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Thomas Louf,1∗ José J. Ramasco,1 David Sánchez,1 Márton Karsai2,3

1Institute for Cross-Disciplinary Physics and Complex Systems IFISC (UIB-CSIC)
Palma de Mallorca, Spain

2Department of Network and Data Science, Central European University
Vienna, Austria
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Abstract
The socioeconomic background of people and how they use standard

forms of language are not independent, as demonstrated in various soci-
olinguistic studies. However, the extent to which these correlations may be
influenced by the mixing of people from different socioeconomic classes re-
mains relatively unexplored from a quantitative perspective. In this work
we leverage geotagged tweets and transferable computational methods to
map deviations from standard English on a large scale, in seven thousand
administrative areas of England and Wales. We combine these data with
high-resolution income maps to assign a proxy socioeconomic indicator to
home-located users. Strikingly, across eight metropolitan areas we find a
consistent pattern suggesting that the more different socioeconomic classes
mix, the less interdependent the frequency of their departures from stan-
dard grammar and their income become. Further, we propose an agent-
based model of linguistic variety adoption that sheds light on the mecha-
nisms that produce the observations seen in the data.

Introduction
As a primary means of communication, language shapes social interactions, and in return it is
shaped by society and its many aspects. Due to this circular relationship, one may naturally
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expect to see social differences between individuals reflected in the language they use. Culture,
politics, education, or the economy: all of these spheres of society can be decisive in shaping
language and its variety. In this work, we look in particular into the relationship between the
use of standard language and socioeconomic status (SES). The standard variety of a language
is defined by norms set by the language ideology of a society’s major institutions. As such,
this variety may be promoted by these institutions in a number of ways. The use of this form
in official communications, in mainstream media, or simply and most importantly, by teaching
it in schools are all good examples for such influences (1). And, as argued by Pierre Bour-
dieu (2), all these influences confer a higher value to this particular linguistic variety in society,
thus individuals who use it are attributed more linguistic capital. However, language is not only
a commodity with each of its variety being attributed some market value. Indeed, individuals
may also attribute a non-market value to a language variety (3, 4), just as speakers of different
languages may attribute more cultural value to a language (5, 6): this is what is known as dif-
fering language attitudes (7). Therefore, despite the higher market value of the standard form,
some may use other varieties of their language (1), as they have their own perception of what is
the “normal” way of speaking (8). As it turns out, it is not uncommon that some classes of the
population, particularly those of relatively low SES, prefer to use a non-standard form. This has
been shown by sociolinguists in the past, as they conducted field studies and analysed differ-
ences between socioeconomic classes, notably in matters of accent and phonology (3, 4, 9, 10).
As groups of lower SES can then be attributed less linguistic capital, their economic opportu-
nities may also be affected. SES and this linguistic variation could thus be mutually sustaining:
one inherits an SES along which comes a linguistic capital that contributes — among other
things — to constrain individuals to their status of origin. Understanding the mechanisms that
lead to this linguistic segregation is therefore of great importance. Although this phenomenon
has long been known (11), it has been observed on very limited scales, and, more importantly,
no model explaining how it might emerge has been proposed. These are the two shortcomings
we wish to address in this paper.

The PISA reports of the OECD (12) consistently show in a quantified manner that students
with lower socioeconomic background tend to have a lower reading proficiency. While these
reports confirm there is an issue to tackle, they are not extensive enough. They do not test lan-
guage production, and not the whole population but only a sample of students of a specific age.
Alternative empirical works are thus needed to understand better the phenomenon. Data from
social media have repeatedly proven useful to link SES and different social behaviours (13).
In particular, Twitter data were used in the past to study linguistic features and their varia-
tion, whether lexical (14–19), semantic (20, 21), or in spelling (22–24). These dimensions of
variation have sometimes even been mapped geographically, leveraging the geotags that users
may attach to their tweets. Having these features mapped geographically, it further enabled
researchers to relate linguistic variation to some social variable characterising the populations
of the areas under study. However, this data source has yet to unlock its full potential to ex-
plore the complex interplay between language variation and SES. A first step was taken in (25),
where the authors analyse a few markers of non-standard language in France and their socioe-
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conomic dependencies. Here, we perform a two-fold approach, both empirical and theoretical,
to investigate how Twitter users in England and Wales abide by the rules of the standard variety
of English. Remarkably, we find that this is determined not only by SES but more crucially by
the interaction strength between socioeconomic (SE) classes

Results

Spatial combination of linguistic and socioeconomic data
We leverage a database containing slightly more than 550 million geotagged tweets posted from
Great Britain by around 4.5 million users between 2015 and 2021 (for more details about the
dataset see Materials & Methods). These tweets were collected through the filtered stream
endpoint of the Twitter application programming interface. First, from all collected tweets,
we identify users who may be residents of England and Wales, following the methodology
described in Materials & Methods. To assign an SES indicator to each user, we determine their
area of residence from the geotags attached to their tweets, following the heuristics described
in Materials & Methods. Our unit areas for the study are the 7,201 middle layer super output
areas (MSOAs), which are areas created by the Office for National Statistics of the UK for the
output of the census estimates. In the following, we will refer to them as cells to avoid using
this abbreviation. Each cell hosts at least 5,000 and at most 15,000 inhabitants, with a typical
population of 8,000. The average annual net income in these cells can be obtained from the
census. This way, we couple Twitter users to a proxy indicator of their SES.

The second ingredient we need for our analysis is a measurement of people’s propensity to
deviate from the rules that define standard English. The solution we picked to measure these
deviations is to use LanguageTool, an open-source grammar, style, and spell checker. There are
several advantages of using such a tool over a pre-defined set of rules, as in (25). First, this tool
covers a very wide spectrum of potential mistakes: it has more than 5,500 rules defined for the
English language. These rules are split into 11 categories, among which are grammar mistakes,
confused words or typos. In this work we focus on grammar mistakes, as we found them to be
among the most common and the most characteristic of non-standard language (see Table S1 of
the Supplementary Material). Within that category, we provide the ten most common rules that
were broken by Twitter users in Table S2. Another important advantage of the tool is that it is
implemented in 15 languages. Our study could thus quite easily be replicated in other countries.

