
PHYSICAL REVIEW E, VOLUME 64, 066109
Interface depinning in the absence of an external driving force
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We study the pinning-depinning phase transition of interfaces in the quenched Kardar-Parisi-Zhang model as
the external driving forceF goes towards zero. For a fixed value of the driving force, we induce depinning by
increasing the nonlinear term coefficientl, which is related to lateral growth, up to a critical threshold. We
focus on the case in which there is no external force applied (F50) and find that, contrary to a simple scaling
prediction, there is a finite value ofl that makes the interface to become depinned. The critical exponents at
the transition are consistent with directed percolation depinning.
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I. INTRODUCTION

The dynamics of random interfaces in the presence
noise is an interesting example of critical phenomena
generic scale-free behavior in systems far from equilibriu
In the case of surface growth dominated by thermal fluct
tions, the Kardar-Parisi-Zhang~KPZ! equation@1# has been
very much studied for it represents a whole universality cl
of growth, which includes many well-known discrete com
puter models@2#. In many experimental situations, howeve
interface motion is affected by the existence of random p
ning forces~see@2# and references therein!. In this case, the
simplest way to model interface roughening is to replace
noise termh(x,t) in KPZ by a quenched disorderh(x,h),

]h

]t
5n“2h1l~¹h!21F1h~x,h!, ~1!

which is often referred to as the quenched Kardar-Pa
Zhang ~QKPZ! equation. The first term on the right-han
side describes the smoothening effect of surface tension,F is
the driving force that pushes the interface through the dis
der, and the terml(¹h)2 comes from lateral growth an
represents the nonlinear most relevant correction.
quenched disorder has short-range correlati
^h(x,h)h(x8,h8)&5d(x2x8)D(h2h8), where the cor-
relatorD(u) is a very rapidly decreasing function ofuuu and
is the term actually responsible for the pinning of the int
face. This equation is expected to describe interface rou
ening in many disordered systems, including the nonequ
rium dynamics of magnetic domain walls in disorder
materials@3–6#, an elastic chain in a quenched disorder@7#,
fracture cracks propagation@8#, etc. Its applicability to de-
scribing luid-fluid displacement in porous media might
less justified though@9#.

The QKPZ model described by Eq.~1! exhibits a continu-
ous phase transition at a certain critical valueFc of the ex-
ternal driving forceF. For F larger thanFc , the interface
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moves with a finite velocity. However, the interface rema
pinned by the disorder forF,Fc . The critical pointF5Fc
is known as depinning transition. The interface veloc
scales asv;(F2Fc)

u near and above the transition an
plays the role of an order parameter.

The value of the critical force depends on the parame
of the model, in particular, it depends on the value of t
coefficient l of the nonlinear term. Therefore, by keepin
constant the rest of the equation parameters, one may fi
critical line Fc5 f (l) separating the pinned from the de
pinned phase. Alternatively, we can see this critical line
other way around and letlc5 f 21(F) be the critical value of
the KPZ nonlinearity above which the interface gets d
pinned. The driving forceF favors the advance of the inter
face and thus, the lower the driving force is, the larger
critical valuelc of the nonlinearity that is needed in order
get the interface depinned. Indeed, one would expect tha
F→0 depinning becomes more and more difficult un
eventually, atF50, the thresholdlc→` and depinning be-
comes impossible. This intuitive picture can be justified
means of a simple scaling argument as follows. Conside
typical region of sizel pinned by the disorder. Equation~1!
applied to that region reads

nhl221lh2l 221F2D~0!1/2l 2d/250. ~2!

If one supposes that the nonlinear term dominates over
diffusion, the interface remains pinned wheneverla2l 22

!D(0)1/2l 2d/2, wherea is the lattice spacing in the growt
direction. This defines a characteristic length,l c
5@l2a4/D(0)#1/(42d), such that forl ! l c the interface gets
pinned. Now to estimate the critical force that is necessar
depin a region of typical sizel c , one equates the force term
with the disorder in Eq.~2! to get to an expression for th
critical line, Fc;D(0)2/(42d)(la2)2d/(42d). Inverting the
latter, one finds

lc;
D~0!2/d

a2
F2(42d)/d ~3!
©2001 The American Physical Society09-1
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for the critical line of the depinning transition@10#. In 1
11 dimensions for instance, Eq.~3! predicts a diverging
lc;F23 asF→0 @11#.

