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When considering airborne epidemic spreading in social systems, a natural connection arises between 
mobility and epidemic contacts. As individuals travel, possibilities to encounter new people either 
at the final destination or during the transportation process appear. Such contacts can lead to new 
contagion events. In fact, mobility has been a crucial target for early non-pharmaceutical containment 
measures against the recent COVID-19 pandemic, with a degree of intensity ranging from public 
transportation line closures to regional, city or even home confinements. Nonetheless, quantitative 
knowledge on the relationship between mobility-contagions and, consequently, on the efficiency 
of containment measures remains elusive. Here we introduce an agent-based model with a simple 
interaction between mobility and contacts. Despite its simplicity, our model shows the emergence of 
a critical mobility level, inducing major outbreaks when surpassed. We explore the interplay between 
mobility restrictions and the infection in recent intervention policies seen across many countries, and 
how interventions in the form of closures triggered by incidence rates can guide the epidemic into an 
oscillatory regime with recurrent waves. We consider how the different interventions impact societal 
well-being, the economy and the population. Finally, we propose a mitigation framework based on the 
critical nature of mobility in an epidemic, able to suppress incidence and oscillations at will, preventing 
extreme incidence peaks with potential to saturate health care resources.

Keywords Mobility, Epidemiology, Public Health, Policy Making, Applied Mathematics

The importance of human mobility in shaping the spreading of infectious diseases is one of the pillars of 
Computational Epidemiology1–5. Along the years, hundreds of works confirmed the paramount role of 
mobility6–12—at all scales: from urban commuting13–18 to intercontinental air travel9,19,20— in driving disease 
diffusion. For this reason, containment policies based on non-pharmaceutical interventions often involve a 
strong reduction in human mobility and different levels of confinements with the aim of reducing contacts 
within and between populations21–24.

A paradigmatic example of the application of these strategies has been the measures to fight against the 
COVID-19 pandemic. Forced by the lack of pharmaceutical solutions and the availability of vaccines, most 
countries around the world had to rely on social-distancing measures and mobility restrictions to slow-down 
community transmission of SARS-CoV-2 and limit the collapse of healthcare systems25. Although countries 
adopted different types of interventions26, they all aimed at reducing social mixing by limiting mobility, creating 
social clusters where cases can be detected and isolated. For almost all the strategies, policy-makers linked the 
strength and duration of interventions to the epidemiological situation26,27—i.e. imposing thresholds on different 
parameters such as the effective reproduction number Reff, the disease incidence per 100,000 individuals 
or the number of ICU patients. Those policies that, in most cases, implied home confinement28,29, curfews30 
and mobility reductions of more than 80%31–33 with respect to normal periods, eventually led to a consistent 
reduction of COVID-19 incidence and transmission rates34–37, with data directly linking mobility reductions 
and decreased community transmission38–41. However, lifting limitations led to a rapid resurgence of incidence 
cases and transmission42–44 with many countries having experienced a 5th or even a 6th wave of the epidemic45.

This oscillatory behavior, as we will demonstrate, can be attributed to delays and inaccuracies intrinsic to 
epidemiological measures. The effective reproduction number Reff, for example, estimates the average number 
of secondary cases generated by an infected individual. However, its measurement is affected by biological, social 
and technological lags—e.g. the disease incubation period or delays in testing and processing. Thus, Reff(t) 
measured today accounts for infections occurred in the previous 2 or 3 weeks. Similar delays are inherent to 
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other parameters as well. E.g. the number of ICU patients or deaths suffer from even larger delays since several 
weeks can pass from infection to hospitalization or death. Combined together these delays create a shift between 
the time of infection and the evaluation of the epidemiological situation, that is, measurements represent an 
epidemiological scenario up to 3 or 4 weeks in the past, making hard a real-time control of the transmission.

In a recent work, Nouvellet et al.46 proposed a statistical framework to directly link human mobility in one 
area at time t with the effective reproduction number Reff(t) in that area. Their results, relative to COVID-19 
infections in 52 countries, demonstrate an excellent agreement between the two measures, especially for the 
first wave of the epidemic, when individual immunity was extremely low and other preventive measures like 
face-masks and closure of indoor spaces were absent. These results, along with providing a methodology for 
estimating Reff(t) from mobility data, also have a more subtle implication: the existence of a critical mobility 
threshold below which Reff(t) < 1 allowing for a direct control of community transmission.

