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1 Databases

1.1 World Airport Network

The World Airport Network (WAN) is composed of 3362 commercial airports indexed by the Inter-
national Air Transport Association (IATA) that are located in 220 different countries. The database
contains the number of available seats per year for each direct connection between two of these
airports. The coverage of the dataset is estimated to be 99% of the global commercial traffic. The
WAN can be seen as a weighted graph comprising 16 846 edges whose weight,ωj`, represents the
passenger flow between airports j and `. The network shows a high degree of heterogeneity both in
the number of destinations per airport and in the number of passengers per connection [1, 2, 3, 4].

1.2 Global Population and its Allocation

The population dataset was obtained from the Web sites of the "Gridded Population of the World"
and the "Global Urban-Rural Mapping" projects [5, 6], which are run by the Socioeconomic Data
and Application Center (SEDAC) of Columbia University. The surface of the world is divided into
a grid of cells that can have different resolution levels. Each of these cells has been assigned an
estimated population value.

Out of the possible resolutions, we have opted for cells of 15 × 15 minutes of arc to constitute
the basis of our model. This corresponds to an area of each cell approximately equivalent to a
rectangle of 25×25 kms along the Equator. The dataset comprises 823 680 cells, of which 250 206 are
populated. Since the coordinates of each cell center and those of the WAN airports are known, the
distance between the cells and the airports can be calculated. We have performed a Voronoi-like
tessellation of the Earth surface assigning each cell to the closest airport that satisfies the following
two conditions: (i) Each cell is assigned to the closest airport within the same country. And (ii),
the distance between the airport and the cell cannot be longer than 200 kms. This cutoff naturally
emerges from the distribution of distances between cells and closest airports, and it is introduced
to avoid that in barely populated areas such as Siberia we can generate geographical census areas
thousands of kilometer wide but with almost no population. It also corresponds to a reasonable

1



D Balcan, V Colizza, B Gonçalves, H Hu, JJ Ramasco, A Vespignani 2

Chicago

Louisville

Nashville

St. Louis

Memphis

Indianapolis
Cincinnati

Charlotte

Cleveland
Pittsburgh

Detroit
Des Moines

ce
n

su
s 

ce
ll 

p
o

p
u

la
ti

o
n

census cell
1/4° x 1/4°

geographical 
census area
(from 
tessellation)

airport
(transportation hub)

Figure 1: Population database and Voronoi tessellation around main tranportation hubs. The
world surface is represented in a grid-like partition where each cell - correspomnding to a popu-
lation values - is assigned to the closest airport. Geographical census areas emerge that constitute
the sub-populations of the meta-population model.

upper cutoff for the ground traveling distance expected to be covered to reach an airport before
traveling by plane.

Before proceeding with the tessellation, we need to take into account that some urban areas
include more than one airport. For instance, London has up to six airport, Paris has two, and
New York City has three. Our aim is to build a metapopulation model whose subpopulations
correspond to the geographical census areas obtained from tessellation. Inside these geographical
census areas a homogeneous mixing is assumed. The groups of airports that serve the same urban
area need therefore to be aggregated since the mixing within the given urban area is expected to
be high and cannot be represented in terms of separated subpopulations for each of the airports
serving the same city. We have searched for groups of airports located close to each other and we
manually processed the identified groups of airports to select those belonging to the same urban
area. The airports of the same group are then aggregated in a single "super-hub". An example
with the final result of the Voronoi tessellation procedure with cells and airports can be seen in
Figure 1. The geographical census areas become thus the basic subpopulations of our metapop-
ulation model. Their connections will determine the geographical spreading of an hypothetical
epidemic. The air transportation is already integrated in the model, but a further step must be
taken in order to also include ground transportation in a realistic way.

1.3 Commuting Networks

Our commuting databases have been collected from the Offices of Statistics of 29 countries in
5 continents (out of the 6 continents – Europe, North America, Latin America, Asia, Oceania,
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Table 1: Commuting networks in each continent. Number of countries (Nc), number of adminis-
trative units (V) and inter-links between them (E) are summarized.

Continent Nc V E

Europe 17 65880 4490650
North America 2 6986 182255
Latin America 5 4301 102117
Asia 3 2732 323815
Oceania 2 746 30679

Total 29 80645 5129516

Africa). The full dataset comprehends more than 80 000 administrative regions and over five mil-
lion commuting flow connections between them (see Tables 1 and 2 for details). The definition
of administrative unit and the granularity level at which the commuting data are provided enor-
mously vary from country to country. For example, most European countries adhere to a practice
that ranks administrative divisions in terms of geocoding for statistical purposes, the so called
Nomenclature of Territorial Units for Statistics (NUTS). Most countries in the European Union are
partitioned into three NUTS levels which usually range from states to provinces. The commut-
ing data at this level of resolution is therefore strongly coarse-grained. In order to have a higher
geographical resolution of the commuting datasets that could match the resolution scale of our ge-
ographical census areas, we looked for smaller local administrative units (LAU) in Europe. The US
or Canada report commuting at the level of counties. However, even within a single country the
actual extension, shape, and population of the administrative divisions are usually a consequence
of historical reasons and can be strongly heterogeneous.

Such heterogeneity renders the efforts to define a universal law describing commuting flows
likely to fail. The mobility behavior might indeed result different across countries simply due to
the country specific partition of the population into administrative boundaries. In order to over-
come this problem, and in particular to define a data/driven short range commuting for GLEaM,
we used the geographical census areas obtained from the Voronoi tessellation as the elementary
units to define the centers of gravity for the process of commuting. This allows to deal with self-
similar units across the world with respect to mobility as emerged from a tessellation around main
hubs of mobility and not country specific administrative boundaries.