In this paper, we show that, contrary to this scaling p
ture, there is always a finite critical valuelc of the KPZ
nonlinearity such that the interface gets depinned even
F50. Our conclusions are based upon numerical integra
of Eq. ~1! in d51. We numerically calculate the critical lin
and find thatlc(F50)53.6060.01~in natural units! for the
QKPZ equation. Our results support the somehow counte
tuitive conclusion that an interface may get depinned in
absence of the external driving force by the sole effect
nonlinearities.

II. NUMERICAL RESULTS

In order to numerically integrate Eq.~1!, the equation
parameters can easily be rescaled to have only two inde
dent tuning parameters—namely, the nonlinear KPZ coe
cient l and the driving forceF. We have used a standar
finite-difference scheme for integrating the QKPZ equat
given ~in natural units! by

h~ i ,t1Dt !5h~ i ,t !1DtF1Dth@ i ,h̃~ i ,t !#1Dt @h~ i 11,t !

1h~ i 21,t !22h~ i ,t !#

1DtlFh~ i 11,t !2h~ i 21,t !

2 G2

, ~4!

where the lattice spacing has been set to unity. We start
simulation from a flat initial conditionh(x,0)50 and peri-
odic boundary conditions, i.e.,h(0,t)5h(L,t) and h(L
11,t)5h(1,t), are imposed on the interface.h̃( i ,t) stands
for the integer part ofh( i ,t), and the quenched disorder
Gaussian distributed and has correlations^h( i ,h̃)h( j ,h̃8)&
5d i , jd h̃,h̃8 . Simulations with different time steps were ca
ried out, and the scheme proved to be stable and well
haved for a time stepD50.01 ~or smaller! for the range of
tuning parameters simulated. Following Newman and B
@12#, who found some numerical instabilities when nume
cally integrating KPZ, we took special care in checking th
no numerical instabilities appear~i.e., surface cusps are e
fectively smoothened by the Laplacian term! even for the
large values ofl used here.

We carried out simulations in systems of sizeL
5128,256, . . . ,8192. For each value of the of the nonline
coefficientl, we computed the critical value of force need
to get the interface depinned. Our results are summarize
Fig. 1. As expected, we find that as the driving force
smaller, the critical valuelc of the nonlinear coefficient re
quired in order to depin the interface becomes larger. Ho
ever, as anticipated above, the critical pointlc always re-
mains finite, even forF50. At a purely phenomenologica
level, we find that the critical line can be fitted very nicely b

S l

b1
D 2/3

1S F

b2
D 2/3

51, ~5!
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where the constantsb154.3160.04 andb250.8160.03~see
Fig. 1!. To our knowledge, this is the first formula for th
critical line and demands theoretical explanation.

In the following, we focus on the case in which no exte
nal driving F50 pushes the interface and depinning is d
solely to nonlinear lateral growth. We have studied the cr
cal behavior in the vicinity oflc(F50)53.6060.01 in or-
der to address the problem of the nature of the critical po
First, we have computed the scaling behavior of the stati
ary interface velocity atF50 as the transition is approache
In Fig. 2 ~inset! we plotv vs l for F50 and a system of size
L58192 showing that the transition is continuous. The cr
cal behavior of the order parameterv is shown in Fig. 2. We
find that close to the depinning threshold, the interface
locity scales asv;(l2lc)

u with a critical exponentu
50.63560.007.

The depinning mechanism forF50 is the following.
Starting from a flat initial conditionh(x,t50)50, all the

FIG. 1. Critical linelc5 f (F) for the QKPZ equation. Symbols
are points obtained from numerical simulations in a system of s
L51024. The line is a fit according to Eq.~5!. Note thatlc remains
finite, even atF50.

FIG. 2. Interface velocity vs coefficientl for the QKPZ equa-
tion at F50 ~inset! close to the thresholdlc(F50). The critical
behavior of the velocityv;(l2lc)

n is shown in the main panel. A
straight line is found forlc53.6060.01 and the slope correspond
to the velocity critical exponentn50.63560.007.
9-2
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INTERFACE DEPINNING IN THE ABSENCE OF . . . PHYSICAL REVIEW E 64 066109
terms in Eq.~1! are zero except for the disorder. At timet
50, the quenched random termh(x,h) generates inhomo
geneities in the front, which in turn produce a finite value
(¹h)2. For small values ofl, these inhomogeneities sme
out and the interface gets pinned by the disorder at one o
infinite pinning paths. However, forl.lc these initial inho-
mogeneities are effectively amplified by the nonlinearity a
the interface gets moving with a finite velocity.

