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Abstract

Assessing the impact of mobility on epidemic spreading is of crucial importance for under-

standing the effect of policies like mass quarantines and selective re-openings. While many

factors affect disease incidence at a local level, making it more or less homogeneous with

respect to other areas, the importance of multi-seeding has often been overlooked. Multi-

seeding occurs when several independent (non-clustered) infected individuals arrive at a

susceptible population. This can lead to independent outbreaks that spark from distinct

areas of the local contact (social) network. Such mechanism has the potential to boost

incidence, making control efforts and contact tracing less effective. Here, through a model-

ing approach we show that the effect produced by the number of initial infections is non-

linear on the incidence peak and peak time. When case importations are carried by mobility

from an already infected area, this effect is further enhanced by the local demography and

underlying mixing patterns: the impact of every seed is larger in smaller populations. Finally,

both in the model simulations and the analysis, we show that a multi-seeding effect com-

bined with mobility restrictions can explain the observed spatial heterogeneities in the first

wave of COVID-19 incidence and mortality in five European countries. Our results allow us

for identifying what we have called epidemic epicenter: an area that shapes incidence and

mortality peaks in the entire country. The present work further clarifies the nonlinear effects

that mobility can have on the evolution of an epidemic and highlight their relevance for epi-

demic control.

Author summary

Human mobility controls the spreading of infectious diseases worldwide. Pathogens use

infected individuals as vehicles to travel from one city to another, between countries and

even across continents. We know that the arrival of the first case or seed at a population is

connected to the probability of traveling there from the area of disease emergence. The

question that we address here is not when the first cases arrive or the local outbreak starts,

but whether the continuous arrival of more infected individuals can have an impact on
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the development of the local outbreak. We show with standard epidemic spreading mod-

els that indeed there is a relation between the number of seeds arriving at a location over

the resident population, the height of the local incidence peaks and the total population

finally affected. It is a non-linear relation, and it depends on the details of the social con-

tact network in the destination area. After this theoretical work and thanks to mobility

data from different European countries of Europe, we find that there are solid signs of

multiseeding effects similar to those observed in the models in the propagation of the

first COVID-19 wave in the continent. We take advantage of this to propose a method to

understand and reconstruct the spatial spreading patterns of the main outbreak-produc-

ing events in every country. From a public health point of view, surveillance on the impor-

tation of cases in a region is fundamental to anticipate the severity of local outbreaks and

minimize their consequences.

Introduction

The COVID-19 epidemic reached the WHO status of pandemic on March 11, 2020 [1] and

currently involves most of the countries of the world [2]. In Europe, SARS-CoV-2 severely hit

Italy, the first country to report local transmission in mid/late-February [3], and by mid March

many other countries such as France [4], Germany [5], Spain [6] and the UK [7] declared local

outbreaks as well. As an illustrative example, Madrid was the first city and region with an

important number of local contagions in Spain. Measures to prevent the propagation of the

disease were implemented, first locally, as closing schools and universities, public buildings,

etc, and, secondly, at national level with a population confinement at home (lockdown) [8]

implemented on March 14, 2020, which with different degrees of severity lasted until June 21,

2020. Madrid, besides being the administrative capital, is also the main communication hub of

the country, attracting workers from neighboring areas and students from all over Europe.

The initial phases of the lockdown included a reduction of the frequencies and capacities of

public transportation lines, with the most strict mitigation measures taken between March 29

and April 23. The situation in the other European countries evolved more or less in parallel

with some delays or advances depending on the local propagation patterns.

The role of human mobility in shaping epidemic dynamics has been extensively considered

[9–20], even recently for COVID-19 [21–32]. Pathogens use infected humans as vehicles and,

consequently, disease propagation patterns strongly resemble transportation networks [9, 16,

33]. If a certain geographical region suffers a local outbreak, it is natural to expect that closely

connected areas will start to import infected individuals. Closures, travel restrictions and lock-

downs may help to delay the propagation, even though their efficacy strongly depends on dis-

ease etiology and epidemiological features [13, 15, 17, 23, 34–42].

Much less attention has been paid, however, to the impact of multi-seeding on the evolution

of an epidemic. The time of arrival of the first infected individual (seed) and the most likely

propagation pathways were analyzed in [33, 43–45]. The probability of traveling in models is

proportional to the trip outflows from a given area. More trips arriving from the area where

the initial outbreak developed imply a larger probability of receiving a first seed. Therefore,

mobility from the original focus has been so far essential to calculate the risk of a certain popu-

lation to suffer an outbreak [21, 46]. From a more theoretical viewpoint, Refs. [47, 48] show

that the initial presence of more seeds may affect the critical infectivity needed to start the local

epidemic. And, recently, it has been postulated that the stronger connection to the original

focus of infection can favor a faster initial growth of the epidemic curves [21].
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data is proprietary. Interested researchers will be

able to obtain access to the aggregated mobility

flows used in this work in the same way as the

authors did upon request to Kido Dynamics SA

(www.kidodynamics.com) through Ignacio Barrios

(ibarrios@kidodynamics.com). Mobility data in

Italy is publicly available through Ref. [38]. Mobility

data in France, Germany, Spain, and the United

Kingdom, is available from Cuebiq through their

Data for Good program (https://www.cuebiq.com/

about/data-for-good/). The GDPR-compliant data

was accessed under license for this work.