Here we develop a simple, yet meaningful, modeling framework able to grasp the connection between 
local mobility and individual contacts. In this way we are able, not only to confirm the existence of the critical 
mobility range needed to contain community-level spreading hypothesised empirically, but also to estimate its 
value for different immunity levels. Moreover, building on the link between mobility range and the effective 
reproduction number, we revisit intervention principles employed in the recent pandemic and propose an 
epidemic containment strategy where mobility range is used to assess the epidemiological situation and 
guide interventions, reducing the delay between epidemiological measurements and interventions. Although 
in practice an accurate estimation of the critical mobility level may not be available, we develop an heuristic 
procedure based on the knowledge gained from this model to approximate this range and gain its benefits with 
minimal information. Finally, reviewing the different strategies improves our understanding of the consequences 
of each intervention and can help make informed decisions to minimise healthcare system’s overload while 
controlling stress in both the economy and the population.

Methods
Minimal data layer
We use a substrate of data to make the model minimally realistic, but without losing generality. Any population 
and mobility data can be used or even a brand new set can be generated. In this work, we have employed the 
population distribution of the city of Madrid together with cell phone data provided by Kido Dynamics, dividing 
the province around the city in 1398 polygons. Mobility is measured through Call Detail Records from a major 
telecom operator in Spain, covering 13 million users over 42 weeks (January 10, 2020, to October 18, 2024). The 
dataset captures an average of approximately 100 data points per day, with a user’s residence defined as the most 
frequently visited census section from 10 PM to 6 AM each month. The sample is scaled to statistically represent 
the total Spanish population as reported by INE. These polygons correspond to the smallest possible tesselation 
of space that can guarantee the preservation of privacy when collecting data so at least 25 users where registered 
in each polygon. The data is comprised of scaled-to-census trips in the form R-O-D, i.e., origin O-destination 
D fluxes separated by residence place R of the individuals. The trip distance distribution obtained from the data 
(Fig. 1B), which will determine the behaviour of the main mobility metrics, is consistent with the literature47–49.

Model
We developed a metapopulation agent based model which has 106 agents moving and producing social contacts 
via visiting subdivisions of the Madrid region in Spain. Due to the parameter choice, every timestep corresponds 
to a day. Agents daily commute between a home (H) and workplace (W) sampled from the distributions obtained 
from the data. Moreover, along with the home-work commute, they can also perform an additional trip from 
both home and workplace independently with a probability p, as shown in Fig. 1A.

Implementation of mobility
We assume that the base level mobility, home-work (H-W), is always present (straight arrows in Fig. 1A). An 
agent’s home area H is sampled from the distribution P(H) given by census data, with the agent’s workplace W 
sampled once at the start of each simulation from the distributions of trips leaving area H by residents of H 
P (D = W |O = H, R = H), obtained from the data. Additional contacts and mobility, called “Trips” (T), can 
be included from any of the two locations H and W with a trip probability p by sampling the trip distributions 
obtained from the data, P (D = T |O = H, R = H) and P (D = T |O = W, R = H) respectively, every time 
extra mobility is required. By tuning the parameter p, we can thus pass from a situation with a basal mobility 
to other situations with a maximum of 4 social trips per agent and day. For convenience, we can refer to these 2 
periods of the day related to Home+Trip 1 and Workplace+Trip 2 as “morning” and “afternoon”. So a standard 
day is formed at least by a trip from home to work in the morning plus the return in the afternoon, with one 
potential extra trip in each time period.

Epidemic spreading
Spreading of the disease is simulated via a mass-action principle applied to the occupants of each subdivision 
of the region at different times of day. Figure 1C shows the compartmental model used to represent the 
different stages of infection, with rates and generation times listed in Table 1 similar to the recent COVID-19 
pandemic, although any infectious process with non-zero incubation period will qualitatively display the 
same phenomenology. The compartments are comprised of an infectious state I and non-infectious state S for 
susceptible, E for exposed and R for recovered. Exposed individuals are developing the disease but are not yet 
contagious. The compartments correspond to an SEIR model, the simplest compartmental model to display 
a non-zero mode in the generation time distribution50, relevant for the interplay between generation times, 
detection and mobility, plus being pertinent to most epidemic-prone diseases. The transition rates between 

Scientific Reports |         (2025) 15:3055 2| https://doi.org/10.1038/s41598-025-86759-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


compartments are inspired by the recent COVID-19 pandemic (see the parameter sources listed in Table 1), 
with no intention to replicate this disease with major accuracy, desiring only to obtain realistic timescales for the 
different infection stages.

