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In this paper, we generalize a recently introduced expectation maximization (EM) method for graphs and
apply it to content-based networks. The EM method provides a classification of the nodes of a graph, and
allows one to infer relations between the different classes. Content-based networks are ideal models for graphs
displaying any kind of community and/or multipartite structure. We show both numerically and analytically
that the generalized EM method is able to recover the process that led to the generation of such networks. We
also investigate the conditions under which our generalized EM method can recover the underlying content-
based structure in the presence of randomness in the connections. Two entropies, S, and S, are defined to
measure the quality of the node classification and to what extent the connectivity of a given network is content
based. S, and S are also useful in determining the number of classes for which the classification is optimal.
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I. INTRODUCTION

Classifying items with respect to their properties is a fun-
damental and very old problem. If the properties are inherent
to the objects, the difficulty is deciding first how many
groups are required and then establishing the discrimination
thresholds for each. The matter becomes more complicated
when instead of the inherent properties, one tries to classify
elements based on mutual interactions. Of course, such clas-
sifications would be very useful for a better understanding of
the mechanisms underlying the behavior of systems encoun-
tered in scientific disciplines as diverse as sociology, biology
or physics [1-4]. As an example, consider social systems
which are often modeled as networks. The vertices represent
individuals and the edges interactions between them. These
interactions can be of many types: friendship, belonging to
the same club or school, working together, etc. In these
graphs, it is important to be able to group the nodes into what
is commonly known as communities. That is, groups of ver-
tices that share a higher number of connections among them-
selves than with the rest of the network [5-9] (see also [10]
for a recent review). This partition bears information on
which persons have a stronger interdependence and may al-
low one to predict the actors that drive the dynamics of the
group as a whole. In biology, on the other hand, network
methods have been used to understand gene regulatory pat-
terns [11]. Here, each vertex corresponds to a gene and an
edge contains information on how the associated protein
regulates the synthesis of the protein associated to the second
gene. Since regulation of gene activity plays a fundamental
role in the functioning of the cell [12], the community struc-
ture points towards the different functional subunits (see [13]
and references therein). Given the relevance of communities,
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recent years have seen an increase in the number of tech-
niques proposed to detect them. To name a few: some of
them are based on the concept of betweenness (number of
paths passing through a link) and modularity [8,9,14], others
on synchronization of oscillators [15,16] or on other dynami-
cal systems running on the network [17-19], detection of
overlapping cliques [20] or the diffusion of random walkers
[21-23].

Nevertheless, communities are not the only relevant infor-
mation that can be extracted from networks. It is also pos-
sible to search for vertices with similar connection patterns
(not necessarily having connections among themselves, as in
the case of communities) that are expected to play equivalent
functional roles. In the social networks literature, such nodes
are referred to as structurally equivalent [24] and have led to
an analysis of social networks based on block modeling
[1,25]. In many types of networks, such as those formed by
webpages or social actors, the connection between nodes is
often due to some intrinsic properties of the nodes, which we
will refer to henceforth as their “contents.” Thus it is pos-
sible to consider an alternative point of view in which a
network structure arises as a result of node contents, leading
to the notion of content-based networks [26-29].

In many cases, network analysis approaches based on
communities and those based on some form of node similar-
ity are aimed towards the understanding of very different
questions. When viewed within the framework of content-
based networks, however, these differences disappear, as will
be argued below. We will also show that an extension of
Newman and Leicht’s expectation maximization (EM)
method [30] is well suited for uncovering content-based
structure underlying a network, inverting in practice the pro-
cess that led to its formation. We will define as well two
entropies, Sq and S, that are useful in measuring the quality
of an EM classification. These entropies provide a way of
determining the number of classes for which the classifica-
tion is optimal.
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The organization of the paper is as follows: in Sec. II,
content-based networks are formally introduced. Next, we
describe in Sec. III our generalization of the EM method to
directed graphs. In Sec. IV, we show how the EM method
can be used to solve the inverse problem, namely to recover
the underlying content-based structure from a given network.
We present in Sec. V analytical results regarding the appli-
cation of the EM method to content-based networks and the
recovery of the content-based structure. These results will be
complemented with a numerical study in Secs. VI and VII.
In Sec. VII, we consider a more realistic situation and ask to
what extent an underlying content-based structure can be re-
covered in the presence of disorder in the connections. Fi-
nally, we summarize our results and present the conclusions
in Sec. VIIL

II. CONTENT-BASED NETWORKS

Let us define first content-based networks. Consider a set
of nodes i=1,2,...N, each of which has a content x; as-
signed with x; € X={1,2,...,N,}, and where 1,2,... are la-
bels for the possible contents. The structure of the connec-
tivity pattern of the associated content-based network is
determined by the function c¢(x;,x;) € {0, 1}, which is defined
for all ordered pairs of contents (x,y) e X. The adjacency
matrix of the graph is then given by

Aijzc(x,«,xj). (1)

We see immediately that nodes having the same contents
x also have the same connection patterns, and thus are struc-
turally equivalent [24]. As explained before, this can imply a
functional equivalence in the process that generated the net-
work. The point of view that we will take in this article is to
regard content-based networks as ideal networks, from which
the “real” networks are obtained through alteration or re-
moval of some of the connections. Note that the range of
topologies that can be generated via content-based network
is very broad: if the connectivity function c(x,y) shows a
close to diagonal configuration, the network will be formed
by a set of almost insulated cliques. The ideal configuration
would be a family of independent communities without in-
terconnections. Another configuration that can be easily re-
produced with content-based networks are bipartite graphs.
In its most simplest form, it is enough to allow the nodes to
take one of two possible contents and let the connectivity
function ¢ to be nonzero only for the off-diagonal elements.
Much more complicated connectivity patterns can be actu-
ally achieved by introducing finer contents distinctions and
more intricate connectivity functions. Thus a content-based
graph can in general include all sorts of combinations be-
tween communitylike and/or multipartite graphs, as can be
seen in the example plotted in Fig. 1.

