered the

difference of inhabitants in a period of a decade [3]. The data showed that the population

changes could not be explained by the number of births and deaths alone, hence another rea-

son had to be involved in the process: migration. Official data on migration flows relies on the

comparison of heterogeneous records across countries, which usually have different time

scales and time coverage [4]. Data sources include national census, which are released every 10

years, specific surveys, border control and residence permits requests. Surveys and census rec-

ords are helpful tools for estimating migratory statistics, but the information is not provided at

a multinational scale, they are costly and, consequently, the update times tend to be long.

Looking at a single country, the net population variation, besides changes due to births and

deaths, can be calculated as the difference between the number of immigrants and emigrants.

Migrants’ mobility, however, can involve several countries biasing the single-country statistics.

There can be multiple entrances in a country by the same individual or several countries along
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the trajectory of migrants. This adds inconsistencies to the information at the local perspective,

e.g., recurring and returning migrants can affect the number of border crossing events. To cap-

ture the complexity of the migratory phenomenon, the concept of interregional flows must be

introduced [5]. In this context, another potential data source could be air traffic records that

allow to estimate human mobility worldwide [6]. However, they only capture one transporta-

tion mode, long or medium distance movements and there exist a bias toward wealthier

individuals.

Given this situation, there has been recent calls for new sources providing reliable data on

the mobility of migrants and, especially, refugees [7–10]. Data associated to the use of informa-

tion and communication technologies (ICT) has experienced a large growth in the last decade.

ICT data contains temporal and spatial records and it is a useful, fast and inexpensive informa-

tion source to characterize human mobility at different scales [11]. For example, mobile phone

records have been employed to study human mobility with promising results at urban [12–15]

and inter-urban level [16–18]. They have been also used to analyze migrant communities dis-

tribution and integration in cities [19, 20]. Yet the phone sector is too fragmented to cover a

global scale since the data is usually restricted to a single country, making cross-border move-

ments hard to observe. Other examples with similar, yet even more reduced geographical

scope, are the GPS tracks left by cars [21].

To expand the focus beyond national borders, we need data coming from services that are

genuinely transnational. The widespread adoption of online social networks has finally intro-

duced such global dimension. For instance, the advertising tool of Facebook has been used as a

source of migration data although the internal user classification of the platform is not very

transparent [22]. In a more open context, data from Twitter has been used to uncover world-

wide patterns of human mobility [23–25], infer international migration flows [26–28], esti-

mate cross-border movements [29] and study immigrant integration [30, 31]. Twitter data is

also available in countries where census data is unaccessible, outdated or only attainable in the

local language [32]. Furthermore, Twitter data has been shown to bear mobility information

compatible with the one provided by cell phone records in cities [33]. On the other hand, the

data is sparse (i.e., users are not continuously active) and there are biases towards younger and

richer individuals [33–36]. This implies that, when taking into account smaller scales, a thor-

ough validation exercise is necessary. Although geolocated Twitter data is sparser than census,

surveys and mobile phone records, the observed level of correlation allows for the interchange-

ability of these sources to study population density and mobility [33, 37, 38].

In this work, we introduce a method to uncover migration flows using Twitter data. As a

proof of concept, we focus on the current Venezuelan migration crisis. At country level, the

flows obtained from Twitter have been validated against official estimations released by the

International Organization for Migration (IOM) in September 2018, the Federal Police (Policia
Federal) of Brazil and by the United Nations High Commissioner for Refugees (UNHCR or

ACNUR) in November 2018 and January 2019. Furthermore, our method provides informa-

tion at finer geographical and temporal resolutions. It also allows the exploration of other

issues not contemplated in official records, such as mobility across multiple countries, routes

taken by the migrants, as well as the places where they settle down.

Materials and methods

Classical data sources

Traditionally, official statistics come from census surveys, household or labor surveys, popula-

tion registers, administrative records and border control. For sake of completeness, we briefly

summarize the characteristics of these sources and offer references for further information. In
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terms of surveys and starting by census, surveys of census focus on migrant stocks or migrant

flows including socio-economic features like the country of birth, citizenship, age, sex, educa-

tion, occupation and time of arrival of migrants in the new country [39, 40]. Spatial informa-

tion in census surveys is typically given at regional scale but modern censuses provide

information even at finer scales. The typical limitations of censuses on migration data are their

cost, the slow updating (usually every 5 or 10 years), which decreases the information validity

since it gets outdated fast, and the fact that they do not capture illegal immigration. Secondly,

household surveys, apart from measuring migrant stocks or migrant flows, focus on the drivers

and the impact of migration, internal displacement, emigration and immigration of a given

country. A third source comes from labor force surveys which produce statistics on migrant

stocks in the labor market of the country. These data allow for country by country comparabil-

ity and they offer detailed data on small population groups. However, many countries do not

include crucial migration questions in their census surveys such as citizenship, country of

birth and year of immigration of the person, they may be infrequent or costly and can also

present issues with sample size and coverage.