As occurs in the standard case of depinning driven by
external force, we find that the depinned phasel@lc is
rough and belongs to the universality class of KPZ. This c
be seen by studying the scaling behavior of the the glo
width W(L,t)5@^h(x,t)2&2^h(x,t)&2#1/2, where the aver-
age is over allx and different realizations of disorder@13#.
We obtain that the global width scales as@14#

W~L,t !;H tb if t!t3

La if t@t3,
~6!

with a time exponentb50.3360.01 and a roughness expo
nent a50.5060.01 in agreement with the KPZ class
growth.

However, when approaching the depinning transit
from above,e5(l2lc)/lc→01, the scaling of the globa
width is affected by the existence of a diverging correlat
lengthj;e2n. This is the typical size of the fluctuations o
the majority phase, i.e., the characteristic size of conne
regions formed by pinned sites. As we show in Fig. 3,
global width~and similarly, the local width! displays a cross-
over from;t0.7 to KPZ-like behavior;t0.33. More precisely,
one can see in Fig. 3 that the width approximately behave

W~ t,e!;H tbcekc if t!tc

tbkpze2k if t@tc,
~7!

FIG. 3. In the main panel, we plot the global width for differe
distances~as shown! e5(l2lc)/lc to the threshold forF50 in a
system of sizeL58192. The crossover fromt0.7 to t0.3 occurs at
times that scale astc;e2g with the distance to the threshold. Ins
shows a data collapse according to Eq.~8! of the sets shown in the
main panel. A good collapse is found for the exponentsbkpz

50.3, k50.57, andg51.57.
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where kc , in view of the dependence of the curves one,
must be very small. These two regimes are separated
crossover timetc that depends one. Indeed, following
Kertesz and Wolf@15#, near a roughening phase transitio
one expects the crossover time to scale with the distanc
the threshold astc;jz;e2g, whereg5zn. Direct examina-
tion of Fig. 3 immediately suggests the scaling ansatz

W~ t,e!;tbkpze2kg~ t/tc!, ~8!

which is characteristic of systems close to a roughening tr
sition @15–17#. The scaling function is given by

g~u!;H ubc2bkpz if u!1

const. if u@1,
~9!

and the scaling relation

kc1k5~bc2bkpz!g ~10!

among critical exponents must be fulfilled so that both
gimes match.

In Fig. 3 ~inset! we show a data collapse o
t2bkpzekW(t,e) vs egt. A good data collapse is obtained fo
the exponentsbkpz50.3, k50.57, andg51.57, the error in
estimating these exponents being of about 10%. From
scaling relation~10!, one also getsbc50.73 in good agree-
ment with our previous estimate.

The value of the critical exponents is consistent w
those of the DPD model@18,19# just above the transition
@16,2#. We thus conclude that the lateral growth-driven d
pinning point atF50 andl5lc also belongs to the univer
sality class of DPD.

III. DISCUSSION

Our results indicate that in the absence of any exter
driving field, an interface may get depinned by increasing
nonlinear terml in Eq. ~1! up to its critical value. From the
experimental point of view, this implies that, assuming t
parameterl is tunable in the laboratory, an interface cou
become depinned even when no external driving force
applied. In the following, we discuss the role of anisotro
of the background random medium in generating the K
terml(¹h)2, and how this mechanism may be used to ra
the value ofl in experiments by increasing the degree
disorder anisotropy.

The QKPZ equation forl50 is known as the quenche
Edwards-Wilkinson~QEW! equation and has been muc
studied in recent years. The critical exponents at the de
ning transition have been well determined by several auth
@20–23,7#. In ~111!-dimensions one findsa;1.25 andb
;0.85 at the thresholdF5Fc anda51/2 andb51/4 in the
moving phase forF@Fc , where the disorderh(x,h) may be
replaced byh(x,vt) and the exponents of the EW universa
ity class @2# are recovered. The QEW equation arises na
rally as the Langevin equation for the HamiltonianH
5*dx@A11(¹h)21V(x,h)# describing the elastic energ
of an interface in a disordered potentialV(x,y) @3–5#. The
terml(¹h)2 cannot be deduced as a variation of any Ham
9-3
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RAMASCO, LÓPEZ, AND RODRI´GUEZ PHYSICAL REVIEW E64 066109
tonian and is added as the most relevant nonlinear correc
@2#. Geometrically, it accounts for growth in a direction l
cally normal to the interface and is referred to as nonlin
lateral growth term.

