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ABSTRACT
This paper proposes a method for calculating transport networks
capacity in dealing with multimodal transfers. Multimodal
networks are represented by a modified ‘supernetwork’, while the
passenger’s travels are defined as ‘superpaths’. Within this
framework, the relation between the travel demand from O-D
matrices and the resulting link flows in the supernetwork is
modelled as a relationship matrix to describe urban mobility by
using a logit-based stochastic user equilibrium. Based on this
relationship matrix, an approximate iteration algorithm (AIA) is
developed. Our numerical results show that the AIA performs
better than the sensitivity analysis-based algorithm (SAB) and
genetic algorithm (GA) regarding the execution-time, and that
the capacity of multimodal transport networks can be
underestimated if the combined travels are neglected.
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1. Introduction

In large urban areas, commuting is a common feature of everyday residential life. Such
trips often require multimodal combinations to cover all the distance from origin to
the final destination. In contrast to single-mode travel, multimodal travels show an
enhanced performance by taking the complementary advantages of various transportation
modes (Huang et al. 2018). The capacity of a multimodal transport system, indicating its
supply performance under certain travel behaviours, has become a concern of transpor-
tation planning authorities (Liu et al. 2021). With the same multimodal nature, however,
the capacity analysis is more challenging than that of a single-mode transport system or a
multimodal system without considering combined travel (Romero et al. 2015). This paper
attempts to model the capacity of a multimodal transport network while accounting for
combined travel behaviour, and to devise a dedicated algorithm tailored to this model.
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In traffic engineering, capacity generally refers to the maximum hourly traffic volume
that can traverse a specific road section. Initially introduced by Smeed, area-level capacity
defines the maximum number of vehicles that can pass through a road network per unit
of time without congestion (Smeed 1966). Subsequently, Yang, Bell, and Meng (2000)
defined the capacity of transport networks as the maximum attainable throughput of
the network, which is calculated by aggregating the Origin-Destination (O-D)
demands while considering the capacity constraints of individual road sections.
However, since the constraint of the model is about link flows, it is necessary to transform
O-D demand into flow links for comparison. Typically, this transformation is achieved
based on equilibrium theory with the assumption that all O-D trips make self-interested
choices, thus leading to a state of equilibrium in flows along all road sections in the
network (Sheffi 1985).

The equilibrium theory-based method has been applied to capacity evaluation of
transport networks in many studies. For example, Asakura (1992) first proposed a
general method, in which O-D demands increase until the volume of any link’s
volume exceeds its capacity and the sum of the maximum tolerable O-D is the
network capacity. Consecutive studies (Wong and Yang 1997) followed Asakura’s idea
and took the demand ratio between different O-D pairs as constants. However, the eval-
uated capacity is highly dependent on the given O-D demand ratio. An unreasonable
ratio can lead to significant deviations from the actual capacity. To solve such problems,
several works (Chen and Kasikitwiwat 2011; Yang, Bell, and Meng 2000) evaluated the
capacity with a variable O-D structure. These studies focus on single-mode transport
systems, especially road networks.

Modern urban traffic systems must be seen as composite networks with multiple sub-
networks, one representing car traffic, one for buses, one for subway, and so on. In multi-
modal transport systems a representation with heterogeneous network structures is
required (Liang, Huang, and Zhao 2022) and more complex travel behaviours are
involved (Liao et al. 2020), where modelling needs to consider: (1) high-dimensional
choices, implying that travellers’ decisions are made by combining path choice, mode
choice and transfer choice; (2) multi-index travel cost, which means travellers will con-
sider not only link-specific costs such as travel time but also mode-specific costs like
pricing, waiting time, transfer time, in-vehicle crowding and other factors. As a result,
equilibrium in a multimodal transport network is considerably more intricate compared
to that in a single-mode transport network. Although some studies (Liu et al. 2018; Wu
et al. 2012) have combined traveller’s mode choice and path choice, the multimodal equi-
librium issue associated with complex travel behaviour has received limited attention.

A few works have investigated equilibrium-based capacity measures for multimodal
transport networks. For example, Cheng et al. (2014) estimated the capacity of a
network comprised of automobiles and transit by extending the road network capacity
model (Yang, Bell, and Meng 2000). In this model, travel time equates to travel cost,
and a numerical case study shows that the network capacity is increased due to rapid
transit lines. Xu et al. (2018) formulated the (spare) capacity of a multimodal network
including roads and metro lines. The cost of metro travel is assumed to remain constant,
and the cost of road links is measured using the standard BPR function. Liu et al. (2021)
dealt with travel costs in the same way as Xu et al. (2018) and explored network capacity
with second-best constraints. Recently, Du, Jiang, and Chen (2022a) formulated travel
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time for various link types using BPR and established a capacity model to identify critical
links in multimodal transport networks. While these studies integrated combined mode
split and traffic assignment models to describe travellers’ choice of mode and path, they
disregarded the intricacies of combined travel. Additionally, only travel time is con-
sidered as the travel cost but mode-specific costs are neglected. Zheng, Zhang, and
Liang (2020) addressed the car-to-metro mode but overlooked the general case of com-
bined travel, such as travel with multiple transfers. Du et al. (2022b) modelled the
capacity of networks with emerging travel modes but did not account for in-vehicle
crowding. Overall, existing studies on multimodal network capacity have not fully
explained the complexities of travel behaviour in multimodal transport networks.