Interested researchers will be able to obtain access

to the aggregated mobility flows used in this work

in the same way as the authors did upon request to

Cuebiq (dataforgood@cuebiq.com). The data on

incidence and mortality are available at: England

(https://coronavirus.data.gov.uk/#category=

utlas&map=rate), France (https://www.

europeandataportal.eu/data/datasets/chiffres-cles-

concernant-lepidemie-de-covid19-en-france?

locale=en, https://geodes.santepubliquefrance.fr/

#c=home), Germany (https://github.com/jgehrcke/

covid-19-germany-gae), Italy (https://github.com/

pcm-dpc/COVID-19) and Spain (https://github.

com/montera34/escovid19data). The population

counts per NUTS areas come from the national

statistics offices: England (www.ons.gov.uk/),

France (www.insee.fr), Germany (www.destatis.

de), Italy (dati.istat.it) and Spain (www.ine.es).
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In this work, we focus on the full extent of the epidemic curve, and show that the arrival of

more seeds does not only advance the emergence of local outbreaks but makes them more

severe. We find a connection between the number of arriving seeds, the height of the local inci-

dence peaks and the final population affected by the outbreak (size). Our conclusions rely

upon two pillars: computational models and empirical findings. On the theoretical side, we

analyze a model with different social contact networks, covering a full continuous range

between well-mixed populations and a grid, in which space plays a leading role. The model

results are analyzed first in a single population, then in two and finally in a full metapopulation

framework with populations and mobility informed with real data from Spain. In a single pop-

ulation, we observe a nonlinear relation between the number of seeds, the height of the inci-

dence peak and the time to the peak. We are able to collapse the epidemic curves with simple

scaling arguments depending only on the dimensionality of the contact network to obtain a

single common curve. Secondly, we simulate the spreading in two populations allowing mobil-

ity between the two areas. Importing more seeds strongly favors the development of severe

outbreaks in the second population. In a metapopulation model with heterogeneity, this non-

linear relation with the number of seeds extends to all the studied epidemic variables. A key

point to note here is that the relevant variable is not the crude number of arriving seeds, but

rather their ratio over the local population. Attaining the same epidemic impacts requires the

arrival of more seeds at a large metropolis than at a small isolated town. Finally, we confirm

these theoretical results with an empirical analysis based on combining detailed anonymized

and privacy enhanced human mobility data with epidemiological reports on COVID-19 in

five European countries. We study the connection between inter-city mobility flows and inci-

dence curves to find a clear relation between mobility and COVID-19 incidence peaks across

Europe. Furthermore, a correlation analysis driven by mobility helps to describe the spatio-

temporal progress of the disease in the first epidemic wave.

Materials and methods

We introduce the different ingredients needed to build the models, the simulations of lock-

downs, the data (geographical extensions considered, mobility and epidemic records) and,

finally, the metrics employed to search for the areas causing country-scale outbreaks in the

first wave of the COVID-19 pandemic.

Basic structure of the models

With the aim of gaining insights into the role of multi-seeding in the spreading of a disease, we

build a family of models within a metapopulation framework. Respect to the disease, the indi-

viduals can be susceptible (S), exposed (E), infected prodromic (Ip) (they have not developed

symptoms yet but they are infectious), infected symptomatic (Is), infected asymptomatic (Ia)
and recovered (R). The model is a simplified version of the one introduced in Ref. [49] for

COVID-19, but changing the parameters it can be valid as well for other airborne diseases

such as the influenza. Inside each population, we consider four contacts per individual. We

selected this number to keep coherence across networks. Since each population is going to rep-

resent a full province or geographical region, the space can play a role in how the social con-

tacts occur. We wish to explore contact networks laying between two extreme cases: a 2D

regular lattice (GRID), for which distance and space are essential, and a well mixed (WM) pop-

ulation, in which the four contacts are randomly selected every time step without any spatial

structure. In order to interpolate between these two extreme configurations, we have randomly

rewired couples of links in the GRID with a given probability p generating the REW networks.
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This introduces long-range links, reducing the distance between individuals and inducing a

small world behavior for p values of the order of 10−2 [50].

The average time an agent spends in each disease compartment is: τE = 3.7 days for exposed,

τp = 1.5 days for prodromic, and τi = 2.3 days for infected symptomatic or asymptomatic to

pass to the recovery compartment. Prodromic individuals can become infected asymptomatic

with a probability pa = 0.36 and, otherwise, with probability 1 − pa, they become symptomatic.

As in [49], the probability rate of infection of a susceptible agent in contact with an infected

symptomatic individual is β = 0.19 days−1 for WM and β = 1.19 days−1 for the GRID contact

networks (i.e., 2D regular lattices) in such a way the final epidemic size gets over 0.8 and all the

realizations have an outbreak. We have tested other (lower) values of β with similar results (see

Figs Q-W in S1 Text). The infectivity gets reduced by a factor 0.55 if the infectious individual

is asymptomatic or prodromic.

Our purpose is to have a stylized model, not a realistic one. Even so, as a structure for the

populations is needed, we take the Spanish provinces as the basis for the meta-populations,

where each node hosts a number of individuals in scale 1: 500 with respect to the official popu-

lation data of the National Office of Statistics INE for the sake of numerical efficiency.

Mobility between metapopulations and lockdowns

The trips between areas are data-informed from the aggregated mobile phone records in the

first two weeks of March 2020. We have applied to them the same scale reduction factor as for

the total population. Mobility is implemented stochastically. At each time-step agents located

in population i have a probability to travel to another population j that is obtained by dividing

the empirical trips by the local population of i. To keep the population constant in each area,

each traveler from i to j is interchanged with a randomly selected agent in j, who travels in the

opposite direction, from j to i.
Regarding lockdowns, we are interested in controlling the number of seeds arriving at

every sub-population. Therefore, we implement in the model two forms of lockdown. The

first, named total lockdown, consists in completely blocking mobility in the entire system once

the source region in which we have introduced the first cases (corresponding to the province

of Madrid) reaches a certain number of cumulative cases, arbitrarily set at 2,000. This lock-

down will be the standard unless otherwise mentioned. Such mechanism is thought to resem-

ble what occurred in Spain and other European countries in the early stages of the pandemic.

The number of local detected infections in Madrid reached 100 cumulative cases around

March 6, the curve continued to grow in the next days with more cases being hospitalized,

which eventually triggered the hard national lockdown one week later on March 14, 2020. In

the model, we have arbitrarily set the threshold for the lockdown yet always allowing the epi-

demic to last long enough to generate measurable outbreaks in all the areas so that we can

study the effects of multiseeding.

The model that we are running is stochastic and in the total lockdown the number of seeds

reaching an area can vary between each realization. This is why we consider a second type of

lockdown called fixed-seeding. This second type of lockdown is not applied at the same time

in the whole country and it allows us to control the exact number of seeds entering an area.