After pre-processing the text of tweets and detecting them reliably as having been written in
English, as explained in Materials & Methods, we therefore pass them through LanguageTool
to compute the frequency at which users make grammar mistakes according to standard rules.
From this raw frequency, we then compute the frequency of mistakes per word written by each
user. As the activity of Twitter users was previously found to follow a log-normal distribution
spanning almost four orders of magnitude (26), we compute this frequency at the single user
level, to be more representative of the general population, and not only of the few very active
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Figure 1: Side-by-side maps of our socioeconomic and linguistic variables. They present the
average net annual income given by the census, and the average frequency of grammar mistakes
that we measured from our Twitter dataset in the MSOAs of England and Wales. For the latter,
we only colour cells with sufficient Twitter population, following the residence attribution de-
tailed in Materials & Methods, and a logarithmic scale is used to better visualise geographical
variations. As an example, for both maps we provide a zoom-in on London showing the varia-
tion of these two variables in the city.
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users. In any case, we remove inactive users and keep only ones who have written at least 100
words. Then, at the cell level, we compute the average of the individual relative frequencies
for all residents. To exclude cells with too little statistics, we only kept cells with at least
15 residents left after applying the previous filter. This leaves us with 131,402 users spread
across 4,879 MSOAs. In our study we concentrate on eight metropolitan areas around London,
Manchester, Birmingham, Liverpool, Leeds, Bristol, Newcastle upon Tyne, and Sheffield. The
precise definitions that we used for these metropolitan areas is given in Table S3. A population
density map of Twitter users we obtained through this pipeline is shown in Fig. S1 for the whole
country and the analysed metropolitan areas too. In the end, in every remaining MSOA, our
analysis yields an estimate of the income of its residents, which serves as a proxy for their SES,
and of the frequency at which they make grammar mistakes, which indicates how much they
tend to deviate from a standard usage of English. These two features are mapped side-by-side
in Fig. 1. The results from our data processing are summarised in Table S4.

Linguistic varieties and socioeconomic status
Earlier studies and our hypothesis suggest that the income of people and the frequency as they
make grammar mistakes should be correlated negatively, thus indicating that higher income
people would make mistakes less frequently. This relation is indeed verified by our first obser-
vation, as we measured a low (Pearson r = −0.25) but significant negative correlation when
considering the whole observed population in England and Wales (as shown in Fig. 2). Mean-
while, we expect similar correlations when focusing on urban population. Since most of our
Twitter users are concentrated in urban areas, we expect more linguistic and socioeconomic het-
erogeneity at these places rather than in rural areas (27). We therefore consider the eight largest
metropolitan areas in England as listed earlier. All observations are summarised in Fig. 2 to-
gether with the Pearson correlation coefficients and p-values in the inset. They all reflect the
expected pattern which suggests that speakers of high income favour the use of the standard
variety and thus deviate less from the linguistic norm. However, quite remarkably, we find
conspicuous differences among the cities, even though the ranges covered by their SES distri-
butions are roughly similar. For example, in the case of Sheffield we found a very weak but
significant Pearson correlation r = −0.08, at other cities much stronger correlations emerged
up to a coefficient of r = −0.49 in Bristol. The largest cities like London and Birmingham,
which host the most diverse populations, depict relatively strong linguistic correlations, with
coefficients r = −0.27 and r = −0.25 respectively.

Assortative mixing and language variation
To understand better the reasons behind the differences between the observed metropolitan
areas, we study the mobility mixing patterns of their population. Following the origin and des-
tination of the mobility of individuals we can observe how much people from different socioe-
conomic classes may meet and mix with each other in a given urban environment. Arguably,
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Figure 2: Correlation between frequency of grammar mistakes and net income. We show them
for all MSOAs of England and Wales, and then of the 8 metropolitan areas under consideration.
Each grey dot corresponds to an MSOA, while blue lines indicate the result of a linear regres-
sion, with the corresponding Pearson r and p-value given in each legend. The areas coloured in
light blue indicate the 95% confidence interval for the regression estimates.
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this may affect the language variety they adopt, assuming that segregated groups may influence
less each other and adopt different varieties, while well-mixed populations may speak a similar
language. To quantify mobility mixing in cities we measure their mobility assortativity (28) in
terms of movements between locations of different SES.

To establish this measure, for the same population of users we first take the inferred SES of
each one of them and segment them into nσ equally populated SE class (for more details about
the SE class assignment see Materials & Methods). Next, we record tu,c, the proportion of trips
made by a user u to cell c, by counting the number of geotagged tweets posted by user u in
every cell c. The same set of geotagged tweets as the one used to infer the users’ residence is
used to compute tu,c. Finally, we compute the probability that an individual from a cell of class l
visits a cell of class k, that we summarise as a column-wise normalised mobility mixing matrix
Mk,l (defined in Eq. (3)). Note that while computing this matrix we disregard trips that start
and end in the cell of residence of the actual user. This way we remove local spatial effects that
could induce spurious observations of strong mobility assortativity. The matrices computed for
nσ = 5 classes in the eight metropolitan areas are shown in Fig. 3 and depict some interesting
patterns. First of all, it is evident that in many metropolitan areas like London, Manchester or
Liverpool, the most segregated areas are at the poorest and richest locations. At the same time,
in these cities the rest of the population is also segregated in terms of mobility, as indicated by
the emergent diagonal component. This signals strong assortative mixing patterns in these cities,
where people most likely mix with people of their own SE class, while being less likely to meet
with dissimilar others. At the same time, in some cities like Newcastle, Sheffield, Birmingham
or Bristol, mobility patterns are strongly biased towards one class (typically the richest or the
poorest one). Such biases may appear due to geographic constraints (e.g. by a river separating
the city) or due to urban design (e.g. having a shopping mall in one specific neighbourhood).
In any case, none of these matrices are random and each of them indicate some specific mixing
patterns that may indicate different levels of assortative mixing and mobility segregation.

The assortativity level present in these mobility mixing matrices can be quantified by the
network assortativity coefficient rM , that is defined as the Pearson correlation between values
of the rows and columns of the matrix (for precise definition see Materials & Methods). This
coefficient takes values between −1 ≤ rM ≤ 1. It is negative if people prefer to mix with
dissimilar others, it is zero if the mixing is completely random without any bias, and it is positive
in case of assortative biases, when people tend to mix with others of similar SES.

The rM assortativity coefficients measured from the corresponding matrices of the studied
metropolitan areas are shown in the inset of each matrix in Fig. 3. These were computed for
nσ = 5 SE classes. We show in Fig. S2 the rM values for nσ ∈ {3, 5, 10}, which shows the
robustness of rM under variation of nσ when the latter is high enough. At the same time, they
show unexpected correlations when plotted against linguistic measures. Interestingly, as shown
in Fig. 4a, mobility mixing assortativity show a clear negative correlation with the average
frequency of grammar mistakes measured in the different cities. More mixing thus tends to
imply more frequent mistakes, and less segregated populations favour the spread of popularity
of non-standard English. Strikingly, in Fig. 4b, another negative correlation was found between
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Figure 4: The influence of assortativity on deviations from standard language. (a) The frequency
of grammar mistakes seems to rather increase with mixing, although some cities like London or
Liverpool deviate quite significantly from this tendency. (b) The dependence on SES of origin
clearly decreases as assortativity increases. This means that the more SE classes mix with one
another, the less the usage of the standard form of individuals will depend on their own SES.
Blue lines indicate the result of a linear regression, with the corresponding Pearson r and p-
value given in the two legends. The areas coloured in light blue indicate the 95% confidence
interval for the regression estimates.

the mobility mixing assortativity and the correlation coefficient we measured earlier (see Fig. 2)
between SE status and the average frequency of grammar mistakes. This indicates that the
stronger the mobility mixing we observe in a population, the less the propensity to deviate from
standard rules is determined by the SES of origin. Therefore, the usage of standard English
is not only determined by the SE class, but also importantly by the degree of mixing of the
populations living in a metropolitan area.