Population registers are held by local authorities and, as the surveys, provide information

on the people living in the area. However, there are differences on how the registers are

designed, how they define residence, on the population coverage sometimes excluding foreign-

ers, e.g. citizens of some countries are not required to register inside EU states and sometimes

leaving migrants are not required to unregister. As a result, they lack of comparability from

country to country. Other important and classical sources of migrant flows and stocks gath-

ered in a different way comes from administrative records, which can include records of citi-

zens changing their usual residence, tourist visas, work visas, study permits, residence permits

and work permits. Even if these records are continuous and comprehensive, they lack compat-

ible definitions among different countries, moreover they often lack coverage and availability

in some countries. Further issues may come from the fact that this data often does not cover

naturalized or illegal residents who overstay their visas. Data may not represent the total num-

ber of immigrants in the country, e.g., if the visa granted to the head of the family covers his or

her dependents and, as a further example, authorities may not track renewals or changes of cit-

izenship. Lastly, border post records of leaving or entering people keep track of flows between

countries. These records often do not discern between migration flows and other kinds of

mobility, such as tourism. Moreover, in places where the possibility of evading the border con-

trol is high, the records become highly unreliable. A review on these classical methods can be

found at [41, 42]. In particular, here we employ official data from border control, permits sta-

tistics and registers gathered by the UNHCR [43, 44], the IOM [45] and the Federal Police of

Brazil [46, 47] to validate the information obtained from Twitter.

Twitter data for mobility information

Classical data sources have major caveats in terms of comparability, coverage and immediacy

of the furnished information [7–10, 48]. ICT data has the potential to complement classical

sources by generating estimates of socio-economic phenomena such as transport, mobility,

urbanism and migration. Of all the possible ICT data like mobile phone records, social net-

works, etc., Twitter is one of the most accessible since the data is openly distributed. Twitter

data is not safe from biases, several studies demonstrated that people tweeting are mostly

young, wealthy and tend to live in cities [34, 49]. However, more recent studies show that the

relevance of some of these biases like those related to age or geographical origin are slowly

decreasing [35, 49].
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Beyond demographics, the impact of biases in the study of aggregated mobility from geolo-

cated tweets has been addressed in [33, 37]. Origin-destination (OD) matrices obtained from

Twitter, mobile phone records and mobility surveys were found to be equivalent at scales

larger than one square kilometer. This is due to the fact that mobility patterns are not strongly

dissimilar across age groups and gender [50] and the demographic biases do not influence so

strongly the OD matrices extracted. A similar effect could be expected in refugees and migrant

displacements that may be carried out in groups, and thus detecting some members could be

enough to describe the mobility patterns.

Accessing and filtering Twitter data

The data was accessed using the publicly available Twitter Streaming API [51], selecting tweets

with geographical information (a description of the script employed is included in Availability

of data and materials). We have collected data from January 2015 to December 2018. The loca-

tion has to be provided at the level of place with a bounding box smaller than 40 km on the lon-

gest side, otherwise the tweets are not included in the spatial analysis but we still use them to

count country-level flows (using the country identification in the tweet). A minimal filter for

bots is implemented by neglecting users tweeting more than twenty times per hour on average

in their tweeting life span. Multi-thread tweets are counted as a single one.

The analysis focuses on South and Central America and Caribbean, where over 70% of the

Venezuelan migration is concentrated, according to the UN [52]. We divided this extensive

territory in a grid of cells of 40 km side, which became our basic spatial units. The position of

the users is approximated by the centroid of the cells where they tweet from. With this infor-

mation, we calculate the radius of gyration of each user trips:

rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i

ðrcm � riÞ
2

s

ð1Þ

where n is the number of tweets, ri the cell centroid and rcm stands for the center of mass of

each user movements. We disregard users with rg> 5000 km (see the distribution of rg in the

Supporting Information) because this implies all the trips are long distance. These accounts

are typically multiuser, institutional or company, and cannot offer any mobility information.

Ethics statement

As a final comment, we adhere to strict data responsibility and ethics principles, ensuring that

no personally identifiable information is kept. The meta-data of the tweets, which can be con-

sidered personal, are deleted before storage and the user ID is irreversibly encrypted using a

SHA-512 algorithm. We do not track individuals, all the spatial analyses are performed using

aggregated trips and number of residents at a minimal scale of 1 km2 and in most of the cases

over 1, 600 km2. All the figures and tables show aggregated data and only when the number of

individuals is larger than three in a cell.

Resident classification

There is no unique definition of resident applicable to a situation with sparse data as ours.

Given the lack of clear definition, we provide several definitions and check if they bear differ-

ences in the outcomes of the analyses. Every tweet has an associated country code reference.