Algorithm complexity is another important factor to consider in the equilibrium-
based capacity approach. This problem is mostly formulated as a bi-level programming
model, known for its NP-hard nature (Bard 1991). Heuristic algorithms have been used
as solutions to these problems (Meng 2000). The solution methods can be categorized
into two primary groups: (1) sensitivity analysis-based methods (SAB), and (2) other
heuristic methods. In most existing studies, SAB simplifies the bi-level model by
Taylor expansion (Du, Jiang, and Chen 2022a; Du et al. 2022b; Liu et al. 2021; Xu
et al. 2018). However, the applicability of the Taylor approximation hinges on the proxi-
mity of solutions between successive iterations, potentially resulting in diminished algo-
rithmic convergence speed. Moreover, sensitivity analysis for equilibrium problems is
essential in SAB, yet with a large computational burden. Other heuristic methods,
such as genetic algorithms and simulated annealing algorithms, have been used to
solve bi-level programming problems (Fan and Machemehl 2006; Long et al. 2010).
These methods use universal stochastic optimization mechanisms to search among a
huge number of potential solutions. With each solution solving an equilibrium
problem, equilibrium problems require many runs and thus are intrinsically time-con-
suming, particularly when dealing with large-scale networks. Therefore, the effectiveness
of heuristics is diminished in addressing large-scale problems.

To highlight the differences between our work and previous studies, Table 1 lists the
characteristics of relevant works. In summary, combined travel is missing in the model of
equilibrium-based capacity for multimodal transport networks, and the solving algor-
ithms remain to be systematically explored and improved. The goal of this study is to
develop a novel framework for evaluating the capacity of multimodal transport networks
considering combined travel. The combined travel and multi-index travel costs are con-
sidered based on a supernetwork, and the capacity of such supernetwork is evaluated. To

Table 1. Characteristics of relevant works in comparison with our work.

Reference

Modelling

Algorithm
Variable O-D
structure Multimodal

Combined
travel

Multi-index travel
costs

Wong and Yang (1997) × × × × SAB
Yang, Bell, and Meng (2000) √ × × × SAB
Chen and Kasikitwiwat (2011) √ × × × SAB + GA
Xu et al. (2018);Du, Jiang, and
Chen (2022a)

× √ × × SAB

Du et al. (2022b) × √ √ × SAB
Cheng et al. (2014)Liu et al. (2021) √ √ × × SAB
This paper √ √ √ √ AIA
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solve the capacity evaluation model, we approximate the relationship between O-D
demands and link flows based on the optimality condition of equilibrium problems,
and propose an approximate iteration algorithm (AIA). The main contributions of
this paper are as follows:

(1) Combined travels are described based on superpaths and subpaths. Transfer behav-
iour in the multimodal network is considered by introducing transfer links into the
supernetwork. Superpaths and subpaths are defined to describe trips in the multimo-
dal network. A generalized travel cost function for superpaths is constructed, taking
into account in-vehicle crowding.

(2) AIA is designed to solve the proposed model. The relationship between the lower-
level variables and the upper-level variables is approximated using the equilibrium
problem’s solution. An iterative mechanism with mutual feedback between the
upper-level and lower-level is employed to converge a satisfactory solution.

The rest of the paper is organized as follows: Section 2 presents the improved super-
network representation for multimodal transport systems. Section 3 establishes the
relationship between the O-D demands and link flow based on the equilibrium model
of the supernetwork. Section 4 models the capacity of multimodal transport networks
with combined travel and presents AIA solution algorithms for the proposed model.
Two illustrative numerical examples are described in Section 5. Section 6 further dis-
cusses the proposed model and algorithm. Section 7 concludes the paper.

2. Supernetwork for multimodal transport system

2.1. List of symbols

We provide a brief explanation of the symbol notation (as shown in Table 2) to be used
throughout the paper.