We have mapped the different levels of commuting data into the geographical census areas
formed by the Voronoi-like tessellation procedure described above. The mapped commuting flows
can be seen as a second transport network connecting subpopulations that are geographically
close. This second network can be overlayed to the WAN in a multi-scale fashion to simulate
realistic scenarios for disease spreading. The statistical properties of the commuting network at
the level of the geographical census areas are reported in Figure 2. The network exhibits impor-
tant variability in the number of commuters on each connection as well as in the total number of
commuters per geographical census area. Since the census areas are relatively homogeneous and

Multiscale mobility networks and the large scale spreading of infectious diseases
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Table 2: Commuting networks in each country. Number of administrative units (V) and inter-links
between them (E) are summarized.

Continent Country V E

Europe Austria 99 1886
Belgium 589 71528
Denmark 248 20990
Finland 348 22484
France 36602 1984825
Germany 439 46465
Greece 1034 26525
Hungary 3140 45403
Italy 8101 446056
Netherlands 504 15120
Norway 430 29285
Portugal 308 27694
Slovenia 192 3690
Spain 52 826
Sweden 290 31438
Switzerland 2896 185172
UK 10608 1531263

North America Canada 3845 19202
US 3141 163053

Latin America Mexico 2443 63678
Chile 342 29410
Colombia 1101 18044
El Salvador 262 11438
Nicaragua 153 4786

Asia Hong Kong 18 306
Japan 2364 302339
Taiwan 350 21170

Oceania Australia 674 27688
New Zealand 72 2991

Multiscale mobility networks and the large scale spreading of infectious diseases
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Figure 2: Properties of the commuting network after the mapping to the level of the geograph-
ical census areas. We display the distributions of A) population, B) distance between connected
census areas, C) daily number of people commuting on each connection, and D) number of daily
commuters traveling outside each census area. The distribution of distances between connected
geographical census areas peaks around 250kms and decays exponentially afterwards, showing
how people tend to avoid daily travels taking roughly more than two hours on each way. All the
other properties are distributed in a broad range, varying as much as 6 orders of magnitude in
some cases.

self-similar this allows us to estimate a gravity law that successfully reproduces the commuting
data obtained across different continents, and provide us with estimations for the possible com-
muting levels in the countries for which such data is not available.

The layer of commuting network that we consider in GLEaM dose not include the inter-countries
commuting, as detailed data is usually missing. Commuting data is indeed available at the na-
tional level, and the mobility out of the country is usually provided as a single figure measuring
international commuting, with no specification of the destination. We studied the magnitude of
these fluxes in the few countries for which this information is available. We found that within the
European Union – where we expect the intra-country mobility to be higher – France reports a total
of 250 000 daily international commuters out of a total of 23 million. That is, 1% of the overall
French commuting. Similarly, international commuters amount up to a 1.1% of the commuting in
Austria and less than 1% in the UK (0.3%) or in Italy (0.2%). Other regions, such as South Amer-
ica, report similar or smaller values. Given the very small contribution of international commuting
with respect to national commuting or international air travel, and the lack of extensive data, we
did not consider the commuting between neighboring countries. A straightforward extension of

Multiscale mobility networks and the large scale spreading of infectious diseases
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Table 3: Exponents of gravity law as obtained by applying a multivariate analysis to global com-
muting data.

d (km) Parameter Estimate Standard Error p-value R2

≤ 300 α 0.46 0.01 < 2E− 16 0.7972

γ 0.64 0.01 < 2E− 16

β 0.0122 0.0002 < 2E− 16

> 300 α 0.35 0.06 6.91E− 09 0.5369

γ 0.37 0.06 2.12E− 09

the model can be developed as additional data becomes available.

1.3.1 Gravity Law and commuting data statistical analysis

We use the following expression as a model for the number of commuters ωij traveling between
two nearby geographical census areas i and j:

ωij = C
Nαi N

γ
j

eβdij
, (1)

where dij is the distance between the two airports in kms andNi andNj are the populations of the
census areas i and j, respectively. We have tested other expressions with a power-law dependence
on dij, finding that the exponential behavior better describes the data.

The gravity law of equation (1) has 4 free parameters: the exponents, α and γ, the inverse
characteristic distance β and the proportionality constant, C. A multivariate regression analysis is
applied to obtain the values of the parameters that better fit our data as well as an estimation of
their statistical significance. By applying a logarithmic transformation to both sides of Eq. (1) we
get the expression

log (ωij) = α logNi + γ logNj − βdij + logC, (2)

in which all the fit parameters enter linearly. The values estimated for α, γ, β and C are reported
in the Table 3 along with their p−values and the regression coefficients.

The division that we have done of the fit in two regions corresponding to dij ≤ 300km and
dij > 300km is a result of the existence of two different regimes in ωij that emerge during the
minimization of the residual sum of squares. The transition between these two different trends
in ωij can be observed in Fig. 1 of the main paper where at around 250km a flattening of the
commuter flows with respect to dij is seen.