Essentially, we assign a number of seeds allowed to enter in each subpopulation. In fact, a com-

mon national threshold is fixed on the seeds divided by the local population of each destina-

tion area. The minimum threshold that we can set, and the one that we have used below, is

1/56 in such a way that even the least populated area of the country corresponding to Ceuta

receives 3 seeds. The other areas will receive this quantity or more. At each time-step, we

check for every agent traveling from any area i to j her status concerning the disease: if the
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traveler is infected, the number of imported cases of population j is updated, until reaching

the established seed threshold for j. Once the threshold is attained, no further infected agents

should be allowed to enter j. The mobility could have been maintained for non-infected agents,

but as a simplification we stop all the trips to and from j.

Mobility, population and epidemic data

The basic geographical units considered in this work are provinces and regions (maps can be

seen in Fig A of S1 Text). They are selected due to the combined availability of epidemic and

mobility data, and correspond to provinces (NUTS –European Nomenclature of territorial

units for statistics– 3 areas) in Italy and Spain (where the islands have been aggregated at prov-

ince level) and to regions (NUTS 2 areas) in England, France and Germany. The inter-area

mobility has been obtained from anonymized and privacy-enhanced mobile phone location

records of a telecommunication network activity by Kido Dynamics SA for Spain and from

Cuebiq Inc. for England, Germany, France, Italy and Spain. Location data provided by Cuebiq

are collected anonymously from opted-in users, who provided access to their location through

a GDPR-compliant framework. In addition to de-identifying the data, the data provider

applies privacy enhancements to preclude the re-identification of individual users. The operat-

ing system of the device (iOS or Android) combines various location data sources (e.g. GPS,

WiFi networks, mobile network, beacons) to infer geographical coordinates. Several factors

may affect location accuracy (which can also vary over time for the same device), but it can be

as accurate as 10 meters. The data are extensively described in Ref. [38]. The Spanish mobile

phone record dataset from Kido contains approximately 13 million devices with unique daily

mobility patterns. The relative information regarding the sample extracted from Cuebiq data

is available in Table 1.

The access to mobile phone data is fundamental to analyze and inform epidemic models to

further design proper public health policies [51]. This is due to the large coverage of this type

of data that accounts for all sort of mobility with high temporal and spatial resolutions. Such

data sources demonstrated their potential in uncovering spatial heterogeneities of mobility

responses across different scales [52–54]. Other alternative sources of mobility information,

like census data, provide a static picture centered around commuting, which is relevant

because of its recurrence, but that corresponds to around one half of the total mobility in cities

(see, for instance, the mobility surveys in Barcelona and Madrid [55, 56]), and it may represent

even less in middle to long range trips within a full country. In this case, having two datasets

gives us the possibility of covering several European countries, and in the case of Spain where

we have data from both to perform a stability analysis of the results.

The definition of mobility in the Spanish database from Kido refers to the concept of stay.

Areas of residence are assigned at the province and regional level to the users according to the

most common location of their stays outside office hours. If a device is observed outside the

Table 1. Amounts of Cuebiq anonymous users and data points for each country under study. Users and data points

refer to the period of study from January 8 to April 14, 2020. K refer to thousands, M to millions.

Country Users Data points

England 474K 412M

France 245K 162M

Germany 220K 216M

Italy 174K 236M

Spain 200K 109M

https://doi.org/10.1371/journal.pcbi.1009326.t001

PLOS COMPUTATIONAL BIOLOGY Interplay between mobility, multi-seeding and lockdowns shapes COVID-19 local impact

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009326 October 14, 2021 5 / 23

https://doi.org/10.1371/journal.pcbi.1009326.t001
https://doi.org/10.1371/journal.pcbi.1009326


residence area, then we consider that a stay has occurred for the day. These stays are aggre-

gated to conform origin-destination matrices between provinces and regions. In the case of

mobile phone records, inspired by differential privacy methods [57] and to avoid any potential

disclosure of personally-identifiable mobility patterns, a small unbiased Laplacian noise with

scale parameter of 5 (i.e., variance of 50 trips) is added to all aggregated values of stays. After

adding the noise, any values below 10 are discarded from the sample as additional preventive

measure. Such aggregated stays information are the basis for the mobility analysis presented in

this work. This allows us to analyze the number of stays of residents of Madrid in the different

provinces and, the other way around, the number of residents of those provinces that visited

Madrid. Using trajectories of users from the Cuebiq data, we captured the movements between

the geographic unit areas, creating daily origin-destination (OD) matrices for each of the five

countries. The trajectories were aggregated over the unit areas, and discard the visits shorter

than 1 hour (if a user is traveling, she can cross several areas without stopping). In all the cases

and as above, we will take as basis the two weeks mobility until one week before the onsets in

incidence in the different areas.

Regarding population counts and number of COVID-19 cases, the data has been collected

from official public repositories.

Data preparation

The focus is set on the first wave of the pandemic, until April 14, 2020. At this stage, we can

assume the initial total population as susceptible, with one or a few clear centers radiating the

spreading, which allows for a clearer spatial observation of the relevance of mobility and

multi-seeding in the dynamics of the epidemics. The key metrics are defined from the inci-

dence and mortality (number of deceases per day per capita) curves. These curves in the initial

stages are affected by several issues like different protocols and rhythms of testing. It is easy,

for instance, to detect the effect of weekends with a clear slowing down of testing and report-

ing. A process of smoothing is, hence, applied to obtain more reliable estimates on the epi-

demic trends. To do this, we take a running average over three days assigning the value to the

central point. Once the curves have been smoothed-out (see Figs D-K of S1 Text), we record

the magnitude of the peak and the local onsets (when the incidence is larger than a national

threshold). The local onset provides the time window of analysis of the incoming mobility

(three weeks to one week before). The list of national thresholds can be found at Table A of S1

Text. Tables B-F of S1 Text contain a detailed catalog of the onset and peak times, both for

incidence and mortality, in all the areas considered.

On the mobility side, to see the effect of seeding, on the local outbreaks, for every geo-

graphic subdivision we consider only the incoming mobility per capita occurred between

three weeks and one week before the local onset. For example, if the onset in area A occurred

on March 21, 2020, the trips counted are those registered between March 1 and 14. We

checked the correlations between the local epidemic peak and the mobility in different time

ranges, but stopping one week before the local onset produced the best results. In this choice,

we are taking the assumption that a week is needed on average to see the effects on any change

in behavior on the epidemic curves.

