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Recently, it has been claimed that some complex networks are self-similar under a convenient re-
normalization procedure. We present a general method to study renormalization flows in graphs. We find
that the behavior of some variables under renormalization, such as the maximum number of connections
of a node, obeys simple scaling laws, characterized by critical exponents. This is true for any class of
graphs, from random to scale-free networks, from lattices to hierarchical graphs. Therefore, renormal-
ization flows for graphs are similar as in the renormalization of spin systems. An analysis of classic
renormalization for percolation and the Ising model on the lattice confirms this analogy. Critical
exponents and scaling functions can be used to classify graphs in universality classes, and to uncover
similarities between graphs that are inaccessible to a standard analysis.
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Generally speaking, an object is self-similar if any part
of it, however small, maintains the general properties of
the whole object. Self-similarity is a characteristic fea-
ture of fractals [1] and it expresses the invariance of a
geometrical set under a length-scale transformation.
Many complex systems such as the World Wide Web
(WWW), the Internet, social and biological systems,
have a natural representation in terms of graphs, which
often display heterogeneous distributions of the number
of links per node (the degree k) [2-6]. These distributions
can be described by a power law decay, i.e., are scale-free:
they remain invariant under a rescaling of the degree
variable, suggesting that suitable transformations of the
networks’ structure may leave their statistical properties
invariant. Since graphs however are not embedded in
Euclidean space, a standard length-scale transformation
cannot be performed. The concept of length can only be
defined in the graph-theoretical sense of the number of
links along any shortest path between two nodes. In this
context, Song et al. [7] proposed to transform a network
by means of a box-covering technique, in which a box
includes nodes such that the distance between each
pair of nodes within a box is smaller than a threshold
€. After tiling the network, the nodes of each box and
their mutual links are replaced by a supernode: supernodes
are connected if in the original network there is at least
one link between nodes of their corresponding boxes.
This defines a renormalization transformation Rg,. For
some real networks, such as the WWW, social, meta-
bolic, and protein-protein interaction networks, a few
iterated applications of this procedure seem to leave
their degree distribution invariant, which led to the claim
that they are self-similar [7]. Other networks, such as
the Internet, are instead found not to be self-similar under
R,
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Iterated applications of R, generate renormalization
flows in the space of all possible graphs. Studying the
behavior of such flows is crucial: the existence of possible
fixed points of the transformation would allow to identify
universality classes of networks, much like it happens for
second-order phase transitions in statistical physics [8].
This could offer a natural way to classify graphs and un-
cover unknown similarities. In this paper we perform a
systematic study of the renormalization transformation
Ry, its flows and fixed points.

We denote a generic graph of Ny nodes and E links by
Gy and the renormalization transformation by R, for sim-
plicity. A series of ¢ successive transformations R on G,
leads to the graph G, = R'(G,)), with N, nodes and E, links.
Finite-size effects are strong especially in heterogeneous
networks, where boxes built around large degree nodes
(hubs) determine a considerable contraction of the system
at each step. Such effects may perturb the analysis of the
renormalization flow, which therefore has not been inves-
tigated so far. We have devised a general procedure that
overcomes this difficulty and allows to study the renormal-
ization flows.

Tiling a network means covering it with the minimum
number of boxes. We adopted two popular techniques for
box covering: the greedy coloring algorithm [9] (GCA) and
random burning [10] (RB). GCA is a greedy technique
inspired by the mapping of the problem of tiling a network
to node coloring, a well-known problem in graph theory
[11]. In RB, boxes are spheres of radius rp centered at
some seed nodes, so that the maximal distance between
any two nodes within a box does not exceed 2rg. The
correspondence between the two methods is obtained for
{g = 2rg + 1. The main results of our analysis appear
robust with respect to the particular adopted box-covering
technique.
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An important characteristic of a network is its largest
degree. We therefore focus on the variable x, = K,/(N, —
1), where K, is the largest degree of graph G,. As the
number of renormalization steps ¢ increases, we study the
flows of «, as a function of the relative network size x, =
N,/N, (N, is the initial network size). We also study the
fluctuations of the variable «, along the flow, expressed by
the susceptibility y, = Ny({«x?) — (k,)?); here the aver-
ages, denoted by (-) are taken over various realizations of
the covering algorithm.

In Fig. 1 we see how the variables evolve for an Erdos-
Rényi [12] (ER) graph with average degree (k) = 2, which
thus contains a giant component and has loops. Such a
network is not self-similar according to box-covering re-
normalization [7]. The box covering was carried out with
GCA, with €z = 3. We find that the functions «,(x;) and
x:(x,) are scaling functions of the variable x,Né/ Y. as
indicated by the remarkable data collapse of the insets.
The scaling relations hold on a very general ground,
namely, for all the box-covering procedures investigated,
with exponents identifying a narrow set of universality
classes. In the case of non-self-similar objects the estimates
for the exponent v are consistent with the value 2. The
scaling of the susceptibility curves requires another expo-
nent y, which controls the divergence of the peaks (see
inset of Fig. 1, bottom). We obtain y = v for all graphs and
transformations.