A model for language adoption
Definition

Having identified the importance of social mixing, our next aim is to understand the mechanisms
behind this observation with a simple model. There are three main effects we would like the
model to account for:

(i) One of the two varieties of the language may be more prestigious than the other. This is for
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example the case of the standard form: it is taught at schools and spoken by mainstream
media and public institutions (29,30). This corresponds to what is known as overt prestige.

(ii) Even though one variety is less prestigious, it might still be preferred by a part of the pop-
ulation that has some kind of cultural attachment to it. For instance, slang can be preferred
by members of lower SES, as using it might give them a sense of group identity (3, 4, 9).
This is known as covert prestige.

(iii) We previously observed very different mixing patterns in various English metropolitan
areas. Indeed, mobility can be very heterogeneous, so it should be possible to plug in any
mobility data into the model to be able to understand how different mixing may affect the
dynamics of the linguistic varieties.

Relevant to our modelling challenge, there are already models for cultural transmission,
like the seminal Axelrod model (31–35), that could be akin to our desired model for language
variety adoption. However, in these models no dependence has been taken into account on
an agent’s intrinsic attribute or group identity, thus missing the effect of (ii) in their models.
Other works have tried to model the diffusion of dialect features (36, 37), which could also be
considered similar to the dynamics we wish to understand here. But these models consider
spatial diffusion with uniform use in areas, which work remarkably well to delimit dialectal
regions, but are poorly adapted to fine-grained variations such as the ones we observe within
metropolitan areas.

With these considerations in mind, we propose an agent-based model (ABM) as follows.
Our model considers agents who are assigned as residents to a cell, which belongs to one of
two SE classes. Agents have a linguistic state, which can either comply with the standard rules,
or not. The standard form has an intrinsic prestige variable s, which can take values from the
unit interval. Note that in our case, to comply with effect (i) that we wish to model, we always
set s > 0.5, thus introducing a higher prestige for the standard form. To model effect (ii), each
SE class has a preference towards one form: class 1 is biased towards the non-standard form
(denoted 1) with a factor q1, and inversely class 2 is attached to the standard one (denoted 2)
with a factor q2. These factors are also constrained between 0 and 1, and when they take a
value above 0.5, they represent a bias towards the respective form. For instance, when an agent
of class 1 speaking non-standard interacts with another agent speaking standard, they have a
probability s(1− q1) to start using the standard form as well.

Beyond the language adoption dynamics, we allow agents to move to different cells j, ac-
cording to the probabilities Mi,j , conditional to their cell of residence i. This mechanism con-
trols the mixing of the two populations that we mentioned in (iii). To summarise our model, we
show a schematic definition in Fig. 5.

Model analysis

Our model can be simulated for any number of cells and arrangements of the populations of
different SE classes. However, here we will consider a simple case in order to present succinct
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Figure 5: Schematic summary of model definition. The model features two SE classes, rep-
resented by circles and triangles. Agents in each class can speak one of two varieties of their
language: the standard form (filled shapes) and the non-standard (empty shapes). Each agent
has a cell of residence, and a mobility matrix Mi,j that defines the probabilities for a resident
of i to be at different cells at each time step. Once an agent is moved, another agent is picked
randomly to interact with. If they interact with an agent using the other variety, they adopt this
variety with a probability that depends on their SE class of origin. For instance, when a triangle
(SES 1) speaking non-standard interacts with another agent from any class speaking standard,
they have a probability equal to s(1 − q1) to adopt the standard form. Possible transitions are
presented as arrows between circles and triangles.

equations that lend themselves to interpretation and may lead to a treatable mathematical de-
scription. We will consider only two cells, with all individuals of class 1 residing in cell 1,
and all individuals of class 2 residing in cell 2. We assign by p1 the proportion of individuals
of class 1 speaking non-standard (variety 1), and by p2 the proportion of individuals of class
2 speaking standard forms (variety 2). Individuals have to speak either 1 or 2, which implies
that, for instance, a proportion (1− p1) of individuals of class 1 speak the variety 2. These two
variables therefore summarise the linguistic state of the system at any given time.

Regarding the mobility, we make the assumption that people of the two classes have the
same probability M to move away from their residence cell. Note that this parameter sum-
marises how much the classes mix, as the Pearson r of the mobility matrix in Eq. (4) satisfies
rM = 1−2M . We also assume that the two SE classes have the same population, and we obtain
the system of coupled differential equations given by Eq. (5), shown in Materials & Methods.
Two opposing effects can be identified in the dynamics of the model in this simple setting.

• The more individuals of different classes mix through their mobility patterns, the smaller
the differences in the usage of language varieties between them. This aligns with our
observation from Fig. 4b.

• The stronger the bias of a class for its preferred variety, the more homogeneous the variety
adoption within this class.
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We further determine the states of convergence of the model of Eq. (5). We thus find that
the model can not only converge to a state featuring the extinction of one of the two varieties,
but also that both may coexist. To illustrate this point, for M = 0.2, q2 = 0.5, q1 = 0.7, and
s ∈ {0.5, 0.6, 0.7}, we show in Fig. 6(a-b-c) the position of the identified fixed points of the
model and whether they are stable. These stream plots also demonstrate the dynamics leading
to convergence.

When the attachment to non-standard forms parametrised by q1 is significantly higher than
the prestige s of the standard variety (as in panel (a)) the stable fixed point corresponds to the
dominance of variety 1. At the same time, q1 = s implies a stable dominance of variety 2
(as shown in panel (c)). Coexistence of the two varieties is possible for intermediate values of
s < q1, like for 0.6 (as shown in panel (b)). As proven in Section S5.5, the condition s < q1 is
actually a strong requirement for the existence of a fixed point corresponding to coexistence. In
Fig. 6d, we show how this stable fixed point moves in the (p1, p2) space when varying M , for
s = 0.6 and different values of q1. As shown earlier, increasing M pushes the system towards
p2 = 1− p1, and whether it is biased towards variety 1 or 2 depends on the difference between
q1 and s. This feature is very much in line with the observation we shared in Fig. 4: the less
assortative the mixing – that is the closer rM here is to 0 – the less the usage of the standard
variety depends on SES – which in our case means that (1− p1) will get closer to p2.