Epidemic epicenter indicator

To search for the country area which has most impulsed the first wave, what we will call the

epidemic epicenter, the first step is to calculate for each area i the Pearson correlation coeffi-

cient Ri between the height of the incidence peak and the incoming mobility per capita from i.
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Then we define a corrected geographic correlation score as

R�i ¼ Ri
ni

Nmax
; ð1Þ

where ni is the number of unique destinations found in the data from i and Nmax is the maxi-

mum number of destinations from any origin in the same country. Nmax coincides with the

number of regions/provinces in the country minus one only if the origin i connects to all the

other areas. The areas maximizing R� are those most likely to have sustained the first wave in

the country. This can be different from being the places that experienced the first cases, export-

ing cases is the first condition to cause a national-wide wave but it is also necessary that those

seeds generate local outbreaks in the destination regions.

Results

Multi-seeding in a single population

First we gain insights into the role of multi-seeding in disease spreading using theoretical mod-

els and, later, we will focus on the empirical observations related to this phenomenon during

the first wave of COVID-19 in Europe. For the sake of simplicity, we start the analysis with a

single population where the seeds are the initially infected individuals in the simulation. In Fig

1, we show the curve of incidence (new daily infected cases and per capita) for the model as a

function of time for a population slightly over twelve thousand individuals starting in each

case with a given number of seeds. Only simulations in which the outbreak develops are con-

sidered. As can be seen in the incidence curves versus time (Fig 1A), multi-seeding in WM

Fig 1. Model and multi-seeding in a single population. Average incidence curves versus number of seeds in a single

population corresponding to a rescaled Madrid (12, 873 agents) with (A) the WM case and (B) the GRID topology. (C)

Box-plot of the distribution of incidence peaks and (D) final epidemic sizes for a WM, the grid (GRID) and the rewired

grid (REW) with different rewiring probability p as a function of the number of seeds. The sizes for the GRID and

REW appear together in the upper row of symbols, while the WM case is below alone. Note that the same increase of

seeds in the grid contact network produces way faster and sharper peaks than the equivalent simulations for a WM

population. One hundred simulations have been run for each scenario. Note that the size depends non-linearly on β. It

was fit to produce sizes of the same order in the GRID and WM, but they do not exactly coincide so the height of the

incidence peaks of REW with p! 1 do not tend to those of WM.

https://doi.org/10.1371/journal.pcbi.1009326.g001
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essentially helps to accelerate the curves. In the case of the GRID contact network, the effect of

multi-seeding is to accelerate the curves as well (Fig 1B), but the phenomenon is more dra-

matic. When the interpolating networks REW are considered, the height of the incidence

peaks shows a weak growth with the initial seeds (Fig 1C), being almost logarithmic for the

rewired networks and the WM models, and the total final size (fraction of individuals infected)

does not seem to depend on the number of seeds (Fig 1D). Such independence occurs for high

values of the infectivity rate β. This effect can be easily understood: More seeds implies that

local outbreaks develop in different areas of the network and the global curve of incidence can

attain larger values. However, in the long run the different outbreaks merge and the final size

attained is essentially the same. On the other hand, with lower values of β, the size grows with

the number of seeds (see Figs Q and T of S1 Text). This dependence is observable in the GRID,

in which, the presence of bottlenecks can hinder the spreading of the disease. In the WM

topology, the bottlenecks are not present and, therefore, the size does not depend on the num-

ber of seeds.

Common non-linear features. Observing the regularity of the incidence curves of Fig 1A

and 1B, one may wonder if there exist common features to both models and if it is possible to

collapse the curves by normalizing time and incidence with a proper function of the seed num-

ber. As can be seen Fig 2A and 2B, it is indeed possible and there are some simple scaling argu-

ments that explain how. For example, in a GRID contact network the contagions advance as

wave fronts from the initial seeds. If these seeds have been placed at random, the average (char-

acteristic) distance between them is given by dc �
ffiffiffiffiffiffiffiffi
N=s

p
, where s is the number of seeds and

N is the population. The incidence peak is attained when the epidemic fronts cover dc/2 and

they all merge, after which the epidemic goes towards extinction. This implies that, since the

front speed is fixed, the time for the peaks tpeaks� (s/N)−1/2, which is confirmed by the fit to

the simulation results of Fig 2C. The height of the incidence peaks follow the inverse relation

with (s/N)1/2. An interesting feature to note is that the important variable is the ratio between

seeds and local population, we will numerically recover the same dependence in a metapopula-

tion system.

The WM contact network is different because it is not static in time. However, model

dynamics in these mean-field approaches can be approximated by those on a static small-

world random network [58]. In one of this networks, as in the GRID the distance is measured

by the number of links needed to connect two nodes through the shortest path. Assuming a

tree-like local structure, the small-world property implies that the number of nodes reachable

from an initial seed grows exponentially with the distance and the average distance between

Fig 2. Collapse of the epidemic curves in a single population. The collapse of the epidemic curves produced by a

different number of initial seeds in a WM population in (A) and in a population with a GRID contact network in (B).

(C) The fit of the incidence peak time shows a different dependence on the number of initial seeds in the population.

The peak time obeys to a power-law rule in the GRID scenario, while adding more and more rewiring probability to

the contact topology leads to a logarithmic trend, which is fully recovered in the WM scenario. The incidence peaks

behave similarly for all topologies and allows for the collapse of the epidemic curves in all the cases. The grey dashed

line represents a power-law guide with exponent γ = 1/2.

https://doi.org/10.1371/journal.pcbi.1009326.g002

PLOS COMPUTATIONAL BIOLOGY Interplay between mobility, multi-seeding and lockdowns shapes COVID-19 local impact

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009326 October 14, 2021 8 / 23

https://doi.org/10.1371/journal.pcbi.1009326.g002
https://doi.org/10.1371/journal.pcbi.1009326


seeds decreases as the logarithm of the inverse of s [59]. To obtain the collapse, we need to sub-

tract this logarithmic trend from the time scale, in the case of Fig 2B this means adding 10.2log

(seeds). The height of the peaks shows a similar logarithmic trend, in this case the collapse is

obtained by subtracting 1.1410−5 log(seeds). Similar collapses are obtained for lower values of

the infectivity parameter β with the same functional forms (
ffiffi
s
p

for 2D GRID and logarithmic

corrections for WM, see Fig W of S1 Text).