2.2. Supernetwork and superpath

Generally, G = (N, A) is used to denote a single-mode transport network, where N is a
node set, representing a traffic zone, intersection, parking lot, etc.; A is a link set, repre-
senting the road section connecting two adjacent nodes. Due to the mode attribute, the
network model for single-mode transport systems cannot be used for multimodal trans-
port systems. The supernetwork model was first proposed by Sheffi (1985) to describe the
simplified multimodal transport system, which is a modified network by augmenting
multiple traffic mode subnets with dummy links. However, it cannot describe the com-
bined travel problems, because various subnets are not connected and transfer is not
allowed. In this paper, an improved supernetwork is proposed to express the multimodal
transport system involving combined travel, in which the heterogeneous transport
subnets are interconnected by transfer links.

SG = (M, N, A) is defined as a supernetwork to represent the multimodal transport
system, whereM, N, and A denote sets of transport modes, nodes, and links, respectively.
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N consists of two subsets, {N1, N2}. N1 represents the set of nodes comprising both
origins and destinations, while N2 is the set of other nodes. N1 consists of two subsets,
R and S, representing the set of origins and destinations, respectively.

N = N1 < N2 (1)

N1 = R< S (2)

The elements in N1 can be represented by a single variable r(r [ R) or s(s [ S). The
elements in N2 can be represented by bivariate (m, i)(m [ M, i [ I), where m denotes
the traffic mode, i denotes the physical location of a node, and I is the set of physical
locations.

According to the properties of connected nodes, the links in a supernetwork can be
divided into four types: boarding link A1, vehicle running link A2, transfer link A3 and

Table 2. Symbol explanation table.
Num Symbols Explanation

1 SG supernetwork for the multimodal transport system
2 M sets of transportation modes
3 N N1 sets of nodes set of origins and destinations
4 N2 set of nodes other than the origins and destinations
5 A A1 sets of links set of boarding links
6 A2 set of links that serve vehicle running
7 A3 set of transfer links
8 A4 set of alighting links
9 r the node representing origin, r [ R
10 s the node representing destination, s [ S
11 m transportation mode, m [ M
12 i physical location of a node, i [ I
13 Krs set of superpaths between O-D pairs rs, k [ Krs

14 Srsk set of subpaths belonging to the superpath k between O-D pairs rs
15 Crsk generalized costs on superpath k between O-D pair rs
16 ca generalized costs on the out-of-vehicle link a, a [ A1 < A3 < A4
17 lm a subpath of mode m
18 wrs

lm generalized costs on subpath lm belongs to superpath kbetween O-D pair
rs

19 drsa,k correlation coefficients between link a and superpath k of O-D pair rs
20 la length of link a, a [ A1 < A3 < A4
21 v walking speed
22 h amplification parameter
23 crslm mode-specific costs on subpath lm belongs to superpath k between O-D

pair rs
24 tm,a travel time on vehicle running link a in the subnet of mode m, a [ A2,

t = (tm,a)m[M,a[A2
25 drsa,lm correlation coefficients between vehicle running link a and subpath lm of

the superpath k between O-D pair rs
26 tm travel time excluding vehicle running time of mode m, a constant
27 tm conversion coefficient from price to time for mode m
28 rm the fare per mileage of mode m
29 drslm distance of subpath lm

30 t0m,a free-flow travel time of mode m on link a, a [ A2
31 xm,a traveller volume of mode m on link a, a [ A2, x =[· · · , xm,a, · · ·]T
32 Km vehicle capacity of mode m (person)
33 Cm,a traffic capacity of link a in subnet m (vehicle)
34 am , bm parameters indicating congestion between vehicles of mode m
35 fm , wm parameters indicating crowding between passengers in vehicle of modem
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alighting link A4.

A = A1 < A2 < A3 < A4 (3)

The link can be represented by its connected nodes. For example, the four types of links
can be respectively expressed as {r, (m, i)}, {(m, i), (m, j)}, {(m, j), (n, j)} and {(n, j), s}.
Note that m, n [ M and i, j [ I.

An example of a multimodal transportation supernetwork is shown in Figure 1.
In the supernetwork above, we describe a traveller’s travel process between O-D pairs

using a superpath, which is defined as follows.

Definition 1: the sequence of nodes connecting an O-D pair in the supernetwork is referred
to as the superpath, and the set of superpaths between O-D pairs rs is denoted as Krs.

For example, the two superpaths between r and s in the supernetwork shown in
Figure 1 can be expressed as:

r � (1, 1) � (1, 2) � (1, 4) � (1, 6) � s (4)

r � (1, 1) � (1, 3) � (1, 5) � (2, 5) � (2, 10) � s (5)

It can be seen that a superpath contains much more information than a path in a single-
mode transport network. A superpath not only depicts the physical path taken by a
vehicle within the subnets but also encompasses transfer-related information. For
example, the superpath in Eq (4) represents a single-mode travel path, while the super-
path described by Equation (5) is a combined travel path.