Users tweeting from Venezuela less then five times in the period 2015-18 or with all the tweets

posted in a time window shorter than three months were excluded from the study as non-rep-

resentative data. After that for each user we identified the most common country of origin of
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the tweets posted every month. By doing so, we created the users’ history as a sequence of

country flags, with one flag for each month. In particular, if the most common country was

Venezuela, we labeled the corresponding month as “Ven”. If, for a given month, there were no

tweets posted or there was a draw between Venezuela and another country, we labeled the

month as “Und” (for ‘undetermined’). Then we considered the following criteria to discern

Twitter Users which are Venezuelan residents (TUVs) based on filters with a gradual level of

restriction:

• The first criterion is the most restrictive one. We considered TUVs the users appearing to

be flagged Venezuela three months in a row at least once in our database. In this way, we

obtained approximately 160, 000 TUVs.

• The second criterion is slightly less restrictive. It included the users identified before and

those with a sub-sequence Ven-Und-Ven. With this method we estimated around 200, 000

TUVs.

• The third criterion is similar to the previous one. We included all the users coming from

the first criterion and added those with a sequence Und-Ven-Ven or Ven-Ven-Und. This

yielded around 216, 000 TUVs.

• The fourth criterion is comprehensive of all of the above. With this method, we obtained

around 253, 000 TUVs.

Determining the number of TUVs is crucial not only to measure the displacement flows

but also to infer the upscaling factors as discussed in the subsection on upscaling factors. These

factors allow us to translate the observed TUV numbers into the total flows. We estimated

them as the ratio between the population of the country projected from the census and the

number of TUVs, updated every year in terms of empirical flows recorded.

Definition of migrants

The UN definition of long-term migrant requires the person to stay in the new country for at

least 12 months. However here we rely on the term of “migrant”, which is a term not defined

under international law. A migrant is generally defined as a person who leaves the usual place

of residence, within the country or crossing a border, in a short or long term and for many rea-

sons [53]. The number of migrants estimated by UN agencies in a single country often relies

on classical data, such as records referring to residence permits or flows observed at the border.

The objective in this work is to capture flows of people leaving a country in a humanitarian cri-

sis. Definitions based on long-time scales are not adequate for describing population mobility

under these circumstances and it does not exist a universal definition of migrant [53]. There-

fore, we consider here as migrant any individual leaving Venezuela during the time window of

observation, concordantly to the general definition of migrant given by the IOM [53].

Results

Upscaling factors

The number of TUVs identified with the four criteria and detected as active (posting tweets)

every year is shown in Table 1. As shown in the Table, independently of the criteria used the

number of TUVs is relatively stable in 2015 and 2016, and then we found a decline of over

20% in 2017 and almost 50% in 2018. The migration crisis had the first peak in the last months

of 2016, so there is a combination of factors that can explain the drop in the number of TUVs.

The first one is migration to other countries –estimating this is our target–, which can dissuade
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users from using geolocated social networks, but this factor alone does not explain the entire

complexity of the change. We see a drop of 43, 000 TUVs with criterion 4 between 2016 and

2017, while the observed TUVs leaving the country with the same criterion 4 in 2016 is 11, 000

TUVs. To better assess whether this decline of geolocated tweets is a specific behavior of the

Venezuelan population or a general trend in the region, we execute the same analysis with

Colombian residents as a base line. As a proof of concept, the number of geolocated users

residing in Colombia is analyzed using the corresponding criterion 4 for this country. We

observe a drop in the same years from 2016 to 2017, from 236, 000 to 198, 000. A general drop

in the use of geolocated tweets seems to be happening in the region as a general trend. Factors

such as the general use of geolocated Twitter, as well as economic and social stress, must have

contributed to such a systematic decline.

The population of Venezuela in 2011, according to the census, was P(2011) = 29 million

inhabitants [54]. The United Nations Population Division projects the Venezuelan population

at around P(2015) = 30.1 million for 2015 [55]. As a simplifying assumption, we neglect the

population changes due to the difference between natality and mortality. Given the short

period of time considered, its effects on the total population are much weaker than those intro-

duced by migration.

The number of active TUVs that same year according to criterion 4 was u4(2015) = 157,

500. This gives us an upscaling factor of S4(2015) = P(2015)/u4(2015). For the following year,

we have a number e4(2015) TUVs leaving the country according to the same criterion 4. This

implies a population decrease given by P(2016) = P(2015) − S4(2015) e4(2015). In general, we

can write a recurrent formula for the upscaling factor associated to criterion k (k = 1, . . ., 4):

SkðtÞ ¼
Pðt � 1Þ � ekðt � 1Þ Skðt � 1Þ

ukðtÞ
; ð2Þ

where the first year corresponds to 2015 with P(2015) = 30.1, as stated before. Applying these

calculations for a given criterion k, we obtain an upscaling factor per year. These factors are

the inverse of the population fraction tweeting with geolocation during the corresponding year

and, with all the needed cautions on possible biases, one can assume that for criterion k one

TUV leaving the country represents Sk(t) actual migrants. Measuring the TUVs detected

abroad in 2018 and upscaling the flows according to the first exit year, we obtain the numbers

shown in Table 2 and in Fig 1.