When we add a small probability of rewiring to the GRID to pass to a REW network, the

system presents a cross-over between the GRID and the WM behavior (see the trends in Fig

2C). If p is small, the network is locally a GRID and so, for large number of seeds (small dc),
the GRID scaling is recovered. In the opposite range, for small numbers of seeds, dc increases,

the role of the long distance shortcuts becomes visible and the WM behavior dominates. If p is

big enough (� 10−2), only the WM scaling remains. The most important question to notice is

the strong non-linear relations that emerge between the number of seeds and the epidemic

indicators in all the cases.

A two populations model

In this first experiment, the seeds are effective since the beginning of the simulations and all of

them start to propagate the disease simultaneously. A more realistic scenario with explicit

importation of cases towards an area without active transmission is reported in Fig 3 by con-

sidering two subpopulations coupled by mobility fluxes. The spreading starts in one sub-

Fig 3. Simulations for two populations. The network now includes only two subpopulations, corresponding to

rescaled version of Madrid and Barcelona with approximately 12873 and 11047 agents, respectively. The spreading is

initiated at Madrid and the observations are performed at Barcelona, in this way the seeds in the second population

arrive at a rhythm marked by the epidemic dynamics and the mobility between both cities. Once the number of

infected travelers attains the threshold for the number of seeds all the trips are suspended and the epidemic evolution

becomes internal to the subpopulations. In (A-F), the case in which the contact network is a GRID is represented to

illustrate the impact of multi-seeding in a single realization. In the upper series (A-C), only one seed arrives. In the

bottom row (D-F), five seeds arrive from Madrid. Both simulations are clones, the arrival of the first seed occurs at the

same time and location in the grid. The graphical representation corresponds to the same times up and down: t0 = 66

days in (A) and (D), t1 = 88 in (B) and (E), and t2 = 132 in (C) and (F). If a mitigation measure is implemented at a

fixed time, e.g., t2, the epidemic size is way larger in case of multi-seeding. In (G), we show the trend of the size as a

function of time of a simulation with the WM and the grid contact topology with 3 and 24 seeds arriving from Madrid.

Temporal evolution of the size at t1 = 88 days for a WM population in (H) and for a gridded contact network in (I) at t2
= 132 as a function of the number of seeds that arrive.

https://doi.org/10.1371/journal.pcbi.1009326.g003
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population with 10 seeds. We first simulate the spreading internally and then, at the end of

each time step, the agents of area i can travel to the other area. As an illustration of the effect of

multi-seeding, Fig 3A–3F show the unfolding of the disease in the second sub-population for

two replica simulations in which the contact network is a grid. Both rows are snapshots at

fixed times in the simulation: t0 = 66 days in Fig 3A and 3D, t1 = 88 in Fig 3B and 3E, and t2 =

132 in Fig 3C and 3F. In the upper row (Fig 3A–3C) only one infected individual is allowed to

travel between the populations and to start a new outbreak, while in the bottom row (Fig 3D–

3F) five seeds are allowed to arrive. As before, the spreading is way faster with larger number

of seeds. If we allow the simulation to continue until the end, the final size does not depend on

the number of seeds as occurred in a single population (Fig 3G). However, if the size is esti-

mated at a given time, e.g. at t1 or t2 in Fig 3I and 3H, we observe a dependence of the cumula-

tive number of infected individuals attained on the number of seeds, especially if the contact

network has a spatial structure and it is not WM. This is important because if mitigation mea-

sures are taken at a certain time, both the maximum incidence (see Fig B of S1 Text) and the

size do show a relation with the number of seeds (Fig 3I and 3H). Note that in the model

lockdowns are never lifted in order to better study the effect of multiseeding, while this is an

unrealistic scenario for the real world. In this sense, mitigation measures such as lockdown

essentially slow down or stop the spreading process and, therefore, both the maximum inci-

dence and the final size may depend on the number of seeds arriving and, ultimately, on the

mobility between populations. If β is lower, as occurred for a single population, it is possible to

observe an increase of the final size with the number of seeds (Figs Q-W of S1 Text). The effect

of stopping the simulation at an intermediate time is to foster this dependence.

Multi-seeding in a heterogeneous metapopulation network

The next step is to study the role of multi-seeding phenomena on multiple structured sub-pop-

ulations when heterogeneous populations and mobility flows are considered. The simulations

start with 10 seeds in a single sub-population and the epidemic curves are then observed in

every area. The peak of incidence is displayed as a function of the incoming trips per capita in

Fig 4. The incoming trips are proportional to the seeds and the division by the destination pop-

ulation is important because three seeds, for example, have a much larger impact in a small

population than in a large one, whereas to get a similar outbreak each area must import a num-

ber of seeds proportional to its population (see Fig C of S1 Text). Each sub-population corre-

sponds to a symbol in the plot of Fig 4. The mobility and population heterogeneity translates

into fluctuations in the height of the incidence peaks. To quantify the relation between peak of

incidence and mobility, we measure the dispersion of the peak values across areas σ, which is

the standard deviation for the peaks height. When σ is low, no appreciable differences can be

observed among the incidence peaks of geographical locations. Additionally, we fit the plots

with the LOESS regression method, which yields a R2
L that informs on the quality of the fit

and the relation. The reason to use LOESS rather than, for instance, Pearson correlation is its

versatility, since being a local and non-parametric polynomial method it does not introduce

a priori assumptions on the functional form for the relation between mobility and epidemic

indicators.