Another point to note is that originally these networks
were proposed in a context where the relation between con-
tents was an order relation [26,31,32]. This implies that the
relation between nodes is not symmetric and the network is
therefore more naturally represented by a directed graph. In
this case, the connectivity function ¢ is nonsymmetric in its
arguments. Apart from directionality, realistic graphs may
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FIG. 1. (Color online) An example of a content-based network,
the colors and the sizes of the nodes correspond to the different
contents (green A, red B, blue C, magenta D, cyan E, olive F, and
orange G).

present, as well, a certain degree of disorder in their connec-
tion patterns. This effect can be incorporated into the math-
ematical description by regarding the values of c(x,y) as
probabilities of having a link from a node of content x to a
node of content y. This view transforms the content-based
network into a hidden variable graph [33-35]. As we will see
later, the EM method is still able to extract content informa-
tion from networks produced in this way but the failure rate
increases the further c(x,y) deviates from a binary-valued
function.

Contents based networks have proven to be very useful in
the description of phenomena that include an underlying re-
lation of hierarchy or ordering. The simplest way of achiev-
ing such a relation is to associate with each node a string of
letters and letting the relation between any two nodes be
based on string inclusion: namely that one string is contained
as an uninterrupted subsequence in the other. Networks gen-
erated from random strings in this manner have been suc-
cessfully used to model receptor-ligand interactions in the
immune system [31,32], and the transcription factor based
gene regulatory network in yeast [26-29].

In this paper, our goal is to address the inverse problem:
Given a network of which we know nothing in advance, is it
possible to decide whether there is an underlying content-
based structure and, if so, can we deduce the class member-
ship of its nodes and the class connectivity function? More-
over, can this be achieved in the presence of noisy
connections? Seen in this way, the problem at hand becomes
one of statistical inference, very well suited to EM methods
[36,37].

III. THE EM METHOD FOR NETWORKS AND ITS
GENERALIZATION

Given a graph G of N nodes and an adjacency matrix A;;,
the expectation maximization (EM) algorithm [30] searches
for a partition of the nodes into AV, groups such that a certain
log-likelihood function for the graph is maximized. Hence-
forth we will refer to the groups into which the EM method
divides the nodes, as classes. Note that NV, must not be con-
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fused with the number of contents N, described in the pre-
vious section. Ideally, the optimal number of classes would
be N,, but a criterion independent from the EM algorithm is
required to determine first its value, since in general N, will
not be known in advance. We will offer such a criterion in
the next section. The variables of the EM algorithm are the
probabilities 7, that a randomly selected node is assigned to
class r, with r=1,2,...N,, and the set of probabilities 0, of
having a connection from a node belonging to class r to a
certain node j. Assuming that the functions 6 and 7 are
given, the probability Pr(A,g|,6) of realizing the given
graph under a node classification g, such that g; is the class
that node i has been assigned to, can be written as

m0)=]] wgi[H 0;}5] )

Pr(A,g

Pr(A,g|, 0) is the likelihood to be maximized, but it turns
out to be more convenient to consider its logarithm instead:

L(m,0)=, [ln Ty, + > A;jln Bgi,j]. (3)
i J

Treating the a priori unknown class assignment g; of the
nodes as statistical “unknown data,” one introduces next the
auxiliary probabilities ¢;,=Pr(g;|A,, 6) that a node i is as-
signed to class r, and considers the averaged log-likelihood
constructed as

L(m,0) =, q,.,[ln 7+ X Ay ln 9,].] ) (4)
i J

i

The maximization of £ must be performed taking into ac-
count the following normalization conditions for the prob-
abilities 7 and 6

Ne
> =1, (5)
r=1
N
2 0,=1. (6)
j=1
The final results are
S ™)
= N - dirs

2 AijCIir
0, =~

- (8)
! 2 kiqir

where k; is the out-degree of node i. The still unknown prob-
abilities g;, are then determined a posteriori by noting that

Pr(A,g;=r|m, 0)

Pr(A|m,60) ©)

qirzpr(gi: r|A77T’ 0) =

from which one obtains
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c)

b)

FIG. 2. (Color online) A simple scenario in which the EM
method for directed networks, as defined in [30], has problems in
classifying the nodes of the network in two classes. The configura-
tions (a) and (b) are possible outputs of the original EM method
since both satisfy the normalization condition of Eq. (6). The solu-
tion (a) comes together with values for ¢;,=1/2 for all the nodes
and classes, while the solution (b), which has a lower likelihood,
produces g;,=0.99 for all the nodes in one class and a very small
probability for the other. The plot on the right, solution (c), is the
output offered by the generalization of EM with values of ¢;, virtu-
ally one or zero.
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Eqgs. (7), (8), and (10) form a set of self-consistent equations
for g;,, 6,;, and mr, that any extremum of the expected log-
likelihood must satisfy.