The fit of the model parameters is done considering all the empirical commuter data, as mapped
into our geographical census areas, and therefore aggregating data from different countries and
regions of the world. One of such regions, like the US or Europe, could be dominant and therefore
bias the multivariate regression. To make sure that this is not the case, we test a posteriori the agree-
ment of the actual commuting flows with those generated synthetically with the obtained gravity

Multiscale mobility networks and the large scale spreading of infectious diseases
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Figure 3: In panels A), B) and C) we display the mean (square), median (circle) and 95% CI (shaded
area) for the ratio of actual commuting fluxes to the model values as a function of three variables
(population of origin, population of destination, distance between airports) in the Continental
US, Europe and Oceania together with Japan, respectively. We demonstrate that the functional
form as well as the fitted exponents of gravity law enable us to successfully reproduce the actual
commuting fluxes at a global scale.

law in the different regions and countries. We find that the synthetic commuting networks are
statistical good representations of the actual data all over the world (see Figure 3 and 4), further
supporting the use of the gravity law at a global scale.

It is important to stress that the obtained gravity law is working at the level of our geographical
census areas, but in general cannot be extrapolated to different granularity. As we discuss in the
main paper, the tessellation defines geographical areas centered around major transportation hubs.
This construction is the same in all countries of the world, thus providing tassels which have
a unique granularity. This granularity has statistical properties much more homogeneous with
respect to the many different administrative boundaries and partitions used in different countries,
and defines a framework compatible with a gravity law that is general enough to be applied in
different parts of the world. Finally we must mention that we have analyzed the gravity law
also by using a progressive decomposition allowing univariate regression and a bootstrapping
procedure. These methodologies produce very similar results to those reported here.

Multiscale mobility networks and the large scale spreading of infectious diseases
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Figure 4: In panels A), B) and C) we display the mean (square), median (circle) and 95% CI (shaded
area) for the ratio of actual commuting fluxes to the model values as a function of three variables
(population of origin, population of destination, distance between airports) in Germany, Australia
and Japan, respectively. We demonstrate that the functional form as well as the fitted exponents
of gravity law enable us to successfully reproduce the actual commuting fluxes at a global scale.

1.3.2 Synthetic generation of commuting networks

By using the aiport tassels we first determined the geographical neighbors of each subpopulation.
This task is quite straightforward: If two cells with a common boundary are assigned to different
geographical census areas, then the census areas are nearest neighbors and will have a link in the
synthetic network. In this construction we have only considered those geographical census areas
which are located in the same country. However, we have to make an exception for the airport
of Basel because it is operated jointly by France and Switzerland. This process provides us with
the connections of the commuting networks in each country. Then we have assigned the weight
of each link, the flux of daily commuters, by applying the gravity law of Eq. (1) whose parameters
have been fitted to the entire empirical commuting database.

In Figure 5, we show the distributions of population sizes and distances between commuting
neighbors, as well as the distribution of weights and out-commuters of the census areas. The
synthetic commuting network exhibits very similar properties to the actual commuting data (see
Figure 2 for a comparison).

Multiscale mobility networks and the large scale spreading of infectious diseases
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Figure 5: Properties of the synthetic commuting networks. We display the distributions of A)
population, B) distance between connected census areas, C) daily number of people commuting on
each connection, and D) number of residents in each geographical census area commuting outside
per day. The distribution of distances peaks around 100 kms. However all the other quantities are
distributed in a broad range varying over 6 orders of magnitude in intensity as also occurs for the
empirical networks.

2 Epidemic dynamic model

Each geographical census area corresponds to a subpopulation in the metapopulation model, in-
side which we consider a Susceptible-Latent-Infectious-Recovered (SLIR) compartmental scheme,
typical of influenza-like illnesses (ILIs), where each individual has a discrete disease state assigned
at each moment in time. In Fig. 6, a diagram of the compartmental structure with transitions be-
tween compartments is shown. The contagion process, i.e. generation of new infections, is the
only transition mechanism which is altered by short-range mobility, whereas all the other transi-
tions between compartments are spontaneous and remain unaffected by the commuting. The rate
at which a susceptible individual in subpopulation j acquires the infection, the so called force of in-
fection λj, is determined by interactions with infectious persons either in the home subpopulation
j or in its neighboring subpopulations on the commuting network.

Given the force of infection λj in subpopulation j, each person in the susceptible compart-
ment (Sj) contracts the infection with probability λj∆t and enters the latent compartment (Lj),
where ∆t is the time interval considered. Latent individuals exit the compartment with proba-
bility ε∆t, and transit to asymptomatic infectious compartment (Iaj ) with probability pa or, with
the complementary probability 1 − pa, become symptomatic infectious. Infectious persons with

Multiscale mobility networks and the large scale spreading of infectious diseases
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Figure 6: Compartmental structure of our epidemic model within each subpopulation.

symptoms are further divided between those who can travel (Itj ), probability pt, and those who
are travel-restricted (Intj ) with probability 1 − pt. All the infectious persons permanently recover
with probability µ∆t, entering the recovered compartment (Rj) in the next time step. All transi-
tions and corresponding rates are summarized in Table 4 and in Figure 6. In each subpopulation
the variation of the number of individuals in each compartment [m] can be written at any given
time step as

X
[m]
j (t+ ∆t) − X

[m]
j (t) = ∆X

[m]
j +Ωj([m]) , (3)

where the term ∆X
[m]
j represents the change due to the compartment transitions induced by the

disease dynamics and the transport operatorΩj([m]) represents the variations due to the traveling
and mobility of individuals. The latter operator takes into account the long-range airline mobility
and defines the minimal time scale of integration as 1 day. The mobility due to the commuting
flows is taken into account by defining effective force of infections by using a time scale separation
approximations as detailed in the following sections.

