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The recently proposed Langevin equation, aimed to capture the relevant critical features of stochastic
sandpiles and other self-organizing systems, is studied numerically. The equation is similar to the Reggeon
field theory, describing generic systems with absorbing states, but it is coupled linearly to a second conserved
and statiqnondiffusive field. It has been claimed to represent a different universality class, including different
discrete models: the Manna as well as other sandpiles, reaction-diffusion systems, etc. In order to integrate the
equation, and surpass the difficulties associated with its singular noise, we follow a numerical technique
introduced by Dickman. Our results coincide remarkably well with those of discrete models claimed to belong
to this universality class, in one, two, and three dimensions. This provides a strong backing for the Langevin
theory of stochastic sandpiles, and to the very existence of this meagerly understood universality class.
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Aimed at shedding some light at the origin ofder in ap=DaV2p — up - \p?+ wpd+ a\pp(x.1),
Nature, some different routes to organization have been pro-
posed in the past 15 years or so. In particular, the concept of =D V?p, (1)

self-organizationas exemplified bysandpiles[1-3] (for re-

views see Refs[4—6]), one of the canonical instances of whereD,, D, u, A and w are constantsp(x,t) and ¢(x,t)
self-organizing systems, has generated a rather remarkali¢e the activity and the energy field respectivelys a zero-
outburst of interest. In order to rationalize sandpiles in parmean Gaussian white noise.

ticular, andself-organized criticalitfSOQ) in general, and to Soon after the introduction of the previous Langevin
understand their critical properties, it has been recently progduation its range of applicability was extended, as it was
posed to look at them as systems with many absorbing staté@nijectured to describe all systems with many AS and an
[6-10. The underlying idea is that in the absence of externafuiliary conserved and nondiffusiver statig field [15]. In
driving sandpile models get eventually trapped into stabld@rticular, for a reaction-diffusion model in this family an
configurations from which they cannot escape, i.e., absorbin quation similar to Eq(1) was derived (lgorously by using
states(AS) [11,17. In order to make this connection more tandard Fock-space formalism techniqu#S-17. To be
explicit the notion offixed-energy sandpilesas introduced. moret_prec_lsel, ;ve shouldh_mr:antlon_thallt the flenved Sﬁt of
These modified sandpiles share the microscopic rules wit gu;x oliggSclrnoCsszeS-Scztr)erIZti ;ﬂseﬁgfgeri\(f r:?] fhrngss;;ptoti c
their standardslowly driven and dissipatiyecounterparts, properties is not clear. '

but with neither driving(no addition of sand graimnsnor

S A priori, it is not straightforward to decide from a field
dissipation; i.e., the total amount of sag@hergy becomes a  hegretical point of view whether the extra conservation law

conserved quantity acting as a control parameter. In this waypqyces a critical behavior different from that of RFT or if,
if a standard sandpile in its stationary critical state has apn the contrary, it is an irrelevant perturbation at the RFT
average density of grairisr energy £, it can be shown that renormalization group fixed poifit4]. From the theory side,
its fixed-energy counterpart exhibits a transition from an acit has been recently argued by van Wijland that the Langevin
tive to an absorbing phase at precisély while it is in an  equation is renormalizable ith=6 [21], while other authors
absorbing(active) state below(abovg this value.Slow driv-  have previously claimed.=4 [6,7,9. Some mean field re-
ing and dissipation define a mechanism which is able to pirsults and simulations in high dimensions of discrete models
the system to its critical poirf6—9]. [19] and also a new method recently proposed by Liibeck
Using this analogy to systems with A%3], a field theo- and Heger to determine the upper critical dimension of sys-
retical description obtochastic sandpileBas been proposed tems with AS[20] lead rather convincingly td.=4, but we
[6,7,9, which includes the two more relevant features ofare still far from a full clarification of these issues at a the-
stochastic sandpilegi) the presence of infinitely many AS oretical level. In any case, it is accepted, from numerical
and(ii) the global conservation of the total enerdihe phe- evidence, that this constitutes a different universality class,
nomenological field theoryLangevin equationaimed at usually called Manna class, or C-Din the spirit of Hohen-
capturing the relevant critical features of this type of system$erg and Halperiri22]) [6,9,15-20.
is similar to the well-known Reggeon field theoRFT) In order to shed some light on these questions, it is our
[12,14 (describing generic systems with ASut it is  purpose here to integrate numerically Ed) in one, two,
coupled linearly to a conserved nondiffusive energy field,and three dimensions. In this way we will verify whether this
namely[7,9], set of Langevin equations describes correctly the critical
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properties of the discrete models reported to belong to this -04
class. We employ an integration scheme introduced by Dick- Q\
man some years badR3] which, to the best of our knowl- \Q
edge, is the only working method for Langevin equations 06 |
including a RFT-like type of noise. We will verify that in-
deed the Langevin equation as it is reproduces remarkably
well the known exponent&s measured in discrete models in
this class, thus providing us with a sound base for further