Thus, given a graph G, the EM algorithm consists of pick-
ing a number of classes N, into which the nodes are to be
classified and searching for solutions of Egs. (7), (8), and
(10). These equations were derived by Newman and Leicht
[30]. They also showed that when applied to diverse type of
networks, the resulting ¢;, and 6,; yield useful information
about the internal structure of the network. Note that only a
minimal amount of a priori information is supplied: the num-
ber of classes A, and the network.

However, the EM method in the form presented so far
does not yet serve our purposes for the following reason: as
noted previously, content-based networks are usually repre-
sented as directed graphs. The probability 6,; was defined as
the probability that a node j receives a directed connection
from a node belonging to class r. Together with the normal-
ization condition for 6,;, Eq. (6), this implies that the classi-
fication must be such that each class r has at least one mem-
ber with nonzero out-degree. This constraint forces the EM
algorithm to classify a simple bipartite graph in the manner
depicted in Figs. 2(a) or 2(b). From a content-based point of
view, on the other hand, the classification that would be more
natural is the one displayed in Fig. 2(c) which is forbidden
by the condition of Eq. (6). This difficulty is not resolved by
redefining 6,; instead, as the probability that a node j makes
a directed connection fo a node belonging to class r, since
now the classification must be such that each class r has at
least one member with nonzero in-degree.
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We therefore have to generalize the EM approach in such
a way that the node directionality does not restrict the pos-
sible classification of the nodes. This can be achieved by
introducing the following probabilities.

(i) 6,; of having a unidirectional link from a vertex of
class r to a node i;

(ii) 6,; of having a unidirectional link from node i to a
node in class r; and

(iii) Eri of having a bidirectional link between i and a node
in class r.
With these new definitions, Eq. (2) becomes

= A (1= ) A=A ) TAA
b 6’ 0’ )_ H |:7ng]‘_[ 6?,]’] ! 0;",51 ! 02,'1?] :
J

i

Pr(A,g

(11)
The likelihood can now be written as

L(mo)=3 q,,(ln m+ A1 -A)in

ir

+A;(1-Aj)n 6, 6, jTA A In 9 ])’ (12)

which has to be maximized under the following constraint on
the probabilities 6,;:

2 ((e_r,i"' ér,i"' Er,i) = ]’ (13)

implying that there is no isolated node. The probability r,,
that a randomly selected node belongs to class r, is again
given by Eq. (7).

Introducing the Lagrange multipliers 8 and \,, to incor-
porate the constraints, Egs. (5) and (13), the expression to be
extremized, becomes

E=Z+,8<1—2

r

Wr) + 2 }\r(l - E ((ér,i + ér,i + 5r,i))-
(14)

As before, the extremal condition on £ with respect to 7
gives us

1
=52q,~, and B=N, (15)

where N is the total number of nodes. Differentiating £ with
respect to the @ variables, we get [38]

a[l
__OQEQrAﬂ(l Azj) ej)\rz(),
a6,;
oL .
i =0 > g Ai(1—Aj) = 6\, =0,
rj i
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SC
Q—O@Eqm i= 0N, =0. (16)

Putting together the three previous expressions and summing
over the index of the nodes j, we obtain the following result
for the Lagrange multipliers:

)\rzzqw(];ﬁ-l-];?_lzﬁ])’ (17)

where k!, k7, and E’ are the in-degree, out-degree, and bidi-
rectional degree of node i, respectively. Inserting this relation
into the previous set of equations, we extract the new ex-
tremal conditions for the 6’s:

E qiAji(1-A;)
grj = : —  — -
2 qirlki+ ki = k?)
2 C]irAij(l _Aji)
érj = : - = —
> g,k + k) - k7)
2 QirAijAji
0= —— . (18)

E q”(lzi + ];l[? - ];lb)

These expressions have to be again supplemented with the
self-consistent equation for g;. which now reads
- H 04], ( AI])HL\U(I -Aj; 0:\/le

. (19)
E H eAjlﬂ A[/)GA”(I A/t)HAl/ ji

s

Note that when we have only bidirectional links so that
A=A}, it follows from Eq. (18) that 6,;=6,;=0. Thus we
recover the original EM equations under the identification
er]: 6,,]

It is easily shown that the solutions of the EM equations,
Egs. (7), (18), and (19), are such that if two nodes i and j are
structurally equivalent, i.e. A=A as well as Ay =Ay;, for all
k then they will be classiﬁed in the same manner: g;=g;,.

and 49,, 49,], 0,, 0 and 0,, 0 for all r. This property of the
solutions obtained from the EM methods renders it very well

suited for detecting any underlying content-based structure.

IV. THE INVERSION METHOD

One important shortcoming of the EM method is that N,
has to be provided as an external parameter. The algorithm
lacks a means to evaluate how good a classification is, and
consequently one cannot decide which number of classes fur-
nishes an optimal classification of the nodes of a graph. To
overcome this problem, we propose to define a measure of
the quality of a classification as follows:

036122-4



INVERSION METHOD FOR CONTENT-BASED NETWORKS

1
Sq =- ]T’E qir In ir> (20)

ir

where the sum runs over all the nodes i and classes r. S is
the average entropy of the classification and as such mea-
sures the certainty with which the nodes are assigned to their
respective classes. One can easily see that 0=S,=In .. For
a sharp classification Sq=0, while the worst-case scenario
occurs when g;,=1/N,.. We will later argue that S, is a useful
statistic to infer the optimal V..