In Fig. 2 we study the flows for a class of graphs which
are self-similar under box-covering renormalization: the
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FIG. 1 (color online). Study of renormalization flows on non-
self-similar artificial graphs. The box covering was performed
with GCA for €5 = 3. After ¢ iterations of the renormalization
procedure, the graph G, has N, nodes and E, links and its
maximal degree is K,. The graph is an ER network with average
degree (k) = 2. The figures display x, = K,/(N, — 1) (top) and
xX: = No({k?) — {k,)*) (bottom) as a function of the relative
network size x, = N,/N,. The insets display the scaling function
of the variable xtN(l)/ ¥ for k, and yx,. Here v = 2.0(1) and the
susceptibility exponent y = v (within errors).

fractal model (FM) introduced by Song et al. [13]. The
fractal model is self-similar by design, as it is obtained by
inverting the renormalization procedure. At each step, a
node turns into a star, with a central hub and several nodes
with degree one. Nodes of different stars can then be
connected in two ways: with probability e one connects
the hubs with each other (Mode I), with probability 1 — e a
nonhub of a star is connected to a nonhub of the other
(Mode II). The resulting network is a tree with power law
degree distribution, the exponent of which depends on the
probability e.

These types of graphs maintain their statistical features
under renormalization. Nevertheless, the scaling behavior
is the same we have observed for non-self-similar graphs,
but with different exponents. In the case of the FM network
it is possible to derive the scaling exponent v, by inverting
the construction procedure of the graph. In this way one
recovers graphs with identical structure at each renormal-
ization step and one can predict how «;, for instance, varies
as the flow progresses. Since we are interested in renorm-
alizing the graph, our process is the time-reverse of the
growth described in [13], and is characterized by the
following relations:

logn

N;_ = nN, k,—1 = sk, =1+ (1

logs’

where n and s are time-independent constants determining
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FIG. 2 (color online). Study of renormalization flows on self-
similar artificial graphs. The box covering was performed with
GCA for €5 = 3. The graph is an FM network with ¢ = 0.5,
where e is the probability for hub-hub attraction [13]. The figure
displays «, = K,/(N, — 1) (top), and x, = No((k7) — (x,)*)
(bottom) as a function of the relative network size x, =
N,/Ny. The scaling function of the variable x,Né/ Y for k, and
X, is displayed in the insets. The exponent is ¥ = 1.05(5). The
dashed lines indicate the predicted behavior of the scaling
function. The scaling function decays with an exponent —(8 —
2)/(B — 1) = —0.45. We still find y = v (within errors).
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the value of the degree distribution exponent B of the
network. Here N, and k, are the number of nodes and a
characteristic degree of the network at step ¢ of the renor-
malization; we choose the maximum degree K,. The initial
network has size N, and shrinks due to box-covering trans-
formations. In this case, for the variable «, one obtains

K, K0<s)—t K, (N,)—(ﬁ—Z)/(B—l)
K ~ —_— = —_— f— = — —_—
" N, Ny No \N,
Ky _(5- _
:Foxt (B-2)/(8B 1)~(N0xt)—(ﬁ—2)/(ﬁ—l)’ )
0

where we used s = n'/B=D N,/Ny=n"", and K, ~
N(l)/ (B-1) , derived from Eq. (1). We see that the scaling
exponent ¥ = 1 is obtained for any value of the exponent
B. From Eq. (2) we actually get the full shape of the scaling
function, that is a power law: our numerical calculations
confirm this prediction. We remark that this holds only
because one has used precisely the type of transformation
that inverts the growth process of the fractal network. This
amounts to applying the GCA with €3z = 3.

Self-similar objects correspond by definition to fixed
points of the transformation. To study the nature of these
fixed points, we have repeated the analysis of the renor-
malization flows for the self-similar networks considered,
but perturbed by a small amount of randomness, through
the addition or rewiring of a small fraction p of links. The
results are shown in Fig. 3 for Watts-Strogatz (WS) small-
world networks [14] and FM networks. In both cases we
recover the behavior observed for non-self-similar graphs,
with scaling exponents » = 2.0(1) and 2.0(1), which im-
plies that the original fixed points are unstable with respect
to disorder in the connections. To complete our analysis,
we have studied the renormalization flows for many other
artificial networks, either self-similar or not, such as scale-
free networks in the manner of Barabasi and Albert [15] or
generated with linear preferential attachment [16], ER

graphs at the threshold for the formation of the giant
component ({(k) = 1), hierarchical, and Apollonian net-
works [17,18]. In all cases we have found the same scaling
behavior for «, and y,. We warn that the values of the
exponents may a priori also be affected by the specific
transformation adopted, as it happens in real space renor-
malization for lattice models [8]. Still, we find a coherent
picture: non-self-similar graphs are characterized by ex-
ponents consistent with v = 2; self-similar graphs yield
different values for v.