-08 | 2@
; . . : \
theoretical analyses of this universality class and of the role -3 % \@\\
of conservation in self-organizing systeiit. . > 3 g

-1

I0910 psurv
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THE MODEL |Og10 L
We integrate numerically Eql) [6,7,9. A technical FIG. 1. Stationary value qig, for different system sizes in 1D.

problem appears when a stand#diler [24]) discretization ~ Squares correspond ifiy=1.6369, circles tap,=1.6371, and dia-
scheme is used: due the symmetryspiround zero and the Monds tog,=1.6373. In the inset, the same graph is displayed but
fact that the noise term dominates the evolution wheneveor 2D data; squares are fafo=0.631, circles forp=0.6325, and
the density field is sufficiently small, negativenphysicaj ~ diamonds forg,=0.635.
local values of the density field can be generated. In order to
overcome this difficulty a different, nontrivial integration zero average and is a constant establishing the range of
scheme was proposed by Dickman for the RE3]. It con-  relative variation allowed t@ with respect to its mean value
sists in discretizing the density field as well as time and ¢q. ¢q is the control parameter, and except for transient ef-
space. Theuantaof density of activity can be taken propor- fects results should not depend @n(ii) The initial condition
tional to the discrete time stepp=At, in such a way that for p is chosen by randomly distributing active-field quanta,
the continuous model is recovered in the lirahit, Ax— 0) in such a way thap(x,t=0) < ¢(x,t=0) everywhere.
[23]. The activity density at a given siteand timet is then We have carried out extensive simulations of the coupled
given byp(i,t)=m(i,t)Ap, wherem(i,t) takes integer values. equationg1) in one-, two-, and three-dimensional lattices. In
Note thatm(i,t) diverges as the continuous linfihkp— 0) is  all the cases, the time mesh has been fixedtts0.01, and
approachedwhich makes a strong diffence with respect to Ax=1 (we have verified that our estimations of critical ex-
intrinsically discrete, particle modglsFurther details of the ~ponents are not significantly affected upon further decreasing
scheme, which has been successfully applied to both th#ese constants This choice impliesAp=0.01. As initial
RFT and to systems with many AR5], leading to good conditions, we usually stafin one dimension(1D)] with
estimations of phase diagrams and critical properties, can bEOO quanta per site; the evolution of the system drives this
found in Ref.[23]. In order to extend the algorithm to our quantity to much lower values at the critical point. We also
problem, the second equation of H@) is integrated using fix Da=D¢=5 andu=A=w=a=1. The noise amplitude is
an usual Euler scheme with a continuously varying fieldtaken different for the various dimensions in order to fix the
#(i,1), while for the equation ofp, we follow Dickman’s  transition in a reasonabl@ut arbitrary value of ¢y: o=1 in

ideas. First, we calculate 1D, 0=0.5in 2D, ando=0.35 in 3D. We have verified that
A the total energy is conserved within the considered precision,
f(i,t+ At) — f(i,1) :At[Davﬁm(i,t) = um(i,t) = NApm?(i, 1) in all cases. The number of runs goes front 1@ to 1¢

+ omi, (i 1] + om2i 1) 7' (i0), depending on system size.