Once an optimal classification has been found, it is pos-
sible to determine the connectivity structure among the
classes. Given an EM classification, we will define ¢(r,s) as
the probability that a node in class r has a connection to one
in class s. This probability can be estimated as

> qiAijdjs 5
~ ij rs
C(rvs) = 1- 5 (21)
E qirz (’Ijs - 2 qir
i j i
by noting that
. dir
plilr) = (22)

2 qu
J

is the posterior probability that given that a node has been
assigned to class r, the node is i. The second term on the
right-hand side of Eq. (21) must be included as a correction
for the absence of self-connections, since by convention, we
assume that A;=0 for all i.

c(r,s), as defined above, is the probability of regarding a
connection between two nodes in the graph as being one
between nodes of type r and s. As we will show in the
following section, if the underlying graph is a content-based
network, a successful application of the EM algorithm
should result in sharp assignments of nodes into classes and
¢(r,s) should thus be binary valued [and moreover be equal
to the connectivity function c¢(r,s)]. It is possible to also
define a measure of how close the connectivity function re-
sembles one that corresponds to a content-based network by
considering the entropy for ¢,

A 22 &(r,s)In &(r,s). (23)

S.=
We have that 0=S.=1. The maximum of S, occurs when
¢(r,s)=1/2, i.e. when none of the classes have any preferred
connection pattern to any class.

The generalization of the EM method, the entropies S, S,
and the estimation of ¢(r,s) are in general applicable to any
kind of graph. However, for the purpose of this paper we will
focus only on their applications to content-based networks.
We will address the general case in a subsequent work [39],
where we will also show that content-based networks play a
special role for the classifications of the EM method.
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V. ANALYTICAL RESULTS FOR CONTENT-BASED
NETWORKS

Assume that we are given a content-based graph G that
has been constructed from a set of nodes of unknown con-
tents, and an unknown connectivity function c¢(x,y). In this
setting, we suppose that the optimal number of classes N,
has already been found and that it is equal to the number of
contents N,. We would like to know under which conditions
the EM algorithm can infer the class membership of the
nodes as well as the connectivity function. In other words,
given the adjacency matrix A;;, we are looking for a solution
of the generalized EM equations, Egs. (18) and (19), with

4ir= 0., With x; € X, (24)

along with the unknown class-connectivity function ¢(r,s)
that ideally should coincide with the original c(x,y). Note
that the ansatz Eq. (24) implies that for such a solution S,
=0.

Substituting the above ansatz into Eq. (18), we find

5 - <bypnll—crx))]
S
é = C(r’xj)[l - C(Xj,r)]

rj e — ’
K+ k&>

é;j: M’ (25)

bR

where k', k%, and I?r’ are the average in-degree, out-degree and

r» NMpo

bidirectional degree of nodes belonging to class r,

2 6, ki + k)= k) =n (K, + k)= k) = n k.. (26)

so that k, is the total degree of each of the n, nodes belonging
to class r. Note that in Eq. (25), the node index j enters only
through its content x;, so that 6,; is the same for all the nodes
that have the same content as j. The same turns out to be true
for the g,,. We thus have ¢;,=¢,, for all nodes i such that x;
=t, and from Eq. (19) we obtain

77" | —
4= TTHe(rs)(1 = s, 010

s
X [e(s,r) (1 = (r,s))] 007D
X [e(r,s)e(s,r)J <00, (27)

where v, is the normalization constant for g,,.

We now have to consider the conditions on
c(r,s), c(s,r), c(t,s), and c(s,?) such that given the classes
r and ¢, the terms in the product on the right-hand side of Eq.
(27) are nonzero for all s, when r=t, and zero for at least one
s when r#t. This is a statement about the kind of connec-
tions that the nodes of type r and ¢ make to or receive from
nodes of all possible classes s. An inspection of the c‘-type
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terms in the product shows that their contribution to g,, is
nonzero if and only if the following two conditions are sat-
isfied for all s:

(1) If there is a connection between ¢ and s, there must be
also a connection between r and s of the same kind, namely
either in, out, or bidirectional.

(i1) Whenever there is no connection between ¢ and s,
there can be any kind of connection between r and s, as well
as none at all.

The satisfaction of both conditions can be regarded as
constituting a cover type of relation between r and ¢, i.e.
nodes belonging to class r connect in the same way with all
the classes that nodes belonging to class ¢ connect, but they
have also some extra connections. We will denote this rela-
tion by >t and say that r covers ¢. From its definition it is
clear that the cover relation is transitive, r>t,t>s=r>s.
When r>r, we also define £(r;1) as the set of extra classes
that r connects to (or receives connections from) relative to
those of t.

With the above definition, it can be readily seen that when
r>t,

> o, (28)

where the index v runs over the extra classes to which r is
connected. This implies that

k,
2 |

e&(r
k t— kkt 1+ % . (29)
k;
Thus we find thrat
YT _
]jt r= t,
t
G = AN (30)
ﬂ 1 + w r > t’
2 3
LO o/W.

[with £(t;1)=D]. Note that when r>r and for large k,, ¢,
deviates from our ansatz, Eq. (24), by an exponentially small
amount.