The travel behaviour on a superpath usually involves four processes: boarding subnet,
vehicle running, transfer and alighting subnet. Such travel behaviour can also be categor-
ized as either in-vehicle behaviour or out-of-vehicle behaviour. In a superpath, the tra-
veller’s in-vehicle behaviour occurs on the vehicle running links, while out-of-vehicle

Figure 1. Supernetwork of multimodal transport system.
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behaviour occurs on the other links. Apparently, a traveller completes the in-vehicle
behaviour through the physical path in the subnet, after taking a vehicle to board a
subnet and before transferring or alighting. To better describe these complex traveller
behaviours, we define the subpath as follows:

Definition 2: In a superpath, the set of consecutive vehicle running links between a boarding
link (or a transfer link) and an alighting link is referred to as the subpath of a superpath, and
the set of subpaths of the superpath k between O-D pairs rs is denoted as Srsk .

Obviously, a superpath may contain several subpaths, especially in long-distance
travel. For the superpath in Equation (5), one of its subpaths can be expressed as:

(1, 1) � (1, 3) � (1, 5) (6)

2.3. Generalized travel costs

Travellers make choices based on generalized travel costs. The generalized costs of com-
bined travel include link-specific costs and mode-specific costs. Figure 2 illustrates the
superpath in Equation (5) and the composition of its generalized costs. We formulate
the generalized costs of a superpath incorporating that of subpaths.

As shown in Figure 2, the generalized costs of a superpath equal the sum of the costs of
the associated links and subpaths, which can be written as:

Crs
k =

∑
a[A1<A3<A4

cad
rs
a,k +

∑
lm[Srsk

wrs
lm r [ R, s [ S, m [ M, k [ Krs (7)

where Crs
k is the generalized costs on superpath k between O-D pair rs; ca is the general-

ized costs on the out-of-vehicle link a; wrs
lm is the generalized costs on subpath lm of the

superpath k between O-D pair rs; drsa,k is the correlation coefficients between link a and
superpath k of O-D pair rs, if the link a is on superpath k, drsa,k = 1; otherwise, drsa,k = 0.

As stated above, boarding, transfer and alighting links capture a traveller’s out-of-
vehicle behaviour, and the costs on these links are link-specific. Since the main cost
on such links is walking time, to which travellers tend to attach higher importance
(Arentze and Molin 2013), the walking time is amplified as the cost of these links.

Figure 2. Illustration of a superpath and its generalized costs.
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Assuming there is no walking congestion, travel times on these links are fixed and inde-
pendent of link flows. Therefore, the generalized costs function applicable to boarding,
transfer and alighting links can be expressed as follows:

ca = h · la
v

a [ A1 < A3 < A4 (8)

where la is the length of link a; v is the walking speed; h is an amplification parameter.
For a subpath, generalized costs consist of two parts: mode-specific costs and link-

specific costs. The former mainly includes non-vehicle running time and pricing
factors that influence a traveller’s mode choice, such as parking time, waiting time,
transit fares, and more factors. The latter refers to the vehicle running time along the
subpath after the traveller boards a vehicle. This can be quantified by considering the
travel time on the vehicle running links constituting the subpath. Consequently, the gen-
eralized costs on the subpath lm of the superpath k between O-D pair rs can be written as:

wrs
lm = crslm +

∑
a[A2

tm,a · drsa,lm r [ R, s [ S, m [ M, lm [ Srsk , k [ Krs (9)

where crslm is the mode-specific cost on subpath lm of superpath k between O-D pair rs; tm,a
is the travel time on vehicle running link a in the subnet of mode m, a [ A2; d

rs
a,lm is the

correlation coefficient between vehicle running link a and subpath lm of superpath k of
O-D pair rs. If link a is on subpath lm, drsa,lm = 1; otherwise, drsa,lm = 0.

The mode-specific costs consist of fixed time and length-based fares, such as fuel con-
sumption and public transport fares (Li et al. 2018), which can be formulated as:

crslm = tm + tm · rm · drslm r [ R, s [ S, m [ M, lm [ Srsk , k [ Krs (10)

where tm is the time excluding vehicle running time of mode m, which is expressed as a
constant; tm is a conversion coefficient from price to time; rm is the fare per mileage of
mode m; drslm is the length of subpath lm.