Validation of external flows

We are interested in estimating the number of Venezuelan migrants in each country because

these are the numbers reflected in the statistics of entries and registers, and constitute the basis

for the records used by national and international authorities. Note that the official sources are

highly heterogeneous in nature and vary from country to country. The method to define a pre-

viously classified Venezuelan resident as a migrant is to detect at least one tweet from them

Table 1. Number of TUVs detected according to the four criteria discussed in the subsection on resident classifica-

tion in thousands of individuals.

Year crit.1 crit.2 crit.3 crit.4
2015 106 K 129 K 134 K 157.5 K

2016 110 K 132 K 137 K 159.5 K

2017 82 K 98 K 100 K 116 K

2018 51 K 60 K 62 K 71 K

https://doi.org/10.1371/journal.pone.0230264.t001
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abroad as a proof of border crossing. This means to count for each year the number of TUVs

appearing for the first time in a different country and determine the migrant flows by upscal-

ing as discussed before. Some of the TUVs can be passing through and continue the travel to

third countries, where in turn, they will be counted as well. The comparison of the flows

obtained in Table 2 with the numbers provided by the international and national agencies

shows a good alignment with our estimation. An impression further confirmed in Fig 1 for the

UNHCR data in most of the countries in the area with R2 over 0.9. The main outlier in the

Table 2 is Brazil, where the IOM and UNHCR give values well below our estimations. How-

ever, the Federal Police of Brazil registered a total number of entries over 199, 000 from Janu-

ary 2017 until December 2018 (even though half of them end up returning to Venezuela [46]).

Our numbers lay within the range provided by the different sources of information. Given the

Table 2. Estimated migration of Venezuela citizens in the four neighboring countries from which a humanitarian crisis has been reported. The different lines in

“Data” correspond to the different criteria for establishing Venezuelan residents with the Twitter data and the last four lines correspond to official figures from IOM, the

United Nations (UNHCR) and the Federal Police of Brazil (PFB). The units are thousands of individuals (K).

2018 Brazil Peru Ecuador Colombia Total
Data(1st) 168K 589K 247K 1,080K 3,970K

Data(2nd) 163K 588K 242K 1,070K 3,920K

Data(3rd) 163K 593K 246K 1,090K 3,960K

Data(4th) 160K 590K 243K 1,080K 3,920K

IOM Sep18 75K 414K 209K 935K 2,600K

UNHCR Nov18 85K 500K 220K 1,000K 3,000K

UNHCR Jan19 96K 506K 221K 1,100K 3,400K

PFB Dec18 199K – – – –

https://doi.org/10.1371/journal.pone.0230264.t002

Fig 1. Country-level flow validation. Comparison between the migrant flows estimated from the upscaled Twitter data Ntwitter following the different resident

criteria and the official numbers Nofficial from the UNHCR in January 2018. These official numbers in some countries are projections. Each point corresponds to a

country. The panel (a) shows all the countries of the considered area, and the panel (b) specific detail for neighboring countries from which a humanitarian crisis

has been reported. In both cases, the grey dashed lines are the diagonal. The correlation produces a R2 = 0.98 for all the countries and R2 = 0.99 for Brazil,

Colombia, Ecuador and Peru alone. The country codes are Argentina (AR), Aruba (AW), Bolivia (BO), Brazil (BR), Chile (CL), Colombia (CO), Costa Rica (CR),

Curaçao (CW), Dominican Republic (DO), Ecuador (EC), Guyana (GY), Panama (PA), Paraguay (PY), Peru (PE) and Trinidad and Tobago (TT). The panels are

displayed in log-log scale due to the several orders of magnitude of the flows. However, the important point here is to verify the identity between expected and

measured values and, therefore, the correlation analysis is performed with R2 in the original scale.

https://doi.org/10.1371/journal.pone.0230264.g001
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similarity across the upscaled flows obtained with the different criteria, we continued our anal-

ysis with criterion 4, which provides the largest statistics.

Migration routes

Beyond flow estimations, it is important to identify the preferred routes taken by migrants in

order to better provide targeted humanitarian assistance. As mentioned, we took as geographi-

cal basis a grid of cells of 40 km side covering the full South American continent, the Carib-

bean and part of Center America. We counted the cumulative number of TUVs posting

messages in each cell. The number of distinct TUVs in the whole period (2015-2018) is plotted

as a heat map in Fig 2. The densest areas are located in Venezuela, specifically near Caracas.