In Fig. 7 we present the regions of the (q1,M) parameter space where the aforementioned
stable solutions appear. For a prestige favouring variety 2 (s > 0.5), but with a value still
low enough (as in panel (a)), three distinct domains appear in the parameter space: two corre-
sponding to dominance of one variety and extinction of the other, and a third corresponding to
coexistence of the two varieties. At the same time, higher values of s prohibit stable solutions
associated to the dominance of 1, as shown in panel (b). Coexistence is facilitated by less mix-
ing between the different classes, yet for a given range of values of q1, no matter how much
populations mix, the two varieties can still coexist. This is noteworthy result as while segrega-
tion leads to the conservation of varieties, we find that coexistence is still possible regardless of
the mixing.

Data-driven simulation for metropolitan areas

The rich phenomenology that the model exhibits calls for a further investigation to see if it can
reproduce the empirically observed correlations between assortativity and language varieties,
once initialised with real parameters. We run simulations in each of the eight metropolitan
areas analysed in Figs. 3 and 4. We populate their MSOAs with as many agents as they have
inhabitants according to the census, and attribute the average income also given by the census to
all agents of each area. In these simulations, we consider five SE classes, that we can compare
results directly to the outputs of our data analysis, shown in Fig. 4. To fully parameterise
the model, we need three more linguistic parameters, namely the preferences for one of the
two language varieties for each additional class. In order to limit the number of parameters to
explore, we only keep the preferences q1 and q2, which set the preference of class 1 (the poorest)
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Figure 6: Stability analysis of the model dynamics. We analyse the mean-field description of
the model, given in Eq. (5), with q2 = 0.5. Stream plots show the fixed points of the model for
M = 0.2, q1 = 0.7 and (a) s = 0.5, (b) s = 0.6 and (c) s = 0.7. The points (1, 0) and (0, 1)
are shown to consistently feature as stable (blue) or unstable (red) fixed points. The first being
stable for s significantly lower than q1 (a) and the second for s close to or higher than q1 (c). A
third fixed point featuring coexistence of the two varieties may appear for intermediate values
of s (c). In panel (d), after setting s = 0.6, we show trajectories of the stable fixed points for
different values of q1, corresponding to the coexistence when varying M from 0 to 0.5. This
shows how increasing M moves the stable fixed point of coexistence toward the dashed line
corresponding to p2 = 1− p1, and towards the extinction of variety 1 or 2 for respectively low
or high values of q1.
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points. Solutions of the mean-field model is shown defined in Eq. (5), with q2 set at the neutral
value of 0.5. The regions of the (q1,M) parameter space are depicted where different kinds of
stable solutions emerge, with (a) s = 0.6 and (b) s = 0.7. Regions correspond to three possible
stable fixed points: the extinction of variety 2 and dominance of 1 labelled with “non-standard
only”, inversely the dominance of 2 labelled with “standard only”, and the coexistence of both
varieties labelled with “coexistence”. Examples for each of these are respectively shown in
Fig. 6(a-c-b). Stable coexistence of varieties 1 and 2 is favoured for rather low mobility and a
preference of class 1 for variety 1 q1 higher than the second variety’s prestige s.
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Figure 8: Sample result from the ABM simulations in eight metropolitan areas. Correlation
between the average income and proportion of speakers choosing variety 1 at the stable state
of convergence of the simulations for s = 0.55, q1 = 0.7 and q2 = 0.5 against the cities’
assortativity. This example was selected for having one of the lowest correlations between x
and y-axis values, which are shown for other values of q1 and s in Fig. S3.

for variety 1 and of class 5 (the richest) for variety 2. Meanwhile, to attribute preferences for
variety 1 to each remaining class, we use a linear interpolation between q1 and 1 − q2. To be
consistent with the phenomenon we are interested in, this interpolation is always a decreasing
function of the class number, as we run simulations with q1 > 0.5 and q2 ≥ 0.5. To avoid
the uninteresting states of convergence featuring a hegemony of standard language, we only
consider values of the prestige such that s > 0.5 and q1 > s. Thus, the only feature left as
unknown parameter for the simulations is the inter-cell mobility of the agents. To estimate
this parameter, we leverage the mobility we observed from Twitter data, the tu,c we introduced
previously, but this time including the travels of the users within their own cell of residence. We
thus obtain a matrix giving for each cell the probability for their residents to be found in any
cell at each simulation step. In summary, at most three random draws are performed at each
step for each agent: i) to decide in which cell this agent will be interacting with others; ii) to
choose the other agent they will interact with; and if the two are using different varieties, iii) to
decide whether they will switch, according to their class switch probability (similarly to what is
depicted in Fig. 5 for just two classes). A sample result from our simulations is given in Fig. 8.

The original aim of the proposed model was to better understand how social mixing facili-
tates the interdependence between SES and the usage of standard language, as shown in Fig. 4.
To synthesise an answer to this challenge, at the stable state reached by the simulations in each
city, we measure in each cell the proportion of agents using the non-standard language variety
1. Similarly to the data analysis, we compute the correlation between the cells’ average income
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and the proportion of agents using the non-standard form, and check it against the measured
assortativity of the different cities (for model parameter values see the caption of Fig. 8). By
comparing Fig. 8 with the corresponding empirical results in Fig. 4 we find striking similarities
between the observed and modelled correlations, that verifies the modelled mechanisms to give
a possible explanation for the observed phenomena. Note that due to the two different proxies
for the usage of non-standard language, beyond the observed negative correlations, we do not
expect the absolute values of the y-axes to match. The parameter set that led to the result of
Fig. 8 was not chosen arbitrarily. Indeed, to find the best parametrization that most closely
reproduce the empirical observations, we performed a grid search in the parameter space with
an increment of 0.05 in parameter values. These are shown in Fig. S3. As visible in Fig. S3a,
to avoid states of convergence that are irrelevant to us (featuring the extinction of variety 1),
simulations were run only for values of q1 strictly superior to s. This panel depicts correlation
values computed between the axis of plots similar to Fig. 8, but for different parameter val-
ues. The highest absolute correlation value in this plot correspond to s = 0.55, q1 = 0.7 and
q2 = 0.5. The r values are shown in Fig. S3(a-b) for q2 = 0.5 and s = 0.55, respectively. The
two panels clearly demonstrate that the empirically-observed correlation pattern can be robustly
reproduced for several parameter values, which lead to stable states featuring r values relatively
close to −1. Consequently, our simple model with only three parameters is able to capture our
empirical observations with notable precision.

Discussion
Throughout this work, we have investigated the inter-dependence between SES and the usage
of different linguistic varieties. Focusing on the dichotomy between standard and non-standard
English usage in England and Wales, through a combination of Twitter and census data we
found that the average frequency of grammar mistakes and average income are slightly corre-
lated. More interesting though is that across eight metropolitan areas, the more different SE
classes mix together, the weaker this correlation, meaning the more similar the usage of English
across classes.