2.1 Stochastic and discrete integration of the disease dynamics

In each subpopulation j, we define an operator acting on a compartment [m] to account for all the
transitions out of the compartment in the time interval ∆t. Each elementDj([m], [n]) of this opera-
tor is a random variable extracted from a multinomial distribution and determines the number of
transitions from compartment [m] to [n] occurring in ∆t. The change ∆X[m]

j of a compartment [m]

Multiscale mobility networks and the large scale spreading of infectious diseases
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Table 4: Transitions between compartments and their rates.

Transition Type Rate
Sj → Lj Contagion λj

Lj → Iaj Spontaneous εpa
Lj → Itj " ε(1− pa)pt
Lj → Intj " ε(1− pa)(1− pt)

Iaj → Rj " µ

Itj → Rj " µ

Intj → Rj " µ

in this time interval is given by a sum over all random variables {Dj([m], [n])} as follows

∆X
[m]
j =

∑
[n]

{−Dj([m], [n]) +Dj([n], [m])} . (4)

As a concrete example let us consider the evolution of the latent compartment. There are three
possible transitions from the compartment: transitions to the asymptomatic infectious, the symp-
tomatic traveling and the non-traveling infectious compartments. The elements of the operator
acting on Lj are extracted from the multinomial distribution

PrMultin(Lj(t), pLj→Ia
j
, pLj→It

j
, pL→Int

j
) , (5)

determined by the transition probabilities

pLj→Ia
j

= εpa∆t ,

pLj→It
j

= ε(1− pa)pt∆t , (6)

pL→Int
j

= ε(1− pa)(1− pt)∆t ,

and by the number of individuals in the compartment Lj(t) (its size). All these transitions cause
a reduction in the size of the compartment. The increase in the compartment population is due
to the transitions from susceptibles into latents. This is also a random number extracted from a
binomial distribution

PrBin(Sj(t), pSj→Lj
) , (7)

given by the chance of contagion

pSj→Lj
= λj∆t , (8)

with a number of attempts given by the number of susceptibles Sj(t). After extracting these num-
bers from the appropriate multinomial distributions, we can calculate the change ∆Lj(t) as

∆Lj(t) = −
[Dj(L, Ia) +Dj(L, It) +Dj(L, Int)

]
+Dj(S, L) . (9)

Multiscale mobility networks and the large scale spreading of infectious diseases
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2.2 The integration of the transport operator

The transport operator is defined by the airline transportation data and sets the integration time
scale to 1 day. The number of individuals in the compartment [m] traveling from the subpopu-
lation j to the subpopulation ` is an integer random variable, in that each of the X[m]

j potential
travellers has a probability pj` = wj`/Nj to go from j to `. In each subpopulation j the numbers
of individuals ξj` traveling on each connection j → ` at time t define a set of stochastic variables
which follows the multinomial distribution

P({ξj`}) =
X

[m]
j !

(X
[m]
j −

∑
` ξj`)!

∏
` ξj`!

(1−
∑
`

pj`)
(X

[m]

j
−

∑
` ξj`)

∏
`

p
ξj`

j` , (10)

where (1 −
∑
` pj`) is the probability of not traveling, and (X

[m]
j −

∑
` ξj`) identifies the number

of non traveling individuals of the compartment [m]. We use standard numerical subroutines to
generate random numbers of travellers following these distributions. The transport operator in
each subpopulation j is therefore written as

Ωj([m]) =
∑
`

(ξ`j(X
[m]
` ) − ξj`(X

[m]
j )), (11)

where the mean and variance of the stochastic variables are 〈ξj`(X[m]
j )〉 = pj`X

[m]
j and Var(ξj`(X

[m]
j )) =

pj`(1− pj`)X
[m]
j . Direct flights as well as connecting flights up to two-legs can be considered. It is

worth remarking that on average the airline network flows are balanced so that the subpopulation
Nj are constant in time, e.g.

∑
[m]Ωj([m]) = 0.

2.3 Time-scale separation and the integration of the commuting flows

The Global Epidemic and Mobility (GLEaM) modeler combines the infection dynamics with long-
and short-range human mobility. Each of these dynamical processes operates at a different time
scale. For ILI there are two important intrinsic time scales, given by the latency period ε−1 and
the duration of infectiousness µ−1, both larger than 1 day. The long-range mobility given by the
airline network has a time scale of the order of 1 day, while the commuting takes place in a time
scale of approx. τ−1 ∼ 1/3 day. The explicit implementation of the commuting in the model thus
requires a time interval shorter than the minimal time of airline transportation. To overcome this
problem, we use a time-scale separation technique, in which the short-time dynamics is integrated
into an effective force of infection in each subpopulation.

We start by considering the temporal evolution of subpopulations linked only by commuting
flows and evaluate the relaxation time to an equilibrium configuration. Consider the subpop-
ulation j coupled by commuting to other n subpopulations. The commuting rate between the
subpopulation j and each of its neighbors i will be given by σji. The return rate of commuting
individuals is set to be τ. Following the work of Sattenspiel and Dietz [7], we can divide the in-
dividuals original from the subpopulation j, Nj, between Njj(t) who are from j are located in j
at time t and those, Nji(t), that are from j are located in a neighboring subpopulation i at time t.
Note that by consistency

Nj = Njj(t) +
∑
i

Nji(t). (12)

Multiscale mobility networks and the large scale spreading of infectious diseases
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The rate equations for the subpopulation size evolution are then

∂tNjj = −
∑
i σjiNjj(t) + τ

∑
iNji(t) ,

∂tNji = σjiNjj(t) − τNji(t) .