The first simulations in Fig 4A and 4B consider a scenario in which only a small number of

infected individuals (seeds) are allowed to travel. A threshold is imposed on the maximum

number of incoming seeds per capita allowed to enter in each subpopulation. Note that the

curves are nearly flat, the values of R2
L are very low as are as well those of σ. This is natural since

in this scenario after the first importation of cases the outbreaks are developed locally. After

the seeds arrive, traveling to and from that sub-population is no longer permitted. Next,
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Fig 4C and 4D displays a no-intervention scenario, hence we fully allow multi-seeding. Here

multi-seeding is occurring but its effect is covered by the absence of any containment policy,

R2
L slightly increases and the same can be said for σ. A gridded contact network favor the effect

of multi-seeding but the range of values of the three indicators are still similar to those of the

fixed number of seeds. Finally, we consider the case in which a system-wide lockdown is

applied. The effect of the lockdown is simulated by decreasing the infectivity rate β by one

half, and ceasing all inter-area mobility. We do this in order to model and measure the most

extreme and direct effects of a lockdown on the seeding of local areas. As reported in Fig 4E

and 4F, the combination of both multi-seeding and lockdown can increase at least in one

order of magnitude the variability of the incidence peaks with respect to the incoming trips.

Indeed, the variance explained, R2
L, now multiplies by a factor 5. This phenomenon has a sim-

ple explanation: multi-seeding from the geographical source is stronger with larger mobility

from and to it. Every seed that arrives from different areas of the network has the potential to

start an outbreak, with the overall epidemic curve growing faster in the places where more

Fig 4. Models with heterogeneous populations. Comparison of the effects of confinement policies, seeding and

topology on the correlation between incidence peaks and mobility from the source (seeding) in a metapopulation

model. In all the plots the height of the incidence peaks are displayed as a function of the incoming trips in every area

divided by the local population. In (A), simulation of WM populations in each province allowing to travel only a fixed

number of seeds per capita from the source (Madrid). The threshold is the destination population divided by 56 so that

at least three seeds can travel in the least populated area. In (B), the same for gridded contact networks in the

provinces. Both scenarios are again considered in (C) and (D), but this time without constraints in the travels between

provinces and allowing thus multi-seeding. Finally, in (E) and (F), the simulations are repeated with a national

lockdown applied when Madrid arrives at 2000 cumulative cases. All results are averaged over 100 simulations with

each square corresponding to the average value obtained in a province. In all cases, curves and fits are obtained using

the non parametric LOESS method, as also the values of R2
L corresponding to the R-squared of fit and data. The shaded

areas correspond to the 95% confidence interval. σ is the standard deviation and represents the dispersion in the values

of the peak of incidence across provinces.

https://doi.org/10.1371/journal.pcbi.1009326.g004
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seeds have been imported. Without lockdown, the epidemic continues the progress locally in

every area and the role of the seeds from the original source diminishes. On one hand, the

local epidemic curves develop and, on the other one, seeds start to arrive from other origins.

Here, the signal originally produced by the mobility from the epidemic epicenter is partially

lost because of the interfering mobility from the other seeding sources. New outbreaks in the

destination communities are not exclusively caused by the epidemic epicenter. In contrast if a

lockdown is applied, the progression of the disease slows down and the height of the incidence

peaks reflects the number of seeds received in every area from the source at that moment.

With lower β, we find as well a stronger dependence between the maximum incidence, the

final size and the incoming trips per capita if both factors, multiseeding and lockdown, are

present than if only one is considered (see Figs R and U of S1 Text).

Effects of multi-seeding in the first pandemic wave

Once characterized the role of multi-seeding in models, we check whether its effect can be

observed in empirical data. We start our analyses by showing the connection between mobility

from the region or province of the epidemic epicenter to every destination and epidemic fea-

tures such as the maximum local incidence or mortality in the area of destination.

In Fig 5, we show the correlation between the height of the incidence peak and the incom-

ing trips per capita in the local population taking as the epidemic epicenters: (A) Lancashire

for England, (B) Champagne-Ardenne for France, (C) Munich for Germany, (D) Milan for

Italy and (E) Madrid for Spain. Note that the regions can have sometimes the same name as

their central cities, but they are more extensive. These regions have been selected as the epi-

demic epicenters because they maximize R�i . The first question to notice is that the correlation

level is not uniform across countries. All the R2
L values are significant at 5% level, but in

England the correlation incidence peak is low, R2
L ¼ 0:38, while in the other countries it is

higher. One of the assumptions of this analysis is that there has been a single importation zone

as source and this may not have been the case in England. Another issue to take into account is

that France, Italy and Spain imposed a very severe mobility reduction [38, 60, 61], while others

operated a lighter reduction of total mobility [62, 63]. Moreover, in Spain and Italy, the focus

of the spreading was registered in the largest mobility hubs of the country, i.e., Madrid and

Fig 5. Correlations of incidence peaks and mobility. Peaks of incidence versus total trips per local capita received from (A)

Lancashire, (B) Champagne-Ardenne, (C) Munich, (D) Milan, (E) Madrid, during two weeks until one week before the local

onset. In all cases, the curves with the fits are obtained using the non parametric LOESS method, as also the values of R2
L. The

shaded areas correspond to the 95% confidence interval. The three stars next to the R2
L values indicate a p-value below 0.01.

https://doi.org/10.1371/journal.pcbi.1009326.g005
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Milan, which intuitively may have fostered the spreading. The same cannot be said for France

and England, where London and Paris did not played a critical role. Lastly, in Germany

Munich seem to have participated in the spreading of the virus, which is indeed a mobility hub

of the country, whereas other important hubs such as Köln did not exhibit a similar behavior.

The picture is maintained if one considers the mortality instead of the incidence, as shown

in Fig 6. The mobility for the analysis is the same as the one considered for the incidence but

the mortality curves need a longer time to peak than the incidence (see Figs I-K of S1 Text). In

general, the higher the mobility between the country areas and the supposed source (Cham-

pagne-Ardenne, Munich and Madrid), the faster cases are imported and the more deceases

are observed per capita. This further contributes to the hypothesis that the arrival of multiple-

seeds increases the local speed of the epidemic and, consequently, the rhythm at which mortal-

ity locally grows before mitigation measures are taken to prevent the expansion of the disease.