The relevant users for the analysis are those classified as residents (TUV) and who have been

detected abroad. The beginning of most of their trips are in Venezuela and the density matches

population distribution. Once in other countries, the routes concentrate also in the large cities

like Buenos Aires, Santiago, São Paulo, Rio de Janeiro and Lima (which can be temporary

stops or travel destinations) and around the principal roads and rivers. For example, following

a preferred route from Venezuela to Manaus, a split occurs: some TUVs take the ferry navigat-

ing the Amazon to the Brazilian city of Belem and subsequently travel along the coast to the

cities of Fortaleza and Salvador; while other TUVs travel from Manaus through the forest via

the BR-319 highway towards the border with Peru and Bolivia. Overall, the preferred migra-

tion route in South America is the Pan-American highway, passing through Colombia, Ecua-

dor, Peru and all the way to Chile and Argentina. Other minor routes are also detected, such as

the one from La Paz in Bolivia to Cordoba in Argentina.

To better understand the potential application of our method, we built a vector representa-

tion in each cell. For every TUV tweeting from the cell, we built a unit vector pointing from

the present location to the cell with the consecutive tweet with the condition that it must be

closer than 500 km to exclude as much as possible air traveling and noise coming from infre-

quent users. We separated the unit vectors in those pointing towards or away from Venezuela,

and we added those in every cell in each category. The resulting outgoing vectors are displayed

in red in Fig 3, while the in-going ones are in blue. These maps provide information on the

main ground exiting routes from Venezuela reported from official agencies and also on the

total flow observed in both directions. To go further, we can establish a line intersecting the

routes (center of the parallel dashed lines in Fig 3) and consider the upscaled number of TUVs

to calculate the number of people crossing the line per year and the direction they are going.

When calculating these numbers, we are not using the vector representation. To be sure that

these users effectively crossed the given line, we impose as a necessary condition to have them

tweeting on both sides of the dashed line within circles of 350 km radius. For example, in Fig

3b, the dashed line is placed halfway between Boa Vista and Manaus, the first circle compre-

hends an area of the radius of 350 km around Boa Vista, and the other one spans the same area

around Manaus. In Fig 3a, the same is done between Bogotá and Quito. The results for 2017

are shown in the right-bottom corner of the maps, while the information collected year by year

is included in Table 3.

It is important to note that the numbers are relatively small. This is due to the fact that we

need to see two consecutive tweets: one above and another below the line to identify a user.

However, not all TUVs have these two tweets, as some may travel directly from Venezuela by

plane or simply do not tweet so often during their trips. These numbers are, therefore, under-

estimations although they are proportional to the total flow. We would need to further upscale

them according to the fraction of TUVs active enough to be detected on both sides of the lines.

Without further processing, we can, nevertheless, compare results obtained on the same route
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year by year and between routes with the same methodology. In Table 3, we observe a clear

domain of the outflows over the inflows to Venezuela. In the Pan-American highway, there is

an important grow in the flows year by year, almost doubling in the last period between 2017

and 2018. The route entering in Roraima has, in turn, a flow that is close to a factor 10 below

the Pan-American one, with an initial increase until 2017 followed by a strong decline in the

following year. The latter case may be explained by the fact that approximately half of the

migrants entering Brazil have been registered to leave in the next months [46, 47].

Recurrence

Note that 25% of the migrant TUVs travel back and forth from Venezuela (recurrent travelers)

as we will show below, while the remaining 75% stay most of the time abroad. To estimate the

Fig 2. Migrants’ routes. Number of individuals observed in every 40 × 40 km2 cell in the area of study. The heatmap scale is logarithmic.

Only cells with more than 3 individuals are displayed. In (a) the full South American continent plus the Caribbean and Center America; (b)

A zoom in on the Northern area focused on the Caribbean; In (c), a zoom in highlighting the Southern Cone; And in (d), a zoom in on

Brazil. Map tiles by Carto, under CC-BY 4.0. Data by OpenStreetMap, underODbL.

https://doi.org/10.1371/journal.pone.0230264.g002
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time spent in a location, we take the following convention: the time between consecutive

tweets is assigned to the location of the first one. Applied to countries, this allows us to define

the cumulative time spent abroad for each TUV after his/her first travel to other country, tout.
Additionally, we can calculate the time span between the first tweet abroad and the last tweet

of the user, tTot. In this way, we define a ratio between the time spent abroad and the total after

the first exit from Venezuela for each TUV, R = tout/tTot. There is a wide range of behaviors as

can be seen in the distribution of Fig 4. TUVs detected abroad for the first time in their last

tweet are not considered. Note that the precision is limited by the heterogeneity in the user

inter-event time distribution and the total time window that we are able to analyze. Some

TUVs correspond the canonical view of migrants, leaving the country and coming back only

seldom, while others go back and forth. More recent migrant TUVs may be classified as not

recurrent, even though they might be correctly classified if observed for longer time periods.

Even so, we need to establish a criterion to discern between frequent returners and those stay-

ing mostly abroad. The distribution of R shows two clear peaks at the extreme values of the

domain with a valley in the region between 0.4 and 0.75, so the threshold is set at 0.5. Results

are similar for other values of the threshold provided that they are in the range [0.4, 0.75]. We

find 12, 518 TUVs classified as recurrent and 22, 459 as non recurrent.