The scaling relations we have found are somewhat un-
usual, as the scaling variable entails the relative system
volume x;, and not a control parameter. To disclose the
meaning of our scaling, we repeated our analysis for two
traditional systems of statistical physics: percolation and
the Ising model in two dimensions. We have applied real
space renormalization to percolation configurations on a
triangular lattice, and to Ising configurations on a square
lattice. For percolation, a triangular cell is replaced by a
supernode, which is occupied if the majority of sites of the
cell are occupied, empty otherwise (the procedure is de-
scribed in [19]). For Ising we have applied a classical
majority rule scheme to square cells with four spins. In
Fig. 4 we show the relation between the order parameter
and x, (which here indicates the contraction in the linear
dimension L), for different initial lattice sizes, starting
from configurations at the critical point. We observe a
clean scaling, just as in network renormalization.

The plots are analogues of the standard finite-size scal-
ing plots. The order parameter scales as L ~#/” (L being the
linear dimension of the lattice) at the critical density, which
in our case reads (x,Lo) #/* and matches the trend ob-
served in the figure. At variance with finite-size scaling,
where one always considers configurations of the same
system, here the renormalization may bring the system to
configurations corresponding to the critical state of other
systems in the same universality class, but the scaling
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FIG. 3 (color online).

Effect of a small random perturbation on renormalization flows. The box covering was performed with GCA,

with €5 = 3. (a) WS network with (k) = 4 and a fraction p = 0.01 of randomly rewired links. (b) FM network with ¢ = 0.5 and a
fraction p = 0.05 of added links. The figures display «x, = K,/(N, — 1) (a, b, top) and y, = No({«?) — {x,)*) (a, b, bottom) as a
function of the relative network size x, = N,/N,. We see that the exponents are now very different from the unperturbed case: we
recover v = 2.0(1), as in the case of non-self-similar graphs. The relation y = v is still satisfied within errors.
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FIG. 4 (color online). Analogues of our scaling plots for real
space renormalization in percolation and the Ising model in two
dimensions. For percolation we use a triangular lattice, and the
renormalization reduces the volume by 1/9 at each step. For
Ising we use a square lattice, with a volume contraction factor of
1/4. The relative system size x, now refers to the linear dimen-
sion L of the lattices. So, the values of x, are multiples of 1/3 for
percolation, of 1/2 for Ising. The plot illustrates the flows
obtained starting from the critical value of the control parameter,
corresponding to the occupation density p = 0.5 for percolation
and the temperature k7 = 2.269 for Ising. The two order pa-
rameters, the percolation strength (relative size of the percolating
cluster), and the magnetization scale with x;,. We recover the
well-known exponents of percolation and Ising (8,/v, = 5/48,

,31/7/1 =1/8).

holds. We have also repeated the analysis starting from
system configurations in the subcritical and supercritical
phases, in which cases no scaling is observed.

The scaling of Fig. 4 does not give new insight about
percolation and Ising, as it just reproduces well known
exponents. Standard finite-size scaling does the same job,
but there one has a control parameter (occupation density,
temperature) that allows one to identify the state of the
system. In the case of networks, the state is represented by
the topology of the system and there is no obvious control
parameter, so our approach seems the only possibility to
extract information about possible critical properties. The
scaling for self-similar graphs in Fig. 2 corresponds to the
critical scaling of Fig. 4.

In conclusion, our results show that renormalization
flows in graphs, as defined by the box-covering method,
display a clear scaling behavior, opening a new promising
research avenue in the field of complex networks, with
close contacts to real space renormalization in lattice mod-
els. Our analysis uses the well-established finite-size scal-
ing and real space renormalization techniques and could be
easily generalized to other possible renormalization
schemes. For a full classification of networks in universal-
ity classes it seems necessary to explore further the robust-
ness of the critical exponents under renormalization, and to

study the flow of other variables, which may deliver new
interesting scaling functions and exponents. The analogies
we have found with the classic renormalization of perco-
lation and the Ising model on the lattice are intriguing and
give more insight to our picture. Finally, an interesting
open question concerns the possibility to assign real-world
networks to specific universality classes. This is a challeng-
ing issue, as for real graphs a finite-size scaling analysis is
not available because of the uniqueness of each sample. A
possibility could be to estimate their ““distance” from the
self-similar (unstable) fixed points of the transformation.
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