We have subsequently introduced an ABM that proposes an explanation for this observa-
tion. It features transition probabilities from using one variety to the other that depend on both
a globally shared overt prestige of the standard, and a class-dependent covert prestige — or
preference — for one of the two. We have here shown that the preferential attachment of a
group for a linguistic feature can be crucial to sustain it, despite an unfavourable prestige. The
analytic framework we presented here has the virtue of enabling us to capture the role of social
mixing between these different groups. In accordance with our observations made with Twit-
ter data, we have shown analytically that it tends to smooth out linguistic differences between
SE classes. Remarkably, this smoothing does not necessarily imply homogeneous language,
but may also mean comparable prominence of the two linguistic varieties of the two groups.
These analytic findings are also supported by the results of agent-based simulations involving
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the populations of the eight metropolitan areas we studied empirically. The simulations can
yield the same relationship we obtained from the data, namely that the more social mixing there
is across socioeconomic classes, the less the individuals’ choice to use standard or non-standard
language will depend on their class of origin.

This work provides a solid foundation for future works of the same vein. It could first be
extended to other countries where similar data could be obtained in sufficient amounts. Also,
our observations were made in the social context of Twitter, but individuals may choose to use
a different language in other environments. This potential change of behaviour is therefore not
captured by our model, but it could be relevant to the global dynamics. Observing the language
production of individuals in different social contexts on a scale such as the one we presented
here poses a great challenge, but it would definitely help further modelling endeavour and thus
greatly contribute to our understanding of these linguistic phenomena.

Materials & Methods

Filtering Twitter users
As we are interested in the natural speech, we start our analysis by filtering out users whose
behaviour resembles that of a bot. We first eliminate those tweeting at an inhuman rate, set at
an average of ten tweets per hour over their whole tweeting period. Then, we only keep those
who only tweeted either from a Twitter official app, Instagram, Foursquare or Tweetbot — a
popular third-party app. These were selected because they are significantly popular among real
users. Also, consecutive geolocations implying speeds higher than a plane’s (1,000 kmh−1) are
detected to discard users. Finally, in order to only keep residents of England and Wales, we
impose that users must have tweeted from there in at least three consecutive months.

Residence attribution
Tweets’ geotags can be given at different geographical levels. Some tweets include coordinates,
which were more abundant prior to 2015, when the network changed their geolocation policy.
From the end of 2015 on, it has become more common to have geotags at the level of places.
Places are geographical areas that may go from full countries, to regions or provinces, cities,
neighbourhoods or even points of interest.

Since the sizes of these places span orders of magnitude, some may intersect many cells.
There can then be so much uncertainty in the actual geographic origin of the tweet that it is
preferable to discard it. Our criterion here is that when the top four cells which contain most of
the place’s area do not contain more than 90% of its total area when put together, the place, and
all the tweets assigned to it, are discarded.

Now, to explain the heuristics we defined for residence attribution, let us first formalise some
notation. The tweets of a user u attributed to a cell c are the sum of those with coordinates and
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those with a place intersecting c. If the tweets’ place intersects several cells, then we apply the
following criterion to calculate the contribution to c:

rc =
∑

p

np
Ap∩c
Ap

, (1)

where np are the tweets in place p, Ap is the area of p and Ap∩c is the area of the intersection
between p and c.

The cell of residence of each user is thus the one from which they tweet more often between
6pm and 8am. Besides, we also impose that the user must have tweeted at least three times and
at least 10% of the time from that cell, and that at night the majority of their tweets were from
there. All users for whom a cell of residence could not be attributed are subsequently discarded
from the analysis.

Tweet processing
Since we are interested in the speech, we need to clean parts of the text which cannot be consid-
ered as natural language production. Those are the URLs, mentions of other users and hashtags.
It is not completely obvious that the latter should be discarded though. Hashtags are used on
Twitter to aggregate tweets by topics. It is an important feature of the website, whose aim is
to enable users to easily find the tweets of other users discussing similar topics, or inversely
to make one’s tweets more discoverable by others, and to see real time trends on the platform.
Hence, there can be completely different motivations behind writing a hashtag: to actually tag a
tweet with one or more topic, to promote the tweet, or simply follow a trend. Thus, the content
of hashtags can deviate significantly from normal speech (38). It is therefore safer to discard
hashtags entirely, which is no issue as long as we can collect enough textual content without
them anyway. We actually made some measurements in our tweets’ database to see if that was
the case. We took several random samples of a million tweets each, stripped them of URLs
and mentions, and then computed the ratio of characters within a hashtag compared to the total
number of characters left in those tweets. This proportion was found to be consistently below
5%. We thus consider the precaution of stripping hashtags off of tweets worth taking. After this
cleaning step, for what follows we then keep only the tweets still containing at least four words.
The next crucial step is to infer the language the tweets are written in. To do so, we leverage a
trained neural network model for language identification: the Compact Language Detector (39),
whose output is a language prediction along with the confidence of the model. Subsequently,
we only keep tweets detected as having been written in English with a confidence above 90%.

Definition of socioeconomic classes
Since the assigned SES indicator, i.e. average income, is the same for every user living in the
same MSOA, they will be all necessarily assigned to the same class. Considering the cells
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in a given metropolitan area, we rank them by increasing average net income. We get their
population from the census, denoted Nc for each cell c in the following. Denoting Ic the set of
cells with an average income lower than or equal to c’s, we determine the SE class of c as:

σc = nσ

⌈∑
c′∈Ic Nc′∑
c′ Nc′

⌉
, (2)

with ⌈·⌉ representing the ceiling function and nσ the number of classes we wish to define. σc

takes integer values between 1 and nσ, both included, the former corresponding to the cells of
lowest income, and the latter to the ones of highest income.

Definition of mobility mixing matrix and assortativity
From our corpus of geotagged tweets, for every user u we compute the proportion of tweets
made by them that fall within each cell c, denoted tu,c. This allows us to introduce the prob-
ability for an individual to visit a cell of class k knowing that they reside in a cell of class
l:

Mk,l =

∑
c∗∈Sl

∑
u∈c∗

∑
c∈Sk

t∗u,c∑
c∗∈Sl

∑
u∈c∗

∑nσ

k′=1

∑
c∈Sk′

t∗u,c
, (3)

where t∗u,c is tu,c but set to zero for c = c∗u, c∗u being the residence cell of user u, and renormalised
so that

∑
c t

∗
u,c = 1 for every user. The Mk,l form a column-wise normalised matrix, meaning∑

k Mk,l = 1. We here use the proportions t∗u,c instead of raw counts so as to make every user of
a class contribute equally to Mk,l, thus accounting for the wide range of activity distributions.