Treating the deviations caused by the presence of cover
relations among the classes as a small perturbation to our
ansatz, Eq. (24), we obtain the leading order expression for

q,r as

( x
>,
1_22 1+ve$(i;t) r=t,
r>t Qo kt
G = SRR (31)
Ty 1+ veg(:;t) r>t,
o kt
\0 O/W,

where 7, has been determined from the normalization
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> q,=1. (32)

To the same order, we find also that

-k,
> )\

_ I’L E n, UEE (t;r)
V N t>r kr
> o\
&(
+E RGO I (33)
z<r kt

Equations (31) and (33) are the analytical solution of the EM
equations for a content-based network with connectivity
function c(r,s).

We see that whenever a class r>t, there is a nonzero
probability for a node ¢ to be also classified as belonging to
class r. We will refer to this as a leakage in the class assign-
ment. However, as can be seen from Eq. (31), the leakage
probabilities vanish exponentially with the size of the classes
with which ¢ is connected. The more nodes (information)
available in the system, the easier it is not to make mistakes
in the classification of nodes of the covered class. A detailed
account of the solution structure for content-based networks
as well as more general types of networks will be given
elsewhere [39].

When the content-based network is cover-free, the gener-
alized EM equations have a leak-free solution and thus the
entropy of the class assignments S, vanishes. On the other
hand, in the presence of cover relations, the EM method will
produce assignments with some nodes in multiple classes,
i.e., leaks. We have already found above the leading order
behavior for the leakage. It is not too difficult to show that,
in that case, S, is given by

A\
S, = > Enra(r;t)(l +@) , (34)

t has a cover r>t k,

where a(r;t)=Z, g1, is the number of nodes to which
nodes in class r are connected in addition to those that nodes
in class ¢ connect. In many practical situations, the number of
contents is fixed. This implies that if the probability of being
in class r is given by p,, the actual number of nodes in the r
class will grow on average as n,=N p, with the system size.

Therefore, the factors a(r;r) and k, of Eq. (34) can also be
written as

a(rity=aN and k,=bN, (35)

where a and b are constants whose values depend on the
connectivity function that generated the network. Under
these assumptions, the entropy S, will decrease exponentially
with the network size, meaning that even for moderately
sized networks the leakages will be in general too small to
cause significant misclassification.

As shown in Sec. IV, the solution of the EM equations
provides us with an estimate for the class connectivity,
c(r,s), given by Eq. (21). For content-based networks with-
out cover relation we have, cf. Eq. (22), p(i|r)= & r/n,, and
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FIG. 3. (Color online) Connectivity function c(x,y) for the the-
oretical example of Sec. V A. The number of contents is six:

A,B,C,D.E, and F. The points represent the ones in the connec-
tivity matrix, the values not marked are zero.

from Eq. (21) we find that &(r,s)=c(r,s) with S.=0. In the
presence of cover relations among classes, there will be cor-
rections vanishing exponentially with the number of nodes in
the relevant classes. These results demonstrate that the EM
algorithm is capable of inferring the hidden class connectiv-
ity function that generated the network.

A. Example

In order to further illustrate the theoretical results above,
we turn next to an example. Consider a network generated
from six kinds of contents to be denoted by A,B,C,D.E,
and F, and with the connectivity function as shown in Fig. 3.
The following cover relations are present: B> A > F’; that is,
B>A, B>F, and A>F. In fact, we have chosen this par-
ticular example to elucidate the effect of having nested cov-
ers and to show that the cover relation is transitive. For each
of the cover relations, the sets of connections to additional
classes are E(B;A)={D}, £&(B;F)={D,C} and &(A;F)={C}.
When inserted into Eq. (31), these relations yield

np )‘"E—”C
9

ng+nc

n
QAAzl—_B(l"'
Ny

nB nD —YLE—HC
—| 1+ ,
ny np+nc

qdaB=
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n ne\™ME
TR
n

F ng
np ne+np E
qrp= 1+ , (36)
ng ng

with gpp=qgcc=qpp=qre=1 and all the other values of ¢,
=0. These results are in agreement with what one would
expect intuitively. For example, since B> A and B> F, there
is a nonzero probability of mistaking nodes of type A or F by
nodes of B, i.e. q4p, qrp, and gg, are all nonzero. However,
these probabilities vanish exponentially with the number of
nodes in classes £ and C that are those with which the cov-
ered classes A and F have connections. In the large network
size limit, the leakage on ¢,,, and how far S, deviates from
zero, are determined by the pair of classes (r,f) such that r is
the “tightest” cover of #, these are the pairs >t for which
a(r;1) is smallest, ¢f Eq. (34): A>F, B> A in our example.

VI. SIMULATION RESULTS: EM APPLIED TO
CONTENT-BASED NETWORKS

In the following, we study numerically the ideas intro-
duced in the previous sections. The generalized version of
EM will be applied to directed content-based networks gen-
erated randomly from the connectivity functions shown in
Fig. 4. The nodes of these networks have a content assigned
that is selected at random out of A,=35, five possible con-
tents, denoted by A,B,C,D, and E. Since the presence of
coverage relations can change the quality of an EM classifi-
cation, we have considered two connectivity functions c¢(x,y)
(see Fig. 4); one without class coverage, ¢ 4, and another, ¢,
with a single cover relation between contents A and B, such
that A> B. In order to improve our numerical estimation of
the classification with maximum likelihood, we implemented
a simulated-annealing type of procedure for the optimization
of L.