(13)

By using condition (12), we can derive the closed expression

∂tNjj + (τ+ σj)Njj(t) = Njτ , (14)

where σj denotes the total commuting rate of population j, σj =
∑
i σji. Njj(t) can be expressed

as

Njj(t) = e−(τ+σj)t

(
Cjj +Njτ

∫t
0

e(τ+σj)sds

)
, (15)

where the constant Cjj is determined from the initial conditions, Njj(0). The solution for Njj(t) is
then

Njj(t) =
Nj

(1+ σj/τ)
+

(
Njj(0) −

Nj

(1+ σj/τ)

)
e−τ(1+σj/τ)t . (16)

We can similarly solve the differential equation for the time evolution of Nji(t),

Nji(t) =
Njσji/τ

(1+ σj/τ)
−
σij

σj

(
Njj(0) −

Nj

(1+ σj/τ)

)
e−τ(1+σj/τ)t

+

[
Nji(0) −

Njσji/τ

(1+ σj/τ)
+
σij

σj

(
Njj(0) −

Nj

(1+ σj/τ)

)]
e−τt . (17)

The relaxation to equilibrium of Njj and Nji is thus controlled by the characteristic time [τ (1 +

σj/τ)]
−1 in the exponentials. Such term is dominated by 1/τ if the relation τ � σj holds. In our

case, σj =
∑
iωji/Nj, that equals the daily total rate of commuting for the population j. Such

rate is always smaller than one since only a fraction of the local population is commuting, and it
is typically much smaller than τ ' 3 − 10 day−1. Therefore the relaxation characteristic time can
be safely approximated by 1/τ. This time is considerably smaller than the typical time for the air
connections of one day and then consider the subpopulationsNjj(t) andNji(t) as relaxed to their
equilibrium values,

Njj =
Nj

1+ σj/τ
and Nji =

Njσji/τ

1+ σj/τ
. (18)

This approximation, originally introduced by Keeling and Rohani [8], allows us to consider each
subpopulation j as having an effective number of individualsNji in contact with the individuals of
the neighboring subpopulation i. In practice, this is similar to separate the commuting time scale
from the other time scales in the problem (disease dynamics, traveling dynamics, etc.). While the
approximation holds exactly only in the limit τ → ∞, it is good enough as long as τ is much larger
than the typical transition rates of the disease dynamics. In the case of ILIs, the typical time scale
separation between τ and the compartments transition rates is close to one order of magnitude or
even larger.

Eqs. (19) can be generalized in the time scale separation regime to all compartments [m]. The
number of individuals X[m]

j (t) in each compartment [m] at time t in city j can be expressed as

Multiscale mobility networks and the large scale spreading of infectious diseases
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the sum of individuals X[m]
jj (t) who are actually present in their home subpopulation and those

X
[m]
ji (t) who are visiting a neighboring city i [7]. By definition it follows that X[m]

j (t) = X
[m]
jj (t) +∑

i∈υ(j) X
[m]
ji (t), where υ(j) denotes the set of neighbors of j. All individuals in each traveling

compartment visit a neighboring subpopulation at a rate of σji for an average duration of τ−1. At
the equilibrium the populations X[m]

jj and X[m]
ji can be therefore expressed as:

X
[m]
jj =

X
[m]
j

(1+ σj/τ)
and X[m]

ji =
X

[m]
j

(1+ σj/τ)
σji/τ , (19)

where σj =
∑
i∈υ(j) σji denotes the total commuting rate of j and X[m]

jj = X
[m]
j and X[m]

ji = 0

for all the other compartments which are restricted from traveling. These expressions will be
used to obtain the effective force of infection taking into account the interactions generated by the
commuting flows.

2.4 Effective force of infection

The force of infection λj that a susceptible population of a subpopulation j sees can be decomposed
into two terms: λjj and λji. The component λjj refers to the part of the force of infection whose
origin is local in j. While λji indicates the force of infection acting on susceptibles of j during
their commuting travels to a neighboring subpopulation i. The effective force of infection can
be estimated by summing these two terms weighted by the probabilities of finding a susceptible
from j in the different locations, Sjj/Sj and Sji/Sj, respectively. Using the time-scale separation
approximation that establishes the equilibrium populations in Eq. (19), we can write

λj =
λjj

1+ σj/τ
+

∑
i

λjiσji/τ

1+ σj/τ
. (20)

We will focus now on the calculation of each term of the previous expression. The force of infection
occurring in a subpopulation j is due to the local infectious persons staying at j or to infectious
individuals from a neighboring subpopulation i visiting j and so we can write

λjj =
βj

N∗j

[
Intjj + Itjj + rβI

a
jj +

∑
i

(
Intij + Itij + rβI

a
ij

)]
, (21)

where βj is introduced to account for the seasonality in the infection transmission rate (if the
seasonality is not considered, it is a constant), and N∗j stands for the total effective population in
the subpopulation j. By definition, Intjj = Intj and Intji = 0 for j 6= i. If we use the equilibrium
values of the other infectious compartments (see Eq. (19)) we obtain

λjj =
βj

N∗j

[
Intj +

Itj + rβI
a
j

1+ σj/τ
+

∑
i

Iti + rβI
a
i

1+ σi/τ
σij/τ

]
. (22)

The derivation of λji follows from a similar argument yielding:

λji =
βi

N∗i

Intii + Itii + rβI
a
ii +

∑
`∈υ(i)