Assortative patterns can be summarised by a measure of how strongly diagonal these matri-
ces are: their Pearson r value, denoted rM here. It is defined as follows:

rM =
NM

∑
k,l klMk,l −

∑
k,l kMk,l ·

∑
k,l lMk,l√

NM

∑
k,l k

2Mk,l −
(∑

k,l kMk,l

)2

·
√
NM

∑
k,l l

2Mk,l −
(∑

k,l lMk,l

)2
, (4)

with NM =
∑

k,l Mk,l, which is equal to the number of classes nσ, by definition.

Analysis of the model in mean-field
Following the steps detailed in SI Section S5, and using all the assumptions specified there, we
can describe our model with the following system of coupled differential equations:





dp1
dt

= 2M(1−M)(1− p1 − p2)[q1(1− s)− p1(q1 − s)] + p1(1− p1)(q1 − s)

dp2
dt

= 2M(1−M)(1− p1 − p2)[q2s− p2(s+ q2 − 1)] + p2(1− p2)(s+ q2 − 1)

(5)
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Here, we assume that speakers’ interactions are all-to-all. In other words, we adopt as a mean-
field approximation, which is a good approximation when considering large populations.

Interestingly, each equation features a first term linked to the group mobility, maximum for
M = 1

2
, which describes maximum mixing. This term disappears when p1 = 1−p2 and leads to

convergence in the usage of language varieties between SE classes. Indeed, in the first equation,
if q1 ≤ s, the term in square brackets is clearly strictly positive. If q1 > s, we have

q1(1− s)− p1(q1 − s) > q1(1− s)− (q1 − s) = s(1− q1) > 0. (6)

As a consequence, the sign of the mobility term follows the one of (1− p1 − p2). It is therefore
negative if p1 > 1− p2 and positive otherwise, thus pushing p1 towards 1− p2. Similarly, in the
second equation, since q2s− q2 − s > −1, the mobility term pushes p2 towards 1− p1.

The second term of each evolution equation represents “self-growth”, independent of mo-
bility and maximum for pk = 1

2
. This term thus brings a given class k towards homogeneity.

For k = 1 for instance, it does it either towards p1 = 0 for q1 < s, or towards p1 = 1 for q1 > s.
When there is no mixing, for M = 0 or M = 1, as expected the two populations become com-
pletely independent, and the only stable fixed points of the system correspond to homogeneous
populations in terms of the language variety they use. The emerging dominant variety depends
on the sign of (q1 − s) and (s+ q2 − 1) for classes 1 and 2, respectively.

To characterise the fixed points of this system of equations, we also perform a stability anal-
ysis. There are two fixed points that can be trivially found from Eq. (5): (p1, p2) = (0, 1) and
(1, 0). Other fixed points are located using symbolic computations. Then, to determine whether
this fixed points are stable states of convergence of the system, we compute the eigenvalues of
the Jacobian of the system evaluated at its fixed points. The stable fixed points are those whose
corresponding eigenvalues have a strictly negative real part.
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ter of Babel: Mapping world languages through microblogging platforms. PLoS ONE 8,
e61981 (2013).

27. A. Mislove, S. Lehmann, Y.-Y. Ahn, J.-P. Onnela, J. N. Rosenquist, Understanding the
demographics of Twitter users, in Proceedings of the International AAAI Conference on
Web and Social Media (AAAI Press, Barcelona, 2011), vol. 5, pp. 554–557.
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S1 Description of the dataset

Table S4 gives some summary statistics of our filtered Twitter dataset, obtained after going

through all the pre-processing steps described in Materials & Methods. These show some vari-

ation from one metropolitan area to another, but, reassuringly, the user averages are quite con-

sistent across the board.

We also show a map presenting the population of each MSOA of England and Wales in

Fig. S1.

S2 Statistics for the categories of standard language rules

Table S1 gives the number of matches for the rules of each category defined by LanguageTool

on our filtered corpus, as well as the computed Pearson r correlation of their user-averaged
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frequencies with the average net income in the MSOAs of England and Wales. The very high

number of typography mistakes is mostly due to the presence of extra whitespaces induced by

our filtering of URLs, hashtags and mentions described in Materials & Methods.

We subsequently focused on grammar mistakes, which seem the most anti-correlated with

net income. The top ten rules from that category are given in Table S2, to give an idea of the

kind of mistakes that served us as a proxy to quantify deviations from standard rules.

More information about LanguageTool’s rules and categories can be found at https:

//community.languagetool.org/rule/list.

S3 Metropolitan areas’ definition

Table S3 details explicitly the areas included in our definitions of the eight metropolitan areas

studied throughout this work. Clearly, all areas show a similar number of tweets, tokens and

mistakes per user, which makes it possible to make comparisons between cities reliably.

S4 Assortativity’s dependence on the number of classes

In the main text, we give assortativity values in our eight metropolitan areas that were computed

after defining five socio-economic classes. We show in Fig. S2 the values of the assortativity

for three and ten classes, which show the robustness of our measurement when the number of

classes is not too small.

S5 Analytic results for our model of variety adoption

S5.1 Notation

Let us introduce the following notation:
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• Σ the set of SE classes in a population:

Σ = {σk | k ∈ [1, nσ]} , (S1)

• C the set of cells of residence:

C = {ci | i ∈ [1, nC ]} , (S2)

• Nc,σ the number of residents of cell c with class σ,

• Nc ≡
∑

σ Nc,σ the population of cell c,

• Nσ ≡ ∑
cNc,σ the population of class σ,

• N ≡ ∑
c,σ Nc,σ the total population,

• Mi,j the probability for a resident of ci to move to cj .

S5.2 Assumptions

Let there be only two cells: nC = 2, and two SE classes: nσ = 2, completely separated, with

the whole σ1 population in c1 and the whole σ2 population in c2:

N1 ≡ Nc1,σ1 = Nσ1 ,

N2 ≡ Nc2,σ2 = Nσ2 .
(S3)

This implies that the Mi,j can be summarized with just two values, each corresponding to a

class:
M1 ≡ M1,2 = 1−M1,1,

M2 ≡ M2,1 = 1−M2,2.
(S4)

Let us consider two varieties 1 and 2. This could be the use of standard language (1 means they

do, 2 means they do not). Now let us introduce an intrinsic prestige s for the variety 2, such

that:
P (1 → 2) ∝ s,

P (2 → 1) ∝ 1− s.
(S5)
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Without loss of generality, let us assume s > 1/2, meaning 2 is more prestigious than 1. And

let us introduce an asymmetric attachment of each group for their own variety, q1 and q2:

P (2 → 1 | σ = σ1) ∝ q1 > 1/2, P (1 → 2 | σ = σ1) ∝ 1− q1,

P (1 → 2 | σ = σ2) ∝ q2, P (2 → 1 | σ = σ2) ∝ 1− q2.
(S6)

So 2 is more prestigious than 1, but individuals of class σ1 prefer 1.