In the previous section, we have shown that our general-
ized EM method is able to infer the underlying content-based
structure that generated the network. These calculations were
carried out assuming that the number of contents N, coin-
cides with the number of classes J,. Let us therefore start by
setting A,=A\/,=5. In Fig. 5, we show graphically the clas-
sifications obtained from the generalized EM method as ap-

n nc\™"E n ne+np\™E : : ;
grr=1- A (1 + e ) _ _B<1 4+ o€ D) ’ plleq t.o two n§tworks of size N=50 generatgd W}th the con-
ng ng ng ng nectivity functions of Fig. 4. The color coding is based on
contents contents
ﬂ A B C D A B C D @
A Q@ @ A o O © FIG. 4. (Color online) Connectivity functions
¢(x,y) for the two examples of content-based net-
B °® B P works analyzed in the simulation sections. The
@ 4 number of contents considered is five, A,B,C,D,
5 5 and E. The contents of the connectivity function
'g c [ g C [ ) (A) display no cover relation, while in the second
] ) example, (B), A> B. The networks are generated
D ) D assuming equal probability for the five contents
at the assignation of a content to each node.
L
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FIG. 5. (Color online) An ex-
ample of classification, the origi-
nal network is on the top and on
the bottom the probability ¢;, is
represented graphically. The color
and size of the symbols corre-
spond to the contents of the nodes
(green A, red B, magenta C, blue
D, and cyan E). On the bottom,

51 ® & ®»o ® 5] © 0080 @O 00 ©® e® the radius of the spheres is propor-
tional to the probability g;.. The

16 6@ eee 4 @ © & o0 network A is generated using the

8 3l e o @@ ® 3 3 e @ o o cqnnectivity functiqn c 4 of Fig. 4
© © with no cover relation among the
O2 @ o090 o o O2 000 come 000 classes, while on the right we
have used cp, which incorporates

b WD 90 0 000 00 1{ @ 0 0 o a single cover relation between A

0 10 20 30 40 50 0 10 20 30 40 50 and B such that A>B.
Nodes Nodes

the contents of the nodes and will be such that it matches in
all the subsequent figures of the paper (A green, B red, C
blue, D magenta, and E cyan). The size of the spheres in the
bottom plots are proportional to the probabilities g;. For
these examples the classification is rather good even in the
case when a cover relation is present, as can be readily seen
from the bottom diagrams where no major color is mis-
placed. In other words, there are no misclassifications, al-
though for the B case a slight amount of leakage (of order
~107°).

To try to quantify the quality of these results, we can, as a
first measure, count the number of network realizations in
our ensemble for which at least two nodes with different
contents have been assigned to the same class, with the un-
derstanding that a node i is assigned to a class r whenever
qi»>1/2. This is a strict criterion, since it may well be that
we are considering as erroneous a classification with only a
single node misclassified. The result can also slightly depend
on the method applied to optimize the likelihood. Still, this
definition is a way to play on safe ground and avoid compli-
cating too much the detection of mistakes in the classifica-
tion. Let us call this then the error rate of the classification e.
For each of the two connectivity functions of Fig. 4, we have
studied over 2000 realizations of networks of size N=50. In
none of them the generalized EM method misclassified a
single node. This result is in agreement with our earlier ob-
servation that the EM method classifies structurally equiva-
lent nodes in the same way.

The next question is then: how can the optimal AN, be
determined? If the networks studied are content based, there
are several possible answers to this. Here we will outline two
of them and will discuss at the end of this section a third one
in the context of inferring the class connectivity function. In
Sec. 1V, we have introduced a measure S, for the quality of
an EM classification of the network. We have also shown
that when N,=N, S, is either zero or exponentially small
for large content-based networks. Therefore, a signal on S,
can be expected for N_=N,, if the EM algorithm is faced
with the challenge of classifying a content-based network

with a series of values V.. This effect happens because the
normalization conditions of Egs. (5) and (13) impose that no
class can be left totally unassigned, 7,.>0 for all r. The more
redundant classes the method has to assign nodes to, the
higher S, becomes. In other words, we are providing the EM
algorithm with a larger degree of freedom than required to
properly classify the nodes. The extra freedom leads to struc-
tural leakage. The evolution of S, with N, is displayed in
Fig. 6 for the two networks of Fig. 5. These are, of course,
particular examples but some general features can be de-
duced. First, the value of Sq is rather small or even zero for
N.<WN.. This may be a generic property of content-based
networks. As noted before, the structural equivalence of
nodes with the same content prevents the EM algorithm from
putting such nodes into different classes. This means that

7x10° T é — T 1.5x10”
5 10‘3Z A L B 2
o >xI0 L 1 - 1.0x10°
O L a o
- _3- 1 r 1
=3x10°F & |
v i g1 r 4 5.0x10”
1x10°F ! 1 7 8
8x10°[ K - E @ 18x10'3
“ rE 1 rE i
O 6x10°f F 610"
S 4x10'3_‘ 1 4x107°
2x10°F q 2x10”
2

FIG. 6. (Color online) Shown in the lower panels are S, (circles)
and its fluctuations oy (squares) as a function of A/, for the net-
works of Fig. 5. In order to facilitate visualization, the insets show
the same curves in a semilogarithmic plot. The top panels display
the same quantities, S, and o, but ensemble averaged over differ-
ent realizations of the content-based networks generated with the
connectivity function of Fig. 4.
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FIG. 7. (Color online) On the top, the connectivity function
¢(r,s) obtained from the EM classification of the networks dis-
played in Fig. 5. The radii of the circles is proportional to the value
of &(r,s). On the bottom, we are showing how S, goes with N, for
the same networks as well as, in the inset, an average over different
content-based realizations generated with the connectivity functions
of Fig. 4.

once the contents are classified by classes the leakage comes
from cover relations between classes and can become very
small for big networks. On the other hand, when N,>N,,
the availability of excess classes that cannot be left totally
unassigned causes S, to be nonzero and to increase steadily
with V... The boundary between these two types of behaviors
is precisely the unknown A, =N,.