(2 RESULTS

whereAt=Ap, 7' is a zero-mean Gaussian white nofsgis As we varyd,, a continuous transition separating the ab-
the discrete La}placian operatd(i,t) is an auxiliary continu-  sorbing(small ¢,) from active phaselarge &) is observed
ous field, andf(i,t) is an intermediate stage dfi,t) (just at a critical thresholdg.. The usual scaling lawp ~ (¢
before the new quanta of activity have been substracted— ¢o)?, £~ (do—Po) "+, and 7~ (o= o) ™", where ¢ (7) is
Then, after each integration step, the number of quanga of the correlation lengthitime), are expected to holl1,12.

m(i,t), is updated according to This leads to the definition of the dynamic exponentras
~¢&, with z=y /v, . It is also expected that at the critical

m(i,t + At) = m(i,t) + f [f(i,t +AD)], point the (_j;-:‘nsity of acti_vity presents a power law decay V\{i'Fh

time, p~1t7?. However, in some models, an anomalous criti-

cal time behavior ofp has been reportefp,10,15-1T. We
) " " shall later return to this issue. As usual, the finite size of
fi,t+At) =f(i,t+Ap) —f [f(i,t+AD]. (3 simulated systems induces the possibility of falling into the
AS even for¢y> ¢.. This fact has two consequences. The
Initial conditions are taken as followsi) ¢(x,t=0)=¢g[1  density of activityp does not reach a stationary state close to
+aV2(x)], where e is a normalized Gaussian noise with the critical point. Hence, we are forced to consider the den-
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FIG. 2. Evolution ofp (continuous ling and ps, (dashed lines FIG. 3. Anomalous time decay of the activity density in 2D, for
for several system sizes in 1D. The curvepois for L=4000 and L =280 and¢y=0.711.
those of pg, for (from top to bottorm L=20,100, and 500. The
slope of the straight line i8=0.14. In the inset, the same datain 2D _ .
are representegi,, curves correspond from top to bottom tto =0.141) may be measured from the c.rltlcal power .IaW de-
=10,25,70 and_=280, andp to L=280. The slope of the line is Cay of p in time, as may be seen in F'Q-_Z- E_rrors In these_
6=-0.65[27]. exponents mostly come from the uncertainty in the determi-

nation of the critical point. Repeating this process in higher
sity of surviving trials,pg,,,, in order to realize the finite size dimensions, we find ¢.(2D)=0.632%5) and ¢.(3D)
analysis ofp. On the other hand, this provides us with a=0.4561), together with the critical exponents listed in
method to measure the dynamic expongrity determining  Table 1. In the table, we have also included the critical expo-
a characteristic decaying time as a function of system sizenents of discrete models claimed to belong to the same uni-
We have studied systems of linear size up.t04000 in 1D,  versality, and als¢for comparisointhose of the directed per-
L=400 in 2D, and_=80 in 3D. The dependence of the sta- colation (DP) class. Observe the rather remarkable
tionary activity density on system size for several values ofagreementwithin error barg between all the measured ex-
¢o in a one-dimensional system is shown in Fig. 1. From thisponents and their counterparts in discrete models. Let us re-
picture, we deduce the critical point location in 1D, mark that, for those exponents for which the differences with
¢(1D)=1.63712) (numbers in parentheses correspond toDP values are larger, our values also deviate from DP. As we
the statistic uncertainty in the last digiFrom the slope of have already mentioned, some models in the Manna univer-
the log-log plot, we obtairg/v, (1D)=0.2148). The expo- sality class may present an anomalous behavior in the time
nent 8 may be estimated in an independent way from thedecay of the activity density at the critical po{® 10,1517
scaling of the stationary value pf,,, for large system sizes, p(t,¢). This anomaly implies that, apparently, the scaling
as a function of ¢y— ¢.) above the critical point. This gives relationg= 6y fails [9,10,15-17, and thatp(t) may decay in
B(1D)=0.282). By studying the time evolution of the char- a nonmonotonous way at criticality. In our case, there is no
acteristic time of the surviving probabilitiy(t) at criticality, =~ anomalous decay id=1 (Fig. 2). However, the anomaly is
we obtain z(1D)=1.474). Finally, the exponentf(1D) present both inl=2 and ind=3. As can be seen in Fig. 3, the