Using R�i , we explore in Fig 7 the correlations between incidence peaks and mobility from

different origin regions. It is important to stress that this method helps to identify which

regions fit best as impulsors of the local outbreaks of the rest of country areas. These epi-

demic epicenters are not necessarily the areas with the first detected cases, but usually corre-

spond to those joining mobility centrality and early development of local outbreaks. As we

can see, the areas that concentrate the highest values of correlations are usually clustered in

space with the only exception of Madrid. This is not fully a surprise, since the Spanish infra-

structures are traditionally organized in a radiant way and Madrid act as the main mobility

center of all the country (Fig 7E). The epidemic arrived at different cities of Spain in Febru-

ary, but Madrid was the area in which a local outbreak developed fastest in late February-

early March and spread to the rest of the country [64]. By only correlating incidence and

mobility, the heat map in Fig 7 actually confirms such scenario. Similarly, the epidemic in

Italy was detected initially in more than one focus in Lombardy and Veneto in the North of

the country and extended from there in the first wave [65, 66]. The province of Milan (capital

of Lombardy) shows the highest value of R�i (darkest blue color) followed by Bergamo in

Lombardy as well (Fig 7D). Germany has several mobility hubs, including Berlin, Hamburg,

Frankfurt, etc. However, the geographical spreading of the pandemic matches our map with

an initial focus on the South, in Bavaria, and around Munich (Fig 7C), confirming a recent

study on the first outbreak in the country [67]. In the case of France, the main mobility hub

is Paris and the region around it (Île de France), but, coinciding with our map, the disease

entered through the regions in the North-East (Fig 7B) and spread to the rest of the country,

in agreement with a recent geo-epidemiological study [68]. The same can be said for

England, where London did not participate much in the spreading despite being the main

mobility hub, not as much as the regions in the North (Fig 7A). Here, the National Office for

Statistics highlights the North-West region as one of the epidemic clusters of England in mid

March [69]. Hence, in general we can define the epidemic epicenter as the area i that maxi-

mizes the corrected correlation score R�i . It can be concentrated in a single geographical divi-

sion or shared by several neighboring areas, and, most importantly, it does not necessarily

coincide with the capital or the main mobility hub of the country. Recall that the mobility

data for all the countries was retrieved from GPS traces except for Spain that came from

mobile phone records. This is the only country where we observe a concentrated maximum

of R�i , we repeat, therefore, the analysis with GPS data as a sanity check in Fig L of S1 Text.

The results are quite similar, even though noisier due to the way smaller population sampling

but this confirms the robustness of our results. By this analysis, we can understand that those

areas with higher peaks of incidence and mortality are characterized by more mobility per

capita from/to the epidemic epicenter.

PLOS COMPUTATIONAL BIOLOGY Interplay between mobility, multi-seeding and lockdowns shapes COVID-19 local impact

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009326 October 14, 2021 13 / 23

https://doi.org/10.1371/journal.pcbi.1009326


Fig 6. Correlations for mortality versus mobility. Peak of mortality (where available) versus total trips per local

capita from (A) Champagne-Ardenne, (B) Munich, (C) Madrid, during two weeks until one week before the local

incidence onset. In all cases, the curves with the fits are obtained using the non parametric LOESS method, as also the

values of R2
L. The shaded areas correspond to the 95% confidence interval. The three stars next to the R2

L values indicate

a p-value below 0.01. The origin of the trips are the areas whose R� was highest in each country.

https://doi.org/10.1371/journal.pcbi.1009326.g006
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To further understand the relevant variables contributing to the heights of the incidence and

mortality peaks, we perform a linear multivariate analysis including five variables: logarithm of

two weeks total trips per capita (in destination) until one week before the incidence onset, popu-

lation density, distance from the epidemic source (the area maximizing R�i ), population of every

unit area and local onset times. Note that the onset time is an intrinsic epidemic variable and as

Fig 7. Epidemic epicenter analysis. For each origin of each country we check the corrected R-squared R� correlation

of mobility and destinations incidence peaks. Darker areas represent those where most probably the spread was

originated from. Administrative boundary data were obtained from GADM for Italy and Spain (https://gadm.org), and

from EuroStat (https://ec.europa.eu/eurostat) for the rest of countries.

https://doi.org/10.1371/journal.pcbi.1009326.g007

PLOS COMPUTATIONAL BIOLOGY Interplay between mobility, multi-seeding and lockdowns shapes COVID-19 local impact

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009326 October 14, 2021 15 / 23

https://gadm.org
https://ec.europa.eu/eurostat
https://doi.org/10.1371/journal.pcbi.1009326.g007
https://doi.org/10.1371/journal.pcbi.1009326


such it can depend on the others (e.g., mobility). For those few areas that did not reach the

established onset and to keep them in the analysis, we have taken the time of the maximum inci-

dence peak as the onset. As can be seen in Fig 8, the mobility from/to the source is the main var-

iable after the onset to explain the variance in the peaks and it scores much better than the the

density of the local population and the distance to the source. Curiously, in the countries where

we have mortality data, the variance explained by mobility is larger for the mortality peaks than

in the incidence ones. This may be explained by the variability in the test policies in the early

stages, while the deceases are better documented, the new cases per day officially recorded rep-

resented only a partial view of the situation. By adding all the variables, the explained variance

increases over 50% in all the countries and even it is close or over 70% in most of them.

Fig 8. Multivariate analysis. Bar chart with the multivariate correlation results in R2
P for the incidence and mortality

peak (where available) heights in each unit area as a function of the mobility per capita and onset times. In every case,

the upper bar corresponds to the simple correlation with all variables, mobility, onset time, population and population

density where available. In this analysis, R2
P refers to R-squared of the linear Pearson correlation.

https://doi.org/10.1371/journal.pcbi.1009326.g008
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As mentioned before, the incidence data in the early times of the pandemic suffers from

some uncertainties. To check the quality of our trends, we have repeated the analysis in Spain

with results of the national seroprevalence test [70]. The Spanish Ministry of Health released

the first results of a study on the prevalence of antibody response in the population (https://

www.mscbs.gob.es/gabinetePrensa/notaPrensa/pdf/13.05130520204528614.pdf). The analysis

tested 60, 983 individuals from different provinces, age groups and socio-economic contexts in

a sample obtained with the same mechanisms as the census. The results are thus expected to be

representative of the extension of the disease in the population (the size at the time in which

the test was performed). Repeating the analysis, the mobility in terms of stays per capita

explains 64% of the variance of the antibody prevalence (R2
P ¼ 0:64), while the full multivariate

model accounts for 68% and the comparison between the statistical model and the data yields

R2
P ¼ 0:68 (see Figs O and P of S1 Text). Despite the data of the prevalence analysis has been

obtained much later than the peaks, these results strongly confirm the scenario we have found

of dependence between the peaks (mortality and incidence) and the mobility.