Fig 3. Crossing routes. Map of two main ground migrant exit routes from Venezuela reported by official agencies: in (a) the Pan-American road with a portion of

Colombia, Ecuador and Peru, and in (b) the area of Roraima, Amazonas and Pará states in Brazil. Blue arrows indicate flows toward Venezuela and the red ones

away from it. Only cells with more than three TUVs are shown in the maps. The lightness of the color of the arrows is proportional to the net in- and out-flows

from light to darker colors. The upscaled net flows crossing the dashed lines are displayed in the right-bottom corner of each plot.

https://doi.org/10.1371/journal.pone.0230264.g003

Table 3. Upscaled number of TUVs crossing the lines of Fig 3 away ( ) and toward (!) Venezuela in the two routes considered.

Year 2015 2016 2017 2018

Pan-American road away ( ) 6,550 11,300 18,500 36,200

toward (!) 5,500 9,300 13,500 23,700

Roraima away ( ) 1,200 1,490 2,600 1,070

toward (!) 1,200 1,300 1,400 720

https://doi.org/10.1371/journal.pone.0230264.t003
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Recurrent TUVs stay most of the time in Venezuela, so it can be assumed that they still

reside somewhere in the country. Similarly, non recurrent individuals are likely to have a resi-

dence place abroad. We define as residence place/country the location from which they tweet

most in the last month of activity. Out of the 22, 459 non recurrent TUVs, 16, 292 have a place

of residence assigned in the geographical area of our analysis out of Venezuela. To upscale

these numbers in each of the countries, we apply the same technique as in previous sections,

see Eq (2). The factor is calculated as the ratio between the updated Venezuelan population

and the number of TUVs in each year. The number of migrant TUVs in every country is

upscaled according to the factor corresponding to their first year of exit. The results per coun-

try are shown in Table 4 and compared with the official estimations from international agen-

cies. The numbers of Table 2 refer to entries across the border, a single individual can

contribute to more than one country. In contrast, the records in Table 4 assign one country to

each migrant and the numbers contain only distinct individuals in the full study area. Our

method provides numbers below the official statistics in Brazil, Ecuador and Colombia, while

in Peru it is slightly higher. We see that the new settlement places concentrate in Argentina,

Fig 4. Time spent abroad. Probability distribution of the fraction of time spent abroad after the first country exit. TUVs with R lower than 0.5 are classified as

recurrent.

https://doi.org/10.1371/journal.pone.0230264.g004
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Chile, Colombia and Peru, while the flows get through other countries such as Brazil but the

fraction of migrant fixation is lower. We have performed as well a systematic comparison

between the number of Venezuelan residents in each country provided by our method and by

that of international agencies. The result is displayed in Fig 5, where one can see an acceptable

agreement with a R2 over 0.97.

Spatial integration of migrants

In addition to large-scale numbers, the data also allows for a local study on the place of resi-

dence of the migrant population. As example, we look at three of the main cities in South

America: Bogotá in Colombia, São Paulo in Brazil and Lima in Peru, where the statistics are

more reliable. The urban space is divided in a grid of cells with 1 × 1 km2 area where we assign

to migrants the most common place from which they tweet during night hours (between 8PM

and 8AM local time). The resulting heatmaps are displayed in Fig 6. Below, we also show the

distribution of the local population obtained from local twitter users to have a comparison

basis. Besides a visual inspection, we have calculated the segregation index proposed in [31]

called h. This metric is the ratio between the entropy of the spatial distribution of the migrant

community and that for the local population with a correction to take into account finite size

effects. If h = 1, both populations are similarly distributed, while smaller h indicates segrega-

tion. As a complement, we also calculate the normalized mutual information NMI between the

distribution of migrants and locals. The NMI is a way to compare the distribution of two vari-

ables and it ranges between 0 (the variables are independent) to 1 (they come from the same

distribution) [57]. When applied to the former Venezuelan residents, the results are shown in

Table 5. All the values of h and NMI are low. In these cities, Venezuelan migrants are far from

being well integrated from a spatial point of view. There are many causes behind this behavior,

ranging from housing prices and availability to the presence of migrant communities from the

same country. Moreover, the distribution of locals says nothing on migrants’ residence places.

Hence it is not to be considered a proxy for migrant distribution in the three cities. Specifically,

in the case of São Paulo, both metrics are very low, although this must be taken with certain

caution because only 50 users were detected there against 1, 300 in Bogotá and 570 in Lima.