TABLE |. Critical exponents for steady state experimentsdinl,2, and 3.Figures in parentheses
indicate the statistical uncertainty in the last digit. C-DP exponents are from [R6f&3 and DP exponents
from Refs.[26]. In 1D, B/v, for C-DP has been calculated using the scaling relabn, =z6; and v, is
derived for both Eq(1) and C-DP fromz=y/v, .

D Model B Blv, z ) 0
Eq. (1) 0.282) 0.2148) 1.474) 1.9515) 0.141)
1 C-DP 0.292) 0.21719) 1.553) 2.0710 0.14Q5)
DP 0.276... 0.252... 1.580... 1.733... 0.159...
Eq. (1) 0.662) 0.858) 1.51(3) 1.277) 0.50(5)
2 C-DP 0.642) 0.782) 1.553) 1.298) 0.51(1)
DP 0.5834) 0.7956) 1.7662) 1.2956) 0.4502)
Eq. (1) 0.84(5) 1.445) 1.694) 1.078) 0.933)
3 C-DP 0.882) 1.394) 1.735) 1.128) 0.892)
DP 0.8G2) 1.391) 1.9015) 1.1085) 0.7304)
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activity density decays initially faster than a power law, CONCLUSIONS
showing afterwards a nonmonotonous behavior. The fast de-
cay explains the anomalous valueséfnot satisfying scal-
ing relations, usually reported in the literat(ieg. Later on,p

increases before reaching the steady state valygl ) after

a certain time(L). The criterion to fix the latter is arbitrary;
we have chosen it as the time whpg,,(t) reaches a value

This is the first time, to our knowledge, that the phenom-
enological Langevin equation, proposed some time ago to
capture the criticality of this universality claggqg. (1)], has

been numerically integrated. Our results in one-, two-, and
three-dimensional systems support the claim that it consti-

hat d diff h % of the final ) tutes a sound minimal continuous representation of this class,
that does not differ more than 5% of the final stationarygnaring all the critical exponents as well as the dynamical

estimation. If the pointgt, (L), psiaL)) are represented in a 55 majies with the discrete models. Therefore, no other

log-log plot at the critical point, an alternative value for the pigher order terms nor other noise correlations are needed to
exponentd is found, which is related to the saturation time yescripe properly this class. Now that the situation has been
scale and satisfies the scaling laws. This value in two dimeng|ayified from the numerical side, further theoretical analyses

sions is ¢~0.50 [27] (with a large statistic uncertainty  are highly desirable in order to put this puzzling universality
which is much closer to the more accurate measuremeni§ass under more firm bases.

reported in the literature for models in this clg®s0.51 for

C-DP[18]). The common presence of anomalous behavior in  We thank M. A. Santos, H. Chaté, R. Pastor-Satorras, and
discrete systemf9,10,15-17 and in the continuous theory R. Dickman for useful comments, as well as P. Hurtado for
reinforces the claim that both belong to the same universalithis helpful participation in the early stages of this work. Sup-
class:they share not only the critical behavior but also the port from the Spanish MCyTFEDER under Project No.
dynamical anomaliesA deeper study of the physical origin BFM2001-2841, from the postdoctoral program of the “Cen-
of this anomaly is still missing but, essentially, it is related totro de Fisica do Porto,” and from the Portuguese Research
the existence of different relaxation time scales. On the othe€ouncil under Grant No. SFRH/BPD/5557/2001 are ac-

hand, this anomaly is absent for flat initial conditiqi28]. knowledged.
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