Let us finally note that, working in mean-field, one can write the following master equations:

dp1
dt

= (1− p1)P (2 → 1 | σ = σ1)− p1P (1 → 2 | σ = σ1)

dp2
dt

= (1− p2)P (1 → 2 | σ = σ2)− p2P (2 → 1 | σ = σ2)

(S7)

S5.3 Deriving the master equations

Following the definitions in Eqs. (S5) and (S6) of the influence of s, q1 and q2, the transition

probabilities can be written as follows:

P (1 → 2 | σ = σ1, ct = cj) = s(1− q1)P (vt−1 = 2 | ct = cj)

P (1 → 2 | σ = σ2, ct = cj) = sq2P (vt−1 = 2 | ct = cj)

P (2 → 1 | σ = σ1, ct = cj) = (1− s)q1P (vt−1 = 1 | ct = cj)

P (2 → 1 | σ = σ2, ct = cj) = (1− s)(1− q2)P (vt−1 = 1 | ct = cj)

(S8)

with P (1 → 2) ≡ P (vt = 2 | vt−1 = 1), P (2 → 1) ≡ P (vt = 1 | vt−1 = 2), t denoting the

current time step, P (vt−1 = v | ct = cj) the probability to pick an individual who used variety

v at t− 1 and who is at cell cj at t. Decomposing it by SE class, and using Bayes’ rule, we get:

P (vt−1 = v | ct = cj)

=
∑

k

P (vt−1 = v, σ = σk | ct = cj)

=
∑

k

P (vt−1 = v, σ = σk) ·
P (ct = cj | vt−1 = v, σ = σk)

P (ct = cj)

=
∑

k

P (vt−1 = v | σ = σk) · P (σ = σk) ·
P (ct = cj | vt−1 = v, σ = σk)

P (ct = cj)
.

(S9)
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Let us introduce pv,σk
≡ P (vt−1 = v | σ = σk) to simplify equations further, which summarise

the state of the system at the previous step. Also, since they satisfy
∑

v pv,σk
= 1, we will only

write in terms of p1 ≡ p1,1 and p2 ≡ p2,2. We also have P (σ = σk) =
Nσk∑
k Nσk

. The final term

in the product above is related to the mobility of the different SES classes. Indeed, aligning

the indices of the SE class with the one of their cell of residence, and using the fact that the

random variable Ct, which represents the cell where an individual will be encountered at step

t, is independent from Vt−1, which represents an individual’s variety usage at the previous step,

we have:

P (ct = cj | vt−1 = v, σ = σk) = P (c = cj | σ = σk) = Mk,j, (S10)

and

P (ct = cj) =
∑

k

P (c = cj | σ = σk)P (σ = σk) =
∑

k

Mk,j
Nσk∑
k Nσk

. (S11)

Let us now introduce

mk,j ≡
Nσk

Mk,j∑
k′ Nσk′Mk′,j

, (S12)

which satisfy
∑

k mk,j = 1 (unlike the Mk,j that satisfy
∑

j Mk,j = 1). It is simply the expected

proportion of individuals that will appear in j that have status k. We can then write

P (vt−1 = v | ct = cj) =
∑

k

pv,σk
mk,j. (S13)

We will further abuse notation and only use m1 ≡ m1,2 and m2 ≡ m2,1, which summarize

how mobile each group is. Let us now rewrite (S13) in terms of m1, m2, p1 and p2 only:

P (vt−1 = 2 | c = c1) = (1−m2)(1− p1) +m2p2

P (vt−1 = 2 | c = c2) = m1(1− p1) + (1−m1)p2

P (vt−1 = 1 | c = c1) = (1−m2)p1 +m2(1− p2)

P (vt−1 = 1 | c = c2) = m1p1 + (1−m1)(1− p2)

(S14)

We can subsequently write the forms in (S8) in terms of these four variables only. But what we

actually want is to write P (vt = v | vt−1 = v′, σ = σk) for v′ ̸= v. Decomposing this one by
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cell, we can get the following:

P (vt = v | vt−1 = v′, σ = σk)

=
∑

j

P (c = cj | σ = σk) · P (vt = v | vt−1 = v′, σ = σk, ct = cj)

=
∑

j

Mk,jP (vt = v | vt−1 = v′, σ = σk, ct = cj).

(S15)

Finally, inserting (S8) into (S15), we get:

P (1 → 2 | σ = σ1) = s(1− q1)[(1−M1)P (vt−1 = 2 | c = c1)

+M1P (vt−1 = 2 | c = c2)]

P (1 → 2 | σ = σ2) = sq2[M2P (vt−1 = 2 | c = c1)

+ (1−M2)P (vt−1 = 2 | c = c2)]

P (2 → 1 | σ = σ1) = (1− s)q1[(1−M1)P (vt−1 = 1 | c = c1)

+M1P (vt−1 = 1 | c = c2)]

P (2 → 1 | σ = σ2) = (1− s)(1− q2)[M2P (vt−1 = 1 | c = c1)

+ (1−M2)P (vt−1 = 1 | c = c2)]

(S16)

S5.4 Case of equal populations and mobility

In the following, we will assume Nσ1 = Nσ2 , which implies that mk,j =
Mk,j∑
k′ Mk′,j

. If we assume

equal mobility, introducing M ≡ M1 = M2, we have m1 = m2 = M , and it follows that:

P (1 → 2 | σ = σ1) = s(1− q1) [M
∗(p1 + p2 − 1) + 1− p1]

P (1 → 2 | σ = σ2) = sq2 [M
∗(1− p1 − p2) + p2]

P (2 → 1 | σ = σ1) = (1− s)q1 [M
∗(1− p1 − p2) + p1]

P (2 → 1 | σ = σ2) = (1− s)(1− q2) [M
∗(p1 + p2 − 1) + 1− p2]

(S17)
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with M∗ = 2M(1−M). We thus get to the result presented in the main text:




dp1
dt

= 2M(1−M)(1− p1 − p2)[q1(1− s)− p1(q1 − s)]

+ p1(1− p1)(q1 − s)

dp2
dt

= 2M(1−M)(1− p1 − p2)[q2s− p2(s+ q2 − 1)]

+ p2(1− p2)(s+ q2 − 1)

(S18)

S5.5 Coexistence solution

Let us assume there exists a fixed point of Eq. (S18), denoted (p∗1, p
∗
2), which is such that 0 <

p∗1 < 1 and 0 < p∗2 < 1. This would correspond to a state of coexistence of the two varieties

in both classes. We want here to find out under what conditions the existence of such a fixed

point is not possible. We assume all parameters of the system are in the open unit interval. We

found through symbolic computations that q1 ≤ s prohibits its existence, but let us prove it by

contradiction in a simple case, which is here the most physically relevant.