Temporal distribution of upscaled outflows

Considering only outflow from Venezuela, we can unfold a time series of the upscaled number

of exits per month. The results are shown in Fig 7a. The monthly numbers start to increase in

2015, peaked in late 2016, and increases later until the end of our time window in January

2019, consistently with the data recorded from the Federal Police of Brazil [47]. The histogram

shows some peaks and valleys that can be correlated with special events during the crisis. This

can be seen in the lower panel Fig 7b, where we consider the first exit from Venezuela per

TUV. In this version, the impact of the events is more clearly appreciated since they correlate

better with outflow. In all cases, we are only showing the upscaled outflows. As discussed for

the recurrent TUVs, there exists an inflow that partially compensates the exits.

Table 4. Estimated number of venezuelan residents in each of the countries in late 2018. The units are thousands of individuals (K).

2018 Brazil Peru Ecuador Colombia
Data(4th) 58K 504K 170K 826K

IOM Sep18 75K 414K 209K 935K

UNHCR Nov18 85K 500K 220K 1,000K

UNHCR Jan19 96K 506K 221K 1,100K

https://doi.org/10.1371/journal.pone.0230264.t004
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Discussion

According to five UN agencies, massive gaps in data covering refugees, asylum seekers,

migrants and internally displaced populations threaten the lives and wellbeing of millions of

children on the move. Through a joint Call to Action [58], the agencies confirm the critical

need to improve the availability, reliability, timeliness and accessibility of data and evidence to

better understand how migration and forcible displacement affect the wellbeing of people. In

this work, we have developed a method to contribute to filling these glaring data and knowl-

edge gaps by extracting migrant mobility flows from geolocated Twitter data. We focus on the

current crisis in Venezuela, although the method is universal and can be translated to other

contexts conditioned only to the data coverage.

The analysis performed here is subject to following considerations, restrictions and

assumptions:

Fig 5. Validation of new residents. Scattered plot with the comparison between the estimations of new Venezuelan residents obtained with our method and the

official data from the international agencies in each country. Every circle is a country, the dashed gray line is the diagonal. In this case, the correlation is R2 = 0.97.

The plot is displayed in log-log scale due to the several orders of magnitude of the number of residents. As before, the important point is to verify the identity and,

therefore, the correlation analysis is performed in the linear scale.

https://doi.org/10.1371/journal.pone.0230264.g005
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• A few previous studies anticipated the potential of Twitter for the study of migration flows

[26–28]. The main focus of these works is on the presence of migrants and the estimation of

country level migration flows. Here we show the full potential of Twitter geolocated data to

capture mobility patterns on the route, finding the specific destinations of migrants within a

country and to study the time series of migration flows. We have provided as well a system-

atic check of different methodologies to define residents and a sound comparison between

flows detected from Twitter and numbers offered by international and national agencies.

• Geolocated information in Twitter. There are two types of tweets according to the field con-

taining the metadata on geolocation: tweets with coordinates and those with place. The ones

with coordinates are precise within GPS resolution, they are a minority and Twitter is dis-

continuing their usage due to privacy concerns, even though user’s informed consent is

required to post them. The tweets with place are a majority among those geolocated [59].

Fig 6. Residence locations in the main cities. Log-scale heat map of the population distribution in the main cities of the area. In the top row, the data corresponds

to numbers of migrant TUVs and in the bottom to the local geolocated Twitter users. The scale of the heatmap is logarithmic and the maximum is rescaled in each

of the maps. In (a) and (d), results for Bogotá (Colombia). In (b) and (e) for São Paulo (Brazil. And, in (c) and (f), for Lima (Peru). Data on roads by

OpenStreetMap contributors and from MapCruzin, all available under the Open Database License ODbL. For more information check [56].

https://doi.org/10.1371/journal.pone.0230264.g006

Table 5. Segregation indicators h and NMI for migrant TUVs.

Bogotá Lima São Paulo

h 0.59 0.62 0.27

NMI 0.05 0.07 0.04

https://doi.org/10.1371/journal.pone.0230264.t005
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The place refers to a geographical bounding box around the posting position, which may

corresponds to neighborhoods, municipalities, provinces or states, etc. Since we want to

study migration out of a country, most of these place levels are accurate enough for our pur-

poses and they are used in the analysis.

• Note that in this work the definition of Venezuelan residents comes from temporal tracking

of users’ location at country level. We have not used methods such as the content of the

tweets [60], where the authors manually processed a sample of the tweet texts in order to

classify users as refugees or not. The analysis was based on the presence of keywords such as

“refugee”, “asylum”, “camp”, etc. Only 5.4% of the users in their text filtered dataset is classi-

fied as a refugee, another 16.2% are potential refugees, while the rest are journalists, tourists

Fig 7. Exit times distribution. (a) Total upscaled exits from Venezuela Fexit. (b) First exits from Venezuela per TUV upscaled to obtain Fusers.

https://doi.org/10.1371/journal.pone.0230264.g007
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and others. Our work is free of these biases because we use a completely different approach

based on geolocation only. The analysis of the message contents may be of interest as a

byproduct of our work with aim of detecting the main concerns of the migrant population.