Finally, in Fig 9, we perform an analysis of the effect of different types of traveling restric-

tions on the relation between the incidence peaks and the arriving seeds. The gray background

marks the area of the empirical values observed for σ in different countries, while the color

bars portray the models outcome in Spain. Regardless of the contact network topology, the

model is not able to attain the empirical zone unless both multi-seeding and lockdown are

present. Given that the incidence peak can be reached after the lockdown, different times for

the travel restrictions modulate the values of σ. Still, modifying the lockdown times one can

obtain values of the relations that agree with the order of magnitude of the empirical observa-

tions. As it is observable in the case with lower β (see Figs S and V of S1 Text) the values of σ

Fig 9. Policy comparison. Incidence peaks standard deviation in for the multipopulation system with different

interventions scenarios. The standard deviation is measured in plots similar to those shown in Fig 5 both for empirical

data and for the model simulations. The number of seeds in the empirical data is related to the mobility, while in the

fixed seeding simulations we let each subpopulation reach a common threshold of cumulative incidence before closing

the province borders. No lockdown is the scenario with no interventions. Too early, early and normal lockdown

corresponds to a national lockdowns issued when Madrid (the source) reaches 1000, 2000 and 3000 total cases,

respectively. After the lockdown β gets halved and all trips across borders stop.

https://doi.org/10.1371/journal.pcbi.1009326.g009
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are stable and consistent with the empirical ones, while the lockdown times in the WM sce-

nario highlight a vanishing effect of lockdowns as they are introduced later in time, confirming

our hypotheses on the role of late interventions. In all cases, it is necessary the concurrence of

both mechanisms of multiseeding and lockdowns to reproduce the empirical values of σ.

Conclusions

Understanding the impact of mobility on the early stages of spreading of an epidemic is the

key to design efficient public health responses. In this work, we address the question of how

relevant is multi-seeding for an epidemic. Beyond the classical analysis centered on the arrival

time of the first imported cases, here we focus on the effect that the incoming of more seeds

have on the evolution of the local epidemic curves. We start with a theoretical analysis by

building a SEIIR metapopulation model with different topologies for the contact network

inside each population (including well mixed populations WM, a GRID and intermediate net-

works called REW).

In a single population, we can already observe quicker outbreaks and higher incidence

peaks with more seeds, although the final epidemic size does not seem to depend substantially

on the seeds. This relation is weaker for a WM population than for other contact networks.

Interestingly, simple scaling arguments based on the distance between seeds in the contact net-

work allow us to collapse the incidence curves leading to a single functional form. The particu-

lar scaling relations vary with the dimensionality of the contact network, but in all the cases the

connection between the time for the peaks or the height of the incidence peak is highly non-

linear. The impact of multi-seeding can be further illustrated by observing the phenomenon in

a two populations system, assuming a contact network in a GRID configuration and monitor-

ing the spreading in time. More seeds means an increase in the number of independent out-

breaks and a much faster spreading in the system. This naturally leads to higher incidence. If

one waits until the spreading is over, the final size is similar regardless of the seeds, but if an

intervention is going to be taken at a certain time, as a lockdown, the cumulative number of

cases is much larger in case of multi-seeding. Indeed, in the model with many populations, the

number of seeds that arrive from the source is related to the number of trips from the geo-

graphical source of the disease. As an important question, we find that the important variable

that controls the multiseeding effect is the number of seeds arrived over the local population.

A connection between the peaks of incidence and the mobility is observed in all the cases, but

it is weak if no mitigation measures are taken. On the other hand, the application of lockdowns

enhances the spatial differences in seeding and, consequently, on epidemic indicators. We

have used a relatively high value of β to produce a final epidemic size over 0.8. If lower values

of β are used, i.e., to model less infectious diseases, the main results are confirmed. There is a

difference in the behavior of the final size, which now can depend on the number of seeds.

Still, the effect of mixing multiseeding and lockdowns is to strengthen these relations. Such

mixture is necessary to recover the empirically observed measures.

These non linear relations between epidemic curves and seeds are our main theoretical

results. To test if these results are consistent with a real case, we performed a simple correlation

analysis in the context of the present COVID-19 pandemic in England, France, Germany, Italy

and Spain. Despite the lower testing rates of the first wave, we find a clear relation between the

mobility from/to Madrid, Milan, Munich, Champagne-Ardenne and Lancashire for each

country taken into account and the heights of the peaks of incidence and mortality of the rela-

tive national subdivisions. Additionally, we are able to uncover back in time the most likely

geographical source of the spreading of the disease by a direct correlation analysis, recovering

the pathways according to the history recognized by the local health authorities.
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The main contribution of our work stands on two plains: on one hand, we offer empirical

evidence of connections between multi-seeding and the severity of the epidemic at the popula-

tion level on different countries that enforced different confinement measures. On the other

hand, we provide a theoretical explanation of such relation by implementing a SEIIR model.

The model shows the effects of mobility fostering multi-seeding, more visible thanks to the

implementation of lockdowns and further enhanced if the contact network has a spatial struc-

ture. We hope that this study will highlight the importance of mobility in an epidemic situa-

tion, which goes beyond a first direct relation between arrival times and inflow of trips, and

help stakeholders and decision-makers to design more efficient responses. Especially, it must

be taken into account that mitigation measures such as lockdown will induce a strong relation

between mobility from/to the source and cases. The areas with strong mobility from the source

with low local populations require additional attention since they are likely to develop more

violent outbreaks. In contrast, reducing the seeds from the source help to generate slower out-

breaks with lower peaks, which are more manageable by the health system.

Supporting information

S1 Text. This document includes in a single pdf tables with further data descriptions and

figures with extra simulation results to sustain the generality of our findings for other

model parameters.

(PDF)
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