Generally, travellers may perceive a longer in-vehicle time than the actual time, as they
experience discomfort due to crowding (Lo, Yip, and Wan 2003). As a result, the travel
time on an in-vehicle link comprises two components: the actual travel time and the
additional time penalty due to in-vehicle discomfort. The actual travel time is primarily
influenced by traffic flow on the link (Bureau of Public Roads 1964), while in-vehicle
crowding arises when the number of travellers onboard reaches the vehicle’s capacity
(Si et al. 2020). In this paper, we propose a travel time function for the vehicle
running link that considers in-vehicle crowding.

tm,a(xm,a) = t0m,a 1+ am
xm,a

Km · Cm,a

( )bm
[ ]

1+ fm
xm,a

Km

( )wm
[ ]

m [ M, a [ A2 (11)

where t0m,a and xm,a are respectively the free-flow travel time and the traveller volume of
mode m on link a, a [ A2; Km is the vehicle capacity of mode m; Cm,a is the traffic
capacity of link a in subnet m; am, bm, fm and wm are parameters related to mode m.

Note that in a multimodal supernetwork, travel times for various link types are set
differently: boarding, alighting, and transfer links are assigned constant travel times,
while travel times for vehicle running links are variable under the influence of link flow.
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3. Relationship between O-D demands and link flows

As is well-known, the traffic distributed on the transport network is a macroscopic
phenomenon resulting from the interaction between the travellers’ choice and the
service level of the transport system. Assignment models typically focus on travellers’
behaviours such as mode choice and path choice. These models explain how link
flows are determined under specific conditions, including O-D demands and network
structure. Obviously, such a model can be used to establish the relationship between
O-D demands and link flows.

Let Prs
m,a express the probability that demand qrs between O-D pair rs travels through

vehicle running link a in the subnet of modem. Therefore, the relationship between O-D
demands and link flows can be written as:

xm,a =
∑
s[S

∑
r[R

qrsPrs
m,a m [ M, a [ A2 (12)

x and q denote the vector of link flows and O-D demands respectively, that is
x =[· · · , xm,a, · · ·]T, q =[· · · , qrs, · · ·]T. Equation (12) can be rewritten as follows (Cas-
cetta and Nguyen 1988; Yang et al. 1992):

x = Aq (13)

where A is a relationship matrix between O-D demands q and link flows x, that is:

A =
P1
1,1 · · · Prs

1,1

..

. ..
. ..

.

P1
m,a · · · Prs

m,a

⎡
⎢⎣

⎤
⎥⎦ (14)

Theorem: If the traffic assignment problem is expressed as the following logit-based
stochastic user equilibrium (SUE) model (Daganzo 1982):

minZ(t) =
∑
m

∑
a

∫tm,a

t0m,a

xm,a(w)dw−
∑
r[R

∑
s[S

qrs · Urs[Crs(t)] (15)

where xm,a(w) is the inverse function of (11) andUrs[Crs(t)] is the satisfaction function of O-D
pair rs. We assume that the traveller’s choice probability follows the logit model, so the
satisfaction function can be expressed as:

Urs[Crs(t)] = − 1
u
ln

∑
k[Krs

exp (−uCrs
k ) (16)

where u is the parameter of the Logit model, and u ≥ 0.

Then, the probability that demand qrs between O-D pair rs travels through vehicle
running link a in the subnet of mode m, Prs

m,a can be written as:

Prs
m,a =

∑
k[Krs ,lm[Srsk

exp (− uCrs
k )d

rs
a,lm∑

p[Krs
exp (− uCrs

p )
r [ R, s [ S, m [ M, a [ A2 (17)
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Proof: For mathematical optimization model (15), the minimizing condition for the model is
∇Z(t) = 0. Take t = (tm,a)m[M,a[A2

as its minimizing point, there is:

∂Z
∂tm,a

= xm,a(tm,a)−
∑
r[R

∑
s[S

qrs
∑
k[Krs

∂Urs

∂Crs
k

∂Crs
k

∂tm,a
= 0 (18)

From Equation (16), the following equation can be derived:

∂Urs

∂Crs
k

= exp (− uCrs
k )∑

p[Krs
exp (− uCrs

p )
r [ R, s [ S, k [ Krs (19)

According to Equations (7) and (9), there is:

∂Crs
k

∂tm,a
=

∑
lm[Srsk

drsa,lm r [ R, s [ S, k [ Krs, m [ M, a [ A2 (20)

Then the minimizing condition of model (15) can be shown as:

xm,a(tm,a) =
∑
r[R

∑
s[S

qrs

∑
k[Krs ,lm[Srsk

exp (− uCrs
k )d

rs
a,lm∑

p[Krs
exp (− uCrs

p )
m [ M, a [ A2 (21)

which expresses the link flows at the logit-based SUE state.

Because the flow on a link is the sum of the demands assigned to it from each O-D, the
link flows can also be expressed as:

xm,a =
∑
r[R

∑
s[S

xrsm,a m [ M, a [ A2 (22)

Equations (21) and (22) imply the relationship between O-D demands and link flows,
that is:

Prs
m,a =

xrsm,a

qrs
=

∑
k[Krs ,lm[Srsk

exp (− uCrs
k )d

rs
a,lm∑

p[Krs
exp (− uCrs

p )
r [ R, s [ S, m [ M, a [ A2 (23)

where Prs
m,a is the flows contributed by O-D pair rs to link a in the subnet of mode m.