Another peculiarity of the EM method applied to content-
based networks is that when N, <N/, the landscape of the
likelihood seems to have a very clear and unique maximum.

The solution at the point of maximum L(7r, 6) has also a well
determined value of S,. However, if N.=N,, the landscape
of the likelihood becomes rough, with a large number of
local maxima. The search for the global maximum under
such conditions is therefore much harder. And even, in the
cases where it can be numerically found, say when N,.=\/,
it is formed by a set of degenerate extrema with the same

value of £ but very different values of S Py Indeed, the values
of the entropy shown in Fig. 6 for A/, =/, are averages over
the best likelihood solutions found in different realizations of
the optimization methods along with their standard devia-
tions ag. The dispersion o, of S, around its average, can be
used in practice as another estimator for the optimal number
of classes (see Fig. 6).

Once N, is known, it is possible to recover c(r,s) as
explained in Sec. IV. In the top panels of Fig. 7, the recov-
ered ¢(r,s) is displayed for the content-based networks of
Fig. 5. After the classes of ¢(r,s) have been properly reor-
dered, it is impossible to distinguish the top panels of Fig. 7
from the connectivity functions given in Fig. 4. Also, in the
lower panels of Fig. 7, we have included the evolution of the
entropy S. as a function of A,. S, also shows a clear change
of behavior at V.=, suggesting that the best content-based

PHYSICAL REVIEW E 77, 036122 (2008)

partition of the network happens when the number of classes
equals the number of contents. Consequently, S., apart from
being an estimator of how much a network deviates from a
purely content-based graph, is also a useful quantity for de-
ciding when A is optimal.

VII. EM AND NOISY CONNECTIONS IN CONTENT-
BASED NETWORKS

It is unlikely that in real-world networks the generating
processes is error-free. Even if the underlying structure is
expected to be a content-based network, errors in the con-
necting pattern could naturally arise. We try to mimic the
unexpected connections as well as the absence of expected
connections, by introducing the corresponding error prob-
abilities to the process of network generation from its con-
tents. As before, each node i has a content x; assigned at
random from the set of possible contents (in the case of our
example networks the same five possibilities: A,B,C,D, and
E). Once the contents are established, the structure of the
content-based network should be determined completely by
the connectivity function c(x;,x;): If ¢(x;,x;)=1, there ought
to be a link from node i to j, and none if c(x,-,xj)=0. As a
way of gradually loosing the content-based structure of the
connections, we introduce now the probabilities P, and P,,
of not having a link, when c(x;,x;)=1 and having a link
although c(x;,x;)=0, respectively. The networks constructed
in this way can be regarded as hidden variable graphs
[33-35] for which the probability of connection between any
nodes i and j is expressed as

r(x;x;) = c(x;x) (1 = Pp) +[1 = c(x;,x;) P, (37)

In other words, where in the absence of noise the probability
of having a connection was one, it now is I_Pw and like-
wise, where it was zero, it now is P,. The extreme limit of
this model occurs when P,=P,=1/2, so that the probability
of connecting to a node of another class is maximally ran-
dom and independent of the connectivity function. We are
more interested here in the limit when both P, and P, are
much smaller than 1/2, and the resulting graphs can be seen
as a slight modification of a content-based network. For the
sake of simplicity, all of the results shown below are for
P,=P,=P.

Let us begin by looking at how the networks change with
increasing assignment error. In the top panels of Fig. 8, we
display a series of networks generated with the connectivity
function c 4 for different values of P. It is readily seen that
the connection patterns associated with the different kinds of
content becomes more and more diffuse. On the bottom pan-
els of the same figure, we show the corresponding class as-
signment probabilities ¢;.. While these are just examples,
there are some features that are worth pointing out. The
problems in the classification seem to appear somewhere be-
tween P=1% and P=10%. Even at 10% of error the number
of nodes misclassified in these networks is not very high. A
closer inspection of the solution found shows that actually
only two of the node content classes are mingled up, while
all the remaining node classes are perfectly assigned. With
the aim of quantifying these observations, the behavior of €
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FIG. 8. (Color online) Same network as in section .4 of Fig. 5 but with increasing error probability P. The values of P are from left to
right 0.001, 0.01, and 0.1. The plots on the lower panel are a graphic representation of the probability of classifying node i in class r, g;,, as
before the radius of the spheres are proportional to ¢;, and the colors correspond to the actual content of the nodes (green A, red B, magenta

C, blue D, and cyan E).

is plotted in Fig. 9 versus the disorder probability. This plot
is, of course, susceptible to slight changes depending on the
method used to search for the maximum likelihood and de-
pends on how many realizations of the content-based graphs
were considered (in this case 1000). Nevertheless, in our
simulations the threshold for a sharp classification of all the
nodes of the network is around P=7% for graphs without
coverage, connectivity function c¢ 4, and much lower, around
P=5%, for those with a cover relation, cg. The exact value
will depend on the particular connectivity function, apart
from the optimization method, but these values give us al-
ready an idea about the order of magnitude of the threshold
beyond which the content-based structure cannot be recov-
ered anymore.