(
Int`i + It`i + rβI

a
`i

) , (23)
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Figure 7: Initial time: April 1, R0 = 1.5. In A) we compare simulation results for the global
epidemic profiles with and without inclusion of commuting networks and τ = 3 day−1. In B)
prevalence profiles in 6 regions corresponding to 3 different climatic zones, Northern, Tropical
and Southern, from top to bottom, respectively, are shown. The faster decay in the prevalence
profiles are highlighted by shaded areas. The profiles of Lower South America and South Pacific
refer to the epidemic activities in the following winter.
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Figure 8: Initial time: April 1, R0 = 2.3. In A) we compare simulation results for the global
epidemic profiles with and without inclusion of commuting networks and τ = 3 day−1. In B)
prevalence profiles in 6 regions corresponding to 3 different climatic zones, Northern, Tropical
and Southern, from top to bottom, respectively, are shown. The faster decay in the prevalence
profiles are highlighted by shaded areas.

where υ(i) represents the set of neighbors of i, and therefore the terms under the sum are due to
the visits of infectious individuals from the subpopulations `, neighbors of i, to i. By plugging the
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Figure 9: Initial time: October 1, R0 = 1.5. In A) we compare simulation results for the global
epidemic profiles with and without inclusion of commuting networks and τ = 3 day−1. In B)
prevalence profiles in 6 regions corresponding to 3 different climatic zones, Northern, Tropical
and Southern, from top to bottom, respectively, are shown. The faster decays in the prevalence
profiles are highlighted by shaded areas. The profiles of North America and Western Europe refer
to the epidemic activities in the following winter.

equilibrium values of the compartment into the above expression, we obtain

λji =
βi

N∗i

Inti +
Iti + rβI

a
i

1+ σi/τ
+

∑
`∈υ(i)

It` + rβI
a
`

1+ σ`/τ
σ`i/τ

 . (24)

Finally, in order to have an explicit form of the force of infection we need to evaluate the effective
population sizeN∗j in each subpopulation j, i.e., the actual number of people staying at the location
j. The effective population is N∗j = Njj +

∑
iNij, that in the time-scale separation approximation

reads

N∗j = Intj +
Nj − Intj

1+ σj/τ
+

∑
i

Ni − Inti
1+ σi/τ

σij/τ . (25)

Note that in these equations all the terms with compartments have an implicit time dependence.
By inserting λjj and λji into Eq. (20), it can be seen that the expression for the force of infection
includes terms of zeroth, first and second order on the commuting ratios (i.e., σij/τ). These three
term types have a straightforward interpretation: The zeroth order terms represent the usual force
of infection of the compartmental model with a single subpopulation. The first order terms ac-
count for the effective contribution generated by neighboring subpopulations with two different
sources: Either susceptible individuals of subpopulation j having contacts with infectious indi-
viduals of neighboring subpopulations i, or infectious individuals of subpopulations i visiting
subpopulation j. The second order terms correspond to an effective force of infection generated by
the contacts of susceptible individuals of subpopulation j meeting infectious individuals of sub-
population ` (neighbors of i) when both are visiting subpopulation i. This last term is very small
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in comparison with the zeroth and first order terms, typically around two order of magnitudes
smaller, and in general can be neglected.
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Figure 10: Initial time: October 1, R0 = 1.9. In A) we compare simulation results for the global
epidemic profiles without and with inclusion of commuting networks and τ = 3 day−1. In B)
prevalence profiles in 6 regions corresponding to 3 different climatic zones, Northern, Tropical
and Southern, from top to bottom, respectively, are shown. The faster decays in the prevalence
profiles are highlighted by shaded areas.
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Figure 11: Initial time: October 1, R0 = 2.3. In A) we compare simulation results for the global
epidemic profiles without and with inclusion of commuting networks and τ = 3 day−1. In B)
prevalence profiles in 6 regions corresponding to 3 different climatic zones, Northern, Tropical
and Southern, from top to bottom, respectively, are shown. The faster decays in the prevalence
profiles are highlighted by shaded areas.
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2.5 Construction of invasion trees

In the main text, we present a geographic invasion tree inside the continental United States, show-
ing both the infection hierarchy and the most probable transmission routes between subpopu-
lations. This is a directed, weighted minimum spanning tree among all the possible infection
transmission paths.

For every subpopulation j, we keep track of the cumulative number of imported infections
from all other neighboring subpopulations. This is done until time t0, when the first local gen-
eration of infection occurs in the subpopulation. For each subpopulation pair lj , we define plj
as the probability of infection transmission from l to j. This probability shows the likelihood that
subpopulation j’s infection is seeded by subpopulation l. Since infected cases are imported either
by air traffic or commuting, plj is calculated by considering the transmission probablity through
air traffic palj , and commuting pclj, depending on the connection type.

In the following, for subpopulation j, we use A for the set of subpopulations which are con-
nected by air traffic, and C for the set of neighboring subpopulations having commuting flows.
For palj, the imported seeds include latent (L), symptomatic infected traveling (It) and asymp-
tomatic infected people (Ia). Assume l(l ∈ A) is a subpopulation having air traffic with j, and
ξlj(t)(ξ ∈ (L, It, Ia)) is the number of people in each compartment traveling from l to j at time t.
Then the probability is defined as:

palj =

∑
t<t0

(Llj(t) + Itlj(t) + Ialj(t))∑
l∈A

∑
t<t0

(Llj(t) + Itlj(t) + Ialj(t))
.