Note that we model this SUE problem based on the supernetwork described in sub-
section 2, so that the high-dimensional choice and multi-index travel costs are all
characterized.

4. Model and solution algorithm for multimodal transport network
capacity

Due to the availability of transportation capacity within each mode, there exists an upper
limit on the total travel demand that the multimodal transport network infrastructure
can accommodate. This upper limit on travel demand can be used to quantify
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network capacity (Yang, Bell, and Meng 2000). Since travel demand can be broken down
into multiple O-D demands (those with the same origin and destination), the capacity of
a multimodal transport network can be expressed as the maximum summation of O-D
demands. That is

max
∑
s[S

∑
r[R

qrs (24)

When a network reaches its capacity, it cannot serve additional travel demand. In this
state, the path between any O-D pair becomes unavailable, because at least one constitu-
ent vehicle running link can no longer accommodate additional traffic flow. Accordingly,
the traffic flow on a vehicle running link does not exceed its capacity when the network is
at capacity, that is:

xm,a ≤ Km · Cm,a m [ M, a [ A2 (25)

Based on Equations (12) and (25) can be rewritten as:∑
s[S

∑
r[R

qrsPrs
m,a ≤ Km · Cm,a m [ M, a [ A2 (26)

The capacity of a multimodal transport network can be calculated by the following pro-
gramming model:

max
∑
s[S

∑
r[R

qrs (27)

s.t.
∑
s[S

∑
r[R

qrsPrs
m,a ≤ Km · Cm,a m [ M, a [ A2 (28)

where Prs
m,a is obtained by solving Equation (15).

The proposed model composed of (27) and (28) constitutes a bi-level programming
model, as its constraints (Equation (28)) encompass an optimization problem (Equation
(15)). The decision variables for the upper-level problem are O-D demands, while for the
lower-level problem, they are link flows. The multimodal transport network is expected
to accommodate as many O-D demands as possible. These O-D demands are distributed
throughout the network, forming traffic flows on links. The link flows are checked to
ensure that they meet capacity constraints.

Solving bi-level programming problems is challenging because of the complex
relationship between upper and lower-level variables. The relationship can be
expressed as the response function of lower-level variables to upper-level variables.
To simplify the model, we approximate the reaction functions by solving the
logit-based SUE problem. On this base, AIA is proposed to solve the proposed
capacity model. The main idea of the AIA method is as follows: (1) for the given
O-D demands, matrix A can be obtained by solving the lower problem; (2) accord-
ing to A, the new q can be obtained by solving a monolayer linear programming
problem; (3) based on the new O-D demand, the lower SUE problem can be
solved and the new matrix A can be obtained again. The above process is repeated
until a stable objective value is reached.
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The detailed procedures of the AIA method are as follows:

Approximate iteration algorithm

Step 1. Let j = 1, and set the initial O-D demands q(j) .
Step 2. Solve the logit-based equilibrium problem (15) by MSWA.
Step 3. Calculate the contribution of O-D demands to links Prs(j)m,a(r [ R, s [ S, m [ M, a [ A2) by (23).
Step 4. Solve model (27) ∼ (28), and obtain a new q( j+1).
Step 5. Check whether maxr[R,s[S |qrst − qrst+1| ≤ 1AIA; if yes, stop; otherwise, set j = j + 1, and go to step 2.

The following Dial-based MSWA (Liu et al. 2009) can be adopted to solve the logit-
based equilibrium problem expressed in Equation (15). Since the Dial algorithm (Dial
1971) directly assigns O-D demands to links, the links’ flow from each O-D can be
easily recorded. In addition, the Dial algorithm avoids path enumeration, which contrib-
utes to computational time savings, particularly in the context of large-scale networks.
The detailed procedure of Dial-based MSWA is given as follows.

The Dial-based MSWA.

Step 1. Initialization. Let n = 0, x(n)m,a = 0.
Step 2. Update links costs. Obtain t(n)m,a at flow x(n)m,a according to Equation (11).
Step 3. For an O-D pair rs, (r [ R, s [ S), perform the Dial algorithm to get yrs(n)m,a .
Step 4. Accumulate the flows from all O-D pairs to a link and then obtain its flow y(n)m,a .

Step 5. Update the link flows according to x(n+1) = x(n) + n
(1+ 2+ 3+ · · · + n)

(x(n) − y(n)).

Step 6. Check whether maxm[M,a[A2 |x(n+1)
m,a − x(n)m,a| ≤ 1MSWA is met; if yes, stop; otherwise, let n = n+ 1, and go to

Step 2.