First, for q1 = s:
dp1
dt

= 0 ⇒ p∗1 = 1− p∗2. (S19)

It directly follows from the condition dp2
dt

= 0 that p∗2 must be either 0 or 1. In this case, there is

therefore no possible coexistence.

Let us then assume q1 < s. We have

dp1
dt

= 0

⇒ 2M(1−M)(1− p∗1 − p∗2)

[
q1

1− s

s− q1
+ p∗1

]
= p∗1(1− p∗1).

(S20)

As s − q1 > 0 and 0 < p∗1 < 1, both the right-hand side and the term in square bracket of the
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left-hand side are strictly positive. But we also have

dp2
dt

= 0

⇒ 2M(1−M)(1− p∗1 − p∗2) = −p∗2(1− p∗2)(s+ q2 − 1)

q2s− p∗2(s+ q2 − 1)
.

(S21)

Now, let us assume that s + q2 − 1 > 0. It is the case that makes sense here, since variety

2, corresponding to standard language, has a higher prestige than 1, so s > 0.5, and at least a

neutral bias of the high SE class, so q2 ≥ 0.5. Since 0 < p∗2 < 1, this implies that the right-hand

side above is negative, hence

2M(1−M)(1− p∗1 − p∗2) < 0. (S22)

This is in contradiction with the signs of the other terms in Eq. (S20). It is therefore strictly

impossible to have coexistence solutions when q1 < s and s + q2 − 1 > 0. In other words, for

the non-standard form to survive, it is necessary that the SE class 1 has a positive bias towards

the non-standard variety that is higher than the prestige of the standard form.

S6 Phase space exploration in simulations

For the simulations in the eight metropolitan areas of interest, we performed a grid search in the

parameter space with an increment of 0.05 in parameter values. These are shown in Fig. S3.
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Figure S1: Twitter population map in England and Wales. The users counted in each MSOA
were deemed residents of the areas. A zoom-in on each of the eight metropolitan areas of the
study shows the MSOAs selected in their definition, which are also given in Table S3.
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Figure S2: The influence of the number of classes on the computed assortativity.

10



(a)

(b)

Figure S3: Phase-space exploration of the model. We show the correlations r between the
empirically-measured mobility assortativity and the correlation between income and proportion
of usage of variety 1 (non-standard) measured at the end of simulations in all eight cities. These
correlation values are shown for different values of q1 and s for q2 = 0.5 in (a), and of q1 and q2
for s = 0.55 in (b).
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Mistake category Count Pearson r correlation with net income

Grammar 1 693 408 −0.25
Commonly Confused Words 283 731 −0.21
Possible Typo 1 977 466 −0.20
Miscellaneous 790 404 −0.12
Punctuation 3 525 135 −0.09
Style 708 659 −0.07
Compounding 88 391 −0.04
Collocations 46 814 −0.04
Nonstandard Phrases 5439 0.00
Redundant Phrases 103 643 0.02
Semantics 6425 0.03
Repetitions (Style) 1741 0.04
Upper/Lowercase 2 854 732 0.11
Typography 9 357 945 0.21

Table S1: Summary statistics about each category of mistake defined by LanguageTool. The
number of detected mistakes as well as the Pearson r correlation with the net income in the 4879
MSOAs left after our filters.

Rule ID Description Count

HE VERB AGR Agreement error: Non-third person/past tense
verb with ’he/she/it’ or a pronoun

122 203

THE SUPERLATIVE Zero or indefinite article (’a’/’an’) before su-
perlatives

69 461

PRP VBG He going (He is going) 58 775
CD NN Possible agreement error: numeral + singular

countable noun
40 411

ITS TO IT S I have to do laundry while its (it’s) still sunny 33 667
PHRASE REPETITION Repetition of two words (’at the at the’) 33 414
PRP PAST PART Agreement error: past participle without ’have’ 32 913
A NNS Agreement: ’a’ + plural word 32 902
BEEN PART AGREEMENT Agreement: ’been’ or ’was’ + past tense 31 697
CAUSE BECAUSE confusion of cause vs. because 30 511

Table S2: Ten most frequently detected grammar mistakes. For each of them, we provide the
rule ID assigned by LanguageTool, as well as its description and the number of such mistakes
identified in the tweets of our home-located Twitter users.
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Metropolitan area LAD20CD LAD20NM

Manchester E08000001 Bolton
Manchester E08000002 Bury
Manchester E08000003 Manchester
Manchester E08000004 Oldham
Manchester E08000005 Rochdale
Manchester E08000006 Salford
Manchester E08000007 Stockport
Manchester E08000008 Tameside
Manchester E08000009 Trafford
Sheffield E08000018 Rotherham
Sheffield E08000019 Sheffield
Leeds E08000032 Bradford
Leeds E08000035 Leeds
Liverpool E06000006 Halton
Liverpool E08000011 Knowsley
Liverpool E08000012 Liverpool
Liverpool E08000015 Wirral
Birmingham E08000025 Birmingham
Birmingham E08000027 Dudley
Birmingham E08000028 Sandwell
Birmingham E08000030 Walsall
Birmingham E08000031 Wolverhampton
Bristol, City of E06000023 Bristol, City of
Newcastle upon Tyne E08000023 South Tyneside
Newcastle upon Tyne E08000024 Sunderland
Newcastle upon Tyne E08000037 Gateshead
Newcastle upon Tyne E08000021 Newcastle upon Tyne
Newcastle upon Tyne E08000022 North Tyneside

Table S3: Definition of the metropolitan areas used in this study. For each metropolitan area,
the code and the name of the local authority districts (LADs) contained within each area are
given. London is defined as the London region (identified by the code E12000007).
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Tweets Tokens Mistakes per token
Location

Sum Per user Sum Per user User average

Birmingham 770 000 275.9 10 613 724 3801.4 3.71× 10−3

Bristol, City of 373 245 243.9 5 218 801 3407.9 3.31× 10−3

Leeds 969 553 262.2 13 731 825 3710.9 3.52× 10−3

Liverpool 1 213 219 287.1 16 721 889 3954.6 3.81× 10−3

London 5 896 489 264.1 83 594 913 3741.0 3.24× 10−3

Manchester 2 496 379 288.5 35 370 104 4084.7 3.63× 10−3

Newcastle upon Tyne 1 051 460 287.9 14 691 320 4020.0 3.89× 10−3

Sheffield 619 512 287.9 8 924 594 4145.3 3.66× 10−3

England and Wales 37 376 633 264.8 520 730 958 3686.3 3.50× 10−3

Table S4: Summary statistics of our Twitter corpus. The number of tweets and tokens and their
average number per user, as well as the frequency of grammar mistakes averaged over users are
given for our eight metropolitan areas and all of England and Wales.
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