• Here we employ the term “migrant” concordantly to the definition given by the IOM [53],

which requires the person to leave the original place of residence for a variety of reasons.

The method to define a previously classified Venezuelan resident as a migrant is to detect at

least one tweet from them abroad as a proof of border crossing, similarly to a previous study

[60]. We could have used a stricter criterion and request two or more tweets abroad to clas-

sify migrants (and on the other hand request two tweets per year in order to classify residents

as active residents). This would not affect the average flows (as we saw from other methods,

the upscaling factors absorb and rescale the estimated flows), although it notably narrows

the statistics. Hence we discarded this option. On the other hand, our definition relies on the

classification of users as Venezuelan residents. We do not have a unequivocal definition and,

therefore, we have studied four different methods based on temporal and quantitative sam-

pling, which are shown to be almost identical after rescaling. This can be observed in the way

they give similar results when measuring migration flows with respect to classical data esti-

mations from the UN in Fig 1.

• Twitter data provides information from a fraction of the total population and, consequently,

it may suffer from biases. Previous studies have shown that these biases in terms of age and

socio-economic level have a limited impact on the estimation of mobility flows [33, 37].

These studies were conducted in Europe, where the economic inequalities between rich and

poor are less pronounced than in Latin America. Wealthy migrants from Venezuela are able

to fly and their destination can include, besides, the South Cone countries in the North of

the Americas and Europe. The fact that we detect non-negligible flows of terrestrial move-

ments show that we are capturing also the least wealthy sections of the population. Addition-

ally, we perform a systematic comparison between flows estimated with our methods and

the ones offered by official records. The close agreement proves that the analysis is not ignor-

ing significant parts of the population.

• Among the countries with the largest flows of Fig 1, we see an overestimation of migrants in

countries of the Southern Cone, namely, Chile and Argentina. Up to our understanding, this

distortion may be due to two relevant factors. On one side, the penetration rate of people

using Twitter from these countries may be different from Venezuela. From a social perspec-

tive, Venezuelans moving to these countries may conform to the local culture regarding a

different usage of social platforms. This results in a over-weighted estimation of those

migrants who end up tweeting from Chile and Argentina. This may be a factor, but it is

unlikely that people adapts so fast to local usages. On the other hand and most importantly,

there could be a sub-representation of Venezuelan migrants in the official statistics of these

countries. For example, this happens in the numbers of Table 2 with respect to immigrants

entering in Brazil. The official UN-agencies estimated almost one half of the inflows regis-

tered by the Federal Police. The numbers estimated with our method were much closer to

those of the Police.

• Twitter data has the advantage of being publicly available. Still, before using them in opera-

tional context, a through validation exercise like the one we have performed here is neces-

sary. Part of the validation could be done against other private data sources such as mobile

phone records, but these data sets are usually constrained to a single country and users can

change their phone number/provider at border crossing while the online social network

accounts remain unaltered.
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This work has proved useful for humanitarian agencies, such as UNICEF, in better under-

standing the magnitude of the Venezuelan crisis in a country of continental proportions, such

as Brazil, shaping the design of broader interventions beyond the border-crossing in the North

of the country. In addition, the method simplicity, coupled with the open availability and per-

vasiveness of the Twitter data, can bring a new generation of studies to explore migratory cri-

ses from a multidisciplinary point of view. Authorities and humanitarian organizations can

thus count with this extra data source to implement more informed protocols of response in

humanitarian contexts.

Availability of data and materials

In this work, we use several data sources: Geolocated Twitter, UNHCR, IOM and Federal

Police of Brazil. The access links are included as references in the manuscript. In particular, the

Twitter API in Ref. [51], the UNHCR in Refs. [43, 44, 52], the UN population division DESA

[55], the IOM at [45], the Federal Police of Brazil at [46, 47] and the Venezuelan census [54].

For Twitter, the geolocated data is downloaded using the streaming API. Every user can

access this information by following the instructions of the updated user guide on the Twitter

streaming API provided at https://developer.twitter.com/en/docs. We include next a working

example of the python code needed to do a query to the Twitter streaming API in a limited

geographical BOX enclosed between latitude y0 and y1, and longitude x0 and x1. The aim of

this code is only illustrative, the commands can be changed in any moment by the Twitter

developers.
from tweepy import Stream, OAuthHandler
from tweepy.streaming import StreamListener
CONSUMER_KEY = ’’
CONSUMER_SECRET = ’’
ACCESS_KEY = ’’
ACCESS_SECRET = ’’
BOX = [x0, y0, x1, y1]
class MyStreamListener(StreamListener):
def on_status(self, status):
print(status)

if __name__ == ’main’:
auth = OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET)
auth.set_access_token(ACCESS_KEY, ACCESS_SECRET)
listen = MyStreamListener()
stream = Stream(auth, listen, gzip=True)
stream.filter(locations=BOX)
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