For pclj, because of the commuting short-range coupling between subpopulation j and every
neighboring subpopulation l(l ∈ C) , all neighboring subpopulations which have infected cases
(including infected people who are not traveling) should be considered as potential seeds for this
subpopulation. Hence this probability is:

pclj =

∑
t<t0

(Itl(t) + Intl (t) + Ial (t))∑
l∈C

∑
t<t0

(Itl(t) + Intl (t) + Ial (t))
.

Therefore, for any connected subpopulation pair lj, the transmission probability is

plj =
palj + pclj∑

k∈A p
a
kj +

∑
k∈C p

c
kj

.

Finally, similar to the distance based on correlation coefficients dij =
√
2(1− rij) where rijis

the correlation coefficient, we define a distance metric dlj =
√
1− plj to measure dissimilarities for

the infection probability. The minimum spanning tree is then calculated using Chu-Liu-Edmunds
Algorithm.

3 Simulations of an hypothetical epidemic

We performed two different sets of simulations with the new ingredient, i.e. commuting, in which
only the synthetic commuting network or the combination of synthetic commuting network with
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Figure 12: Initial time: April 1. We compare simulation results for the global epidemic profiles by
varying commuting return rate τ one order of magnitude. Even though there are small variations
in the profiles of the prevalence curves, the results are stable and illustrate that the intensity of the
commuting fluxes do not significantly alter the basic evolution of the epidemic.
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Figure 13: Initial time: October 1. We compare simulation results for the global epidemic profiles
by varying commuting return rate τ one order of magnitude. Even though there are small varia-
tions in the profiles of the prevalence curves, the results are stable and illustrate that the intensity
of the commuting fluxes do not significantly alter the basic evolution of the epidemic.

real data has been considered. These results have been compared with each other as well as with
the simulations where only the airline traffic is taken into account.

Model parameters are same as of the main paper if not stated otherwise. All simulations were
initiated by a single symptomatic infectious person and let evolve for a duration of two years.
Only the runs with a global outbreak, defined as generation of new symptomatic cases in more
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than one country, were considered for the analysis.
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Figure 14: Initial time: April 1, R0 = 1.9, τ = 3 day−1. We compare attack rate curves of repre-
sentative countries from 5 continents where we have commuting data. The profiles have been ob-
tained by using the synthetic commuting network alone or the actual commuting data combined
with the synthetic network in the simulations. The results are in good agreement, additionally
confirming the reliability of our estimation for the gravity law.

Oct
Nov Dec Ja

n
Feb M

ar
0

0.01

0.02

0.03

0.04

0.05

P
re

va
le

nc
e

Synthetic

Oct
Nov Dec Ja

n
Feb M

ar

Data

Oct
Nov Dec Ja

n
Feb M

ar

Oct
Nov Dec Ja

n
Feb M

ar
0

0.01
0.02
0.03
0.04
0.05
0.06

P
re

va
le

nc
e

Oct
Nov Dec Ja

n
Feb M

ar Oct
Nov Dec Ja

n
Feb

Oct
Dec Feb Apr Ju

n
Aug Oct

Dec
0

0.005
0.01

0.015
0.02

0.025
0.03

P
re

va
le

nc
e

Aug Sep Oct
Nov Dec Ja

n
Aug Sep Oct

Nov Dec Ja
n

R0=1.9, τ=3

US UK France

Norway Greece Japan

Chile Australia New Zealand

Figure 15: Initial time: April 1, R0 = 1.9, τ = 3 day−1. We compare prevalence curves of repre-
sentative countries from 5 continents where we have commuting data. The profiles have been ob-
tained by using the synthetic commuting network alone or the actual commuting data combined
with the synthetic network in the simulations. The results are in good agreement, additionally
confirming the reliability of our estimation for the gravity law.
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3.1 Initial conditions and R0

Hanoi has been chosen as the origin of the infection with two different initial conditions: April
1st and October 1st. Simulations with three different values of R0 = 1.5, 1.9 and 2.3 have been
carried out. In the Figures 7-11, we compare the results with and without ground transportation
(commuting) for a fixed return rate of τ = 3 day−1. The results are shown at a global scale and
also at the level of regions in different climatic zones.

In the panel A of each figure, we display the chance of global outbreak at the end of two years
from the initial date. Depending on the value of R0, between 57% and 29% of the realizations show
no epidemic propagation out from the source country. If the infection does get out of the source
country, it is almost certain that the epidemic will circulate in all the countries of our database
given the values of R0 simulated. We see that the initial date does not have any effect on the out-
break probability, but this should be taken with caution because we consider a very long temporal
range in our simulations (2 years). Since the commuting networks are confined to the interior of
each country and no commuting is allowed across country boundaries, we observe that the out-
break probability does not change by the inclusion of short-range mobility. The only way for an
infection to cross borders in our model is via air-transportation.

In the same panel, we also show the mean global attack rate and the prevalence as a function
of time. The shape of the epidemic curves strongly depends on the value of R0 and on the initial
time since the seasonality has been implemented in the simulations. The inclusion of commuting
increases the global attack rate up to 4% from the baseline case with air-travel only. The major
differences between the simulations with and without commuting concentrate in the areas where
the fluctuations are more relevant. The addition of commuting does not have a high impact on
the global magnitudes characterizing the epidemic spreading, but plays an important role in the
local distribution of the disease. It increases the local synchrony between nearby subpopulations,
an effect that is visible in the faster decays of the tails of the prevalence curves.