In the past, the physical origin of the KPZ nonlinearity
interface depinning has been found to be related to two
tinct mechanisms for different models@24#. On the one hand
in the spirit of the original work of KPZ@1#, thel term may
have a purely kinematic origin, so thatl}v @20,24#. In this
case, the terml(¹h)2 goes to zero at the depinning trans
tion, F5Fc , and the system thus belongs to the QEW u
versality class. On the other hand, there are models@24# for
which l remains finite at the transition@25#. These models
have exponents that correspond to the DPD universality c
@20,26#. Tang, Kardar, and Dhar@27# have shown that this
finite l term may arise in some models because of an un
lying anisotropy in the random medium, i.e., models th
have a growth direction determined by the random mediu
A further numerical step on this direction has recently be
achieved by Park, Kim, and Kim@28# by studying a model
with an anisotropic disorder correlator. The effect of anis
ropy on real experiments has also been successfully teste
Albert et. al. @29#. Experiments on fluid flow in a random
medium formed by packed glass beads@30# are now known
to belong to the isotropic QEW universality class@29#. How-
ever, the scaling exponents obtained for paper wet
@19,31,32# are close to the prediction of the anisotropic DP
universality class. A definite identification of paper wettin
with DPD is still an open question though@9,33#. In paper-
wetting experiments, a sheet of paper is vertically suspen
over a reservoir of liquid~usually black ink!. The fluid then
wets the paper and the interface between wet and dry ph
rises until it eventually stops. The interface grows upwa
because of capillary forces in the paper pores. Notice
there is no external driving force. The anisotropic paper fi
distribution determines the quenched disorder term. Diso
oe
n
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in these systems is thus highly anisotropic. Pressure dif
ence between the reservoir and the paper pores leads
coarse-grained effective nonlinear term, which depends
viscosity of the invading fluid and microstructure of the m
dium. Whenever the effectively generatedl term is large
enough to be abovelc , depinning of the wetting front oc-
curs.

In summary, we have studied the QKPZ equation focus
on the case in which there is no external driving forceF
50). We have shown that there exists a depinning transi
for a finite value of the KPZ coefficientl5lc(F50) and
that transition belongs to the DPD universality class. Mo
over, we find that the interface velocity scales asv;(l
2lc)

u with a critical exponentu50.63560.007, which is
identical to the scaling in the case of depining driven by
external force. This seems to indicate that thel term upon
renormalization gives rise to a constant term in a linear fa
ion that makes the role of a finite driving force. A finite valu
of the nonlinear coefficientl appears in systems with aniso
tropic disorder, such as for instance in paper wetting exp
ments. In this system, there is no external driving force a
depinning occurs due to local capillary forces, which dri
the interface through the anisotropic lateral growth te
l(¹h)2. We conclude that by varying the anisotropy degr
of the corresponding random medium in other experimen
systems, depinning is possible even with no external drivi
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@9# M. Dubéet al., Phys. Rev. Lett.83, 1628~1999!; Eur. Phys. J.

B 15, 701 ~2000!.
@10# In the case of depinning forl50, the diffusion term must

equilibrate the disorder and one gets to a driving forceFc

5@D(0)4/d/(na)#d/2(42d) instead of Eq.~3!.
@11# Here, we assume implicitly that the intrinsic roughness d

not depend onl. If this was the case, the scaling argume
might fail leading to a finitelc .

@12# T.J. Newman and A.J. Bray, J. Phys. A29, 7917~1996!.
s
t

@13# Following @14#, we also checked that there is no anomalo
scaling phenomena by computing the local width and pow
spectrum.
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@17# J.M. López and H.J. Jensen, Phys. Rev. Lett.81, 1734~1998!.
@18# L-H. Tang and H. Leschhorn, Phys. Rev. A45, R8309~1992!.
@19# S.V. Buldyrevet al., Phys. Rev. A45, R8313~1992!; L.A.N.

Amaral et al., Phys. Rev. E51, 4655~1995!.
@20# L.A.N. Amaral, A.-L. Baraba´si, and H.E. Stanley, Phys. Rev

Lett. 73, 62 ~1994!; L.A.N. Amaral, A.-L. Baraba´si, H.A.
Makse, and H.E. Stanley, Phys. Rev. E52, 4087~1995!.

@21# H. Leschhorn, Physica A195, 324 ~1993!.
@22# S. Roux and A. Hansen, J. Phys. I4, 515 ~1994!.
9-4



ls
nt
r-

b,

s.

INTERFACE DEPINNING IN THE ABSENCE OF . . . PHYSICAL REVIEW E 64 066109
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