The next aspect to consider is how the entropies S, and S,
are affected by the intensity of the disorder, and whether they
are still valid estimators to determine the optimal number of
classes. To answer this question, we fix the probability P at
1%, which seems to be a value where one might plausibly
expect to obtain good classifications for both types of net-
works. In Fig. 10, we display S,, oy, and S, as functions of
the number of classes A, with the results averaged over dif-
ferent content-based realizations. Indeed, at this level of dis-
order the entropies can still be used to estimate .. The noise
in the connections introduces a small constant background
for S,, which we will denote by Sj, and which can be deter-
mined in both examples from the behavior at high values of
N.. We can estimate the value of S;k by noting that when
N.=N,, any nonzero entropy should essentially be due to the
background from the random connections.Substituting the
expression for r(x;,x;), Eq. (37), into the definition of S, Eq.
(23), should therefore give us an estimate for Sj,

2
Sj ~- mz r(x,y)In r(x,y). (38)
]

For P=1%, this yields Sj~0.112, close to the value ob-
served in the Fig. 10 for N,=5. To check how well our
estimate for S: agrees with the values obtained from simu-
lations, we plot in Fig. 11 S, vs the disorder probability at
N.=5. When the disorder becomes very strong, on the other
hand, it might not be possible to find an optimal N,.. More-
over, the presence of very different connection patterns for
nodes with the same content renders the existence of such an
optimal number dubious. Therefore, apart from the obvious
classification N,=N, there may not be any other sharp clas-
sification. The effects of high disorder can be seen in Fig. 10,
where the entropies S, and S, are represented as functions of

A, ‘B

1 T T T 6@ 1
0.8 o® 038
0.6 0.6
o o
0.4 04
02 02
0 0

FIG. 9. The error rate € as a function of the error probability P
for content-based networks generated with the connectivity func-
tions of Fig. 4 and with N.=N,=5.
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FIG. 10. (Color online) The average entropies over different
realizations for content-based networks generated with the connec-
tivity functions of Fig. 4. In the top panels, S, is represented as a
function of the number of classes N, for two different levels of
disorder: the circles are P=1%, while the triangles for P=10%. On
the bottom panels, S, and oy versus N, for the disorder probabili-
ties P=1%, circles (S,), and squares (o), and P=10%, triangles
(S,), and stars (o).

N, for P=10%. The results depend on the connectivity func-
tion, ¢4 seems a little more robust to the disorder as was
confirmed by Fig. 9, but the signal in §, or oy is clearly lost
or has moved to higher values of V.. Also, S, has lost its
capacity to predict NV, and smoothly falls for higher and
higher values of A_.It is worth noting that in spite of the lack
of a method to find NV,, if A,=5, the EM method retrieves
the appropriate hidden variable theory connectivity function
r(x,y) as can be inferred from the good fit produced by Eq.
(38) to S. shown in Fig. 11.

The numerical findings of this section show that the clas-
sifications of the EM method are robust to the introduction of
noise in the connection patterns up to a certain point. The
certainty of the classification will suffer, the stronger the dis-
order becomes. In fact this is one of the major merits of the
EM method: it is able to extract the underlying content-based
structure even in the presence of a certain level of noisy
connections.

VIII. CONCLUSION

In summary, we have shown how the EM method for the
classification of nodes of a network can be applied to
content-based networks in order to extract the underlying
content-based structure even in the presence of a certain
level of disorder in the connections. The application of the
EM method to content-based networks is a natural concept
that follows from the observation that the EM method clas-
sifies structurally equivalent nodes in an identical manner. In
this sense, the EM method can be related to the block mod-
eling techniques proposed in the social sciences. Content-
based networks, on the other hand, are of great relevance,
since they can be regarded as idealized paradigms of net-
works with communities or multipartite structures, including

PHYSICAL REVIEW E 77, 036122 (2008)
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FIG. 11. (Color online) The average entropy S. as a function of
the disorder probability P for content-based networks generated
with the connectivity functions ¢4 and cpz depicted in Fig. 4. The
red curves correspond to the value of S:

mixtures of both. Since in many realistic graphs the vertices
carry additional attributes which might influence or even de-
termine their connections to other vertices, being able to ex-
tract any content-based pattern can provide information
about how the networks emerged.

Our approach in this paper has been to start out with pure
content-based graphs, and to show analytically as well as
numerically that the EM method can infer the content-based
connectivity pattern. We have shown also that the existence
of cover relations between contents leads to nonzero prob-
abilities of mistaking nodes belonging to different classes.
However, these probabilities vanish exponentially with the
increasing number of nodes, i.e., the more discriminating
information provided to the method. By regarding more re-
alistic networks as perturbations of content-based networks
under the addition or removal of connections, we then asked
under which circumstances the EM method is still able to
perform satisfactorily. There is a certain level of disorder
beyond which the inference of the content-based structure,
specially the number of contents, becomes rather difficult if
not impossible.

In order to estimate the quality of the classification and
how far the structure of the network is from a content-based
structure, we have introduced two entropies, S, and S,
which actually can be useful for the classification of any kind
of graphs, including real-world networks. We have also
shown that these entropies are applicable to deduce the op-
timal number of classes needed by the EM method to obtain
a sharp classification of the nodes of the network.
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