Note that the shortest path search in supernetworks differs from that in traditional
networks. The shortest superpath is searched according to link costs, and we account
for mode-specific travel costs in multimodal networks. However, mode-specific costs
are independent of any specific link, which brings challenges to path searches based
on link costs. The proposed supernetwork shows two important characteristics: (1)
mode-specific costs are involved only when a traveller starts a subpath, and (2) a
subpath can be started only through a boarding link or a transfer link. These character-
istics enable us to associate mode-specific costs with boarding or transfer links for the
same mode. Then the Dijkstra can be applied in supernetworks.

5. Numerical experiments

This section presents computational experiments based on two numerical cases to illus-
trate the proposed methodology. Detailed network attributes and parameter values are
given in Appendix A. All experiments are done using the Python 3.7 programming
tool on the Microsoft Windows 10 operating system with a 2.10 GHz CPU and 16 GB
RAM. Three aspects are investigated:

(1) Algorithm efficiency (simple network case and Sioux Falls (SF) network case). This
group of experiments compares the performance of the AIA, sensitivity analysis-
based algorithm (SAB) (Ying and Miyagi 2001) (see Appendix B) and genetic algor-
ithm (GA), to illustrate the merits of the proposed AIA.
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(2) Combined travel versus no combined travel (SF network case).We compare the capacity
of the large-scale network with and without considering combined travel. Further analy-
sis of travel costs is carried out to clarify the impact of combined travel on travellers.

(3) Capacity under changes in parameters (SF network case). Network capacity under
changes in transfer cost and public transport frequency are calculated. The travel
cost and share of public transport modes are analyzed.

5.1. Algorithm efficiency

We evaluated the performance of AIA, GA, and SAB using both the simple network and
the SF network. The results are presented in Figure 3 and Table 2, with detailed infor-
mation available in Appendix C.

Figure 3 illustrates the iterative process of the three algorithms, with their convergence
points and corresponding time marked with black arrows. In the case of the simple
network, as shown in (a), AIA converges in just 5.47 s, outperforming both GA and
SAB. For the SF network, as depicted in (b), AIA reaches the convergence point in
169.62 s, yielding a superior value compared to SAB, but lower than GA.

As shown in Table 3, in the case of the simple network, AIA achieves a capacity value
that is 4.87% higher than SAB and 1.69% higher than GA. However, this advantage

Figure 3. Convergence trend under different solution methods.
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diminishes in the SF network, where AIA capacity value is only 0.91% higher than SAB
but falls 0.09% lower than GA. Notably, AIA shows significant advantages in terms of
computation time for both network sizes presented in the case study.

The shorter computation time of AIA is attributed to its approximation mechanism
by approximating the relationship between variables using equilibrium conditions.
Compared to GA, this approximation mechanism solves an approximate linear pro-
gramming problem at each iteration, yielding a certain optimization direction, as
opposed to relying on GA evolutionary rules. Additionally, AIA only needs to solve
the assignment problem once per iteration, whereas parallel optimization mechanism
in GA requires solving the problem for the size of the population, which is more time-
consuming. Although SAB is also based on an approximation mechanism, AIA directly
approximates the relationship between O-D demands and link flows according to the
equilibrium assignment. SAB utilizes Taylor expansion for approximation, which is
time-consuming because of sensitivity analysis of the lower-level equilibrium
problem. It needs to be noted that the accuracy of AIA is highly dependent on the
characteristics of the assignment problem. When the assignment problem involves
scenarios of high complexity, the AIA algorithm may no longer be applicable. For
example, link costs are simultaneously influenced by their own flow and the flow of
other links.

In the SF case, the optimal value obtained from AIA is inferior to that of GA, as AIA is
a heuristic algorithm that can only yield a Nash-Cournot solution (Friesz and Harker
1985), not the same as the solution of the original bi-level programming model.

5.2. Combined travel versus no combined travel

To investigate if the combined travel matters for the capacity of multimodal transport
networks, we execute this group of experiments. Without loss of generality, we evalu-
ate the network capacity under different logit parameters. The network capacity
without combined travel is obtained based on the SF supernetwork with no transfer
links.

As shown in Figure 4(a), comparison of the capacity under the same logit parameters
indicates that the transport network capacity will be underestimated if combined travel is
not considered. This is because combined travel provides options for additional travel
demands. To further explore the impact of combined travel on travellers when the
network is at capacity, we compare the average generalized costs of the shortest path
(ASP) with and without considering the combined travel. ASP is the average value of
the shortest paths of all O-Ds in the network. Figure 4(b) shows that combined travel
can reduce the costs of individuals when the transport network is at capacity.

Table 3. Comparison of solution methods performance.