In the panel B of Figures 7-11, the average prevalence of 6 regions in different world hemi-
spheres are shown (Northern, Tropical and Southern). To obtain the regional epidemic curves,
we aggregate the data of the geographical census areas falling within each region but always dis-
criminating by climatic zones to avoid the wash out of seasonality. As explained above, the effect
of considering commuting becomes more clear when the geographical focus is localized in more
restricted areas.

3.2 Commuting return rate τ

Our baseline value for the time spent away from the home subpopulation during commuting is
τ−1 = 1/3 day, roughly corresponding to the average working hours in a weekday. In Figures 12
and 13, we compare the global epidemic profiles under one order of magnitude variation in the
commuting return rate, τ = 1, 3 and 10 day−1. Once the commuting is considered, the value of
τ does not cause a qualitative difference in the epidemic evolution (see the tails of the prevalence
curves). Remembering that the relevant quantity in the calculation of the force of infection is the
ratio of the commuting rate to the return rate, these results show that the commuting-flux inten-
sities do not significantly alter the basic evolution of the epidemic. The reason for this is that the
higher order terms in the effective force of infection that couple neighboring subpopulations are
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relevant only when the number of infected individuals in the subpopulation of interest is virtually
zero. Once the local outbreak is started, the main contribution to the evolution of the epidemics
is given by the local force of infection. The intensity of the coupling is therefore not extremely
relevant as it affects only marginally the evolution of the internal subpopulation epidemic evolu-
tion. This argument explains why varying over one order of magnitude the coupling induced by
the commuting flows does not have an appreciable impact on the epidemic profiles. On the other
hand, the presence or not of the coupling makes a difference by inducing synchronization effects
in the early seeding of epidemics in neighboring subpopulations.

3.3 Synthetic commuting network versus real commuting data

In the Figures 14 and 15, we compare the attack rate and the prevalence profiles generated by
using the commuting network obtained from real data with those generated by using the synthetic
commuting network. The synthetic commuting network is quite successful in reproducing the
same qualitative epidemic curves in specific countries and worldwide.

4 Model comparison with seasonal influenza data

In this section, we compare results of our model with the seasonal influenza activities in the year
2001-2002. During this season the predominant influenza virus type was A/H3N2 in most world
wide locations [10], such as United States [13, 10], Europe [17], Australia [20], Africa and the
Americas [10], while in the previous influenza season (2000-2001) the A/H1N1 type was the most
common worldwide [9]. This fact makes it possible to distinguish the current epidemic from the
remnants of the previous year epidemic by simply looking at the virus type. Influenza activity is
then obtained from the Global Influenza Program (FluNet) database by WHO [15] and Flu Activity
& Surveillance by the United States Centers for Disease Control and Prevention [12].

From the epidemiological records, Hong Kong is the only city in the SE Asia region having
A/H3 influenza activity during 2001 summer [16]. This choice is supported by recent work on the
geographical origin and the global spreading of A/H3N2 influenza [18]. We further assume that
10−5 of the initial city population is latent in accordance with [14, 19].

For the model parameters, we have considered a latent period of ε = 1.1 days, and infectious
period of µ = 2.95 days. This choice results in an average generation interval of around 4 days,
in accordance with published estimates [11]. Moreover, only a fraction α = 60% [14] of the world
population is susceptible to seasonal influenza. The effective reproductive number Reff is defined
as Reff = αR0 and we have considered an Reff value of 1.4 that is in the range of those observed
for seasonal influenza. This value is obtained by a best fit of the peak time in the US surveillance
regions.

The initial date of the simulation is obtained by calculating the best χ2 value of the results
produced by the simulation when compared with the empirical influenza activity in Australia.
For tolerance, we use a range of dates for which the χ2 value is less than 1.1 times of minimum,
namely July 21 [July 9 - July 31] for the model including commuting and August 1 [July 22 - August
15] for the model without this component. In all cases we perform 1000 realizations for each set of
parameters and initial dates.
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Figure 16: A), B) and C). Comparison between 2001-2002 seasonal influenza surveillance data and
the simulation results in three separate US regions. Circles represent weekly surveillance data,
while the median of predictions with (without) commuting is represented by a solid (dashed) line.
The red shaded area represents the 95% CI for the range of best initial dates [July 9 − July 31] of
the model with commuting networks. We rescale the empirical and commuting datasets to one,
and divide the curves corresponding to the no commuting case by the maximum value of the
diffusive case. This guarantees that all curves can be shown on the same scale, while illustrating
the different model predictions for the cases with and without commuting as enhanced by the
gray shaded area. D) and E). Median weekly incidence profiles for Boston area and surrounding
cities with no commuting (D) and with commuting (E). A schematic network representation of the
short-range connections is shown for guidance. The synchronization among the various incidence
profiles is considerably enhanced when commuting is considered, with a reduction of over one
month in the time interval between peaks in neighboring cities. Model profiles were calculated
using 103 independent outbreak realizations.

In Figure 16 we compare our predictions with 2001-2002 weekly surveillance lab data in three
different US regions. Along with a good agreement with the empirical data, Figure 16 capture the
same features and behavior exhibited by the synthetic scenario used in the main text. Both models
(without or with commuting networks) captures the temporal evolution of empirical influenza ac-
tivities within the confidence intervals for selected range of best initial dates. The figure however
shows the increased synchronization among the various incidence profiles of neighboring cities
when commuting is considered analogously to what shown in Figure 3 of the main text. In addi-
tion it is evident that at the regional level, the model including commuting flows is providing a
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better fit against the real data.
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