Algorithm

Network

Simple network SF network

CPU times (s) Capacity CPU times (s) Capacity

AIA 5.47 903 160.62 237867
GA 468.53 889 21271.93 238091
SAB 172.58 862 2419.68 235714
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5.3. Capacity under changes in parameters

Transfer cost and public transport frequency are important factors affecting combination
travel in multimodal transport networks (Liao et al. 2020), and thus these factors impact
the capacity of multimodal transport networks as well. The impact by the SF network is
tested by using the AIA algorithm, with the results shown in Figures 5 and 6.

Figure 4. Combined travel versus no combined travel.

Figure 5. Capacity under changes in transfer cost.
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The ASP is used to measure individual travel costs. The transfer volume (TV) is used
to refer to the sum of volume from private cars to public transit (bus and metro). A large
TV indicates a high share of public transport modes.

As shown in Figure 5, red bars indicate that the capacity of example 2 deterio-
rates with increased transfer cost. Green bars show that reducing transfer costs pro-
motes the increase of public transport share, but blue bars indicate that travel costs
may increase at the same time. However, there is not a strict correlation. In this SF
network example, the 70% reduction in transfer cost might be used as a reference
for network design, as this is the point at which the network capacity reaches the
maximum.

As shown in Figure 6, red bars indicate that the capacity improves significantly
with the increased frequency of public transport. Comparing the light red and
dark red bars, it is found that capacity is more sensitive to variations in the bus fre-
quency than to that of the metro. Because there are more bus stops than metro
stations in SF, the bus subnetwork provides more options for travel volume than
the metro subnetwork. The blue bars demonstrate that increasing frequency does
not always reduce travel costs. The reason is that higher frequency promotes
more demand and increases the cost caused by congestion. Further comparison of
the light blue bars with the dark blue bars reveals that increasing metro frequency
reduces more travel costs than increasing bus frequency. This is because a metro
has a larger vehicle capacity than a bus, which helps to reduce the cost caused by
in-vehicle crowding. The green bars show that the share of public transport increases
with the frequency of buses and metro, but the trend is no longer significant after it
reaches a certain value (in this case, zero). This implies that there may be an optimal
frequency for a high share of public transport.

Figure 6. Capacity under changes in the frequency of bus or metro.
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6. Discussion

6.1. Shortcomings of the proposed model

In the proposed model, deviations from real-world scenarios may arise due to several
assumptions. For instance, it neglects flow interactions between various transportation
modes (e.g. cars and buses sharing the same road link) by assuming that these modes
operate in separate networks. Furthermore, it assumes that all travellers make choices
by following the logit model and walk at a constant speed, with traveller heterogeneity
neglected. Additionally, there are no constraints on travel generation and attraction,
real-world urban land use is not taken into account.

Further research is needed to define and quantify the capacity of transport network.
For instance, it is imperative to account for the distinction between long-distance and
short-distance trips, as they consume varying levels of transportation resources. The
inclusion of trip distance as a factor in network capacity calculations remains an area
of ongoing exploration.

These assumptions and considerations provide a foundation for future research to
improve the model’s applicability and adaptability in various urban settings.

6.2. AIA and iterative estimation-assignment algorithm

The basic idea used in AIA is fundamentally the same as the existing estimation-assign-
ment algorithm (Hall and Willumsen 1980). Both algorithms use the ratio of O-D
demands and link flow to estimate changes in the assignment. However, there are two
differences:

(1) The O-D demands (see algorithm: AIA) is taken as the initial input in our method
instead of ratio matrix in other research (Yang, Bell, and Meng 2000; Yang et al.
1992). Since O-D demands are the focus in our model, the ratio matrix is just an
intermediate variable.

(2) The dial algorithm-based assignment (see algorithm: The Dial-based MSA.) is
applied to calculating the ratio matrix. Since the link-based assignment solution is
unique, the choice of multiple path solutions is avoided (Yang et al. 1992).

In summary, these differences are tailored to the specific characteristics of our model,
allowing a more effective solution of the proposed model.

7. Conclusions

This paper presents an approach to evaluate the capacity of multimodal transport net-
works while taking combined travel into account. Combined travel is expressed in the
logit-based SUE model of a multimodal supernetwork, and this model is used to
obtain constraints for the capacity model. Numerical examples demonstrate that the
model is effective and the proposed AIA method performs best among existing
algorithms.

This method outputs information on O-D pairs (structure and demand) and links
utilization when the network reaches capacity. The former provides a reference for
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urban land use planning, and the latter can be used to identify bottleneck links. For future
research, we will explore the practicality of this method on a real multimodal transport
network with more modes (such as bicycles and emerging transportation modes) incor-
porated. We will also discuss optimal network design strategies for maximizing network
capacity.
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