All simulations start with the introduction of a seed of 100 infected, i.e., an incidence at t = 0 of 10 cases 
per 100,000 individuals. To make our simulations robust against stochastic fluctuations that may extinguish 
the epidemic in near-critical scenarios, we introduce 1 case per 100,000 individuals as a Poisson point process 
with rate λ = 0.01(t.s.)−1, i.e., on average once every 100 timesteps. Simulations are prevented from being 
extinguished due to stochastic noise via the seeding introduced. In order to deem that an outbreak has naturally 
concluded and is not in fact being sustained by seeding, simulations are deemed to be finished when we do not 
observe at least the same amount of cases as seeds introduced in 1000 timesteps, i.e., the effective reproductive 
number Reff < 1.

We assume that individuals have an average of k contacts per location. If we call the infectiousness of the 
disease per contact c and the probability of infection upon visiting a location P, for every susceptible in a 
population of N individuals with I infected follows a mass action principle in the form:

 
Pi = β

I

N − 1 , (1)

where the infectivity is β = c k. As this is true per location, a higher mobility implies more locations per agent, 
thus an augmented number of contacts between individuals in our population. The baseline contact level, always 
present, is given by interactions in the Home and Workplace areas. The visit to other places, T1 or T2, amplify 

Transition Rate

E → I (5.2 t.s.)−1

I → R (7 t.s.)−1

Table 1. Transition rates of the epidemic compartmental model. Values have been selected to be compatible 
with the timescales of COVID-19 infections51. t.s.=timesteps.

 

Fig. 1. Summary of our model. (A) Sketch of zones where agents can be seen during the day. H and W 
represent house and workplace respectively, with fixed mobility between them represented in straight arrows. 
T1 and T2 represent extra trips that may occur with a probability p, represented with curved arrows. (B) 
Trip distance statistics from the data used with the relationship between the mobility metric Rg  and the 
trip probability p as an inset. A fit to the trip distance data is shown with parameters a = 1.75, b = 0.26 
and c = 0.54, consistent with the power law behaviour in known literature47. (C) Compartmental model. 
Transition rates and other parameters are listed in Table 1. The compartments consist of the following states: 
susceptible S, exposed E, infected I and recovered R.
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the number and variety of potential contacts. To ensure no contacts are repeated when there is no extra social 
mobility associated to it, a pair of agents with no extra-trips will not interact twice at home or the workplace.

Characterizing population mobility levels
The agent-based nature of our simulations allows us to directly explore and employ methodology tried and 
tested for recent data driven studies of human mobility. To have a quantitative metric on the level of mobility 
within the population, we use the so-called radius of gyration Rg

47,52. For an individual i, we can define a radius 
of gyration, Rg  based on movements from the residence location as

 

Rg,i =

√√√√ 1
ni

ni∑
j=1

||rj,i − ri
H ||2 (2)

where rj,i is the vector marking the centroid of an area j visited by agent i, ri
H  is the vector pointing to the 

centroid of the area of residence (H) of the agent and the index j runs over the ni trips of the agent. Increasing p 
will increase the number of trips performed by an agent, thus inducing a larger radius of gyration. To characterise 
the whole mobility level in the population, which we will name Rg , we calculate the mean of the distribution of 
all Rg,i of all the agents so

 Rg = ⟨Rg,i⟩ (3)

The mean of the distribution, Rg , provides a completely smooth, monotonous and unambiguous relationship 
with p as can be seen in the inset in Fig. 1B. It is important to stress that Rg  is an observable that can be measured 
both in the model and in the empirical data -e.g. out of mobile phone records-, while the control parameter p is 
an abstraction that refers only to our model. Thus, to measure results, we use Rg  to quantify mobility from now 
onward.

Results
Epidemic threshold connection to mobility
As a direct consequence of the relation introduced between contacts and mobility, our model shows an epidemic 
threshold that depends on both the immunisation and the population mobility level via its descriptive metric 
Rg . Note that this has been a feature hypothesised out of empirical data in the literature46,52. Figure 2 shows how 
much mobility is necessary to spark an epidemic with a seed of infected under different initial proportions of 
immune population. The dependent variable displayed in the figure is the final size, understood as the fraction 
of population infected at the end of our simulations. A mobility boundary depending on the immunity level 
in the population is observed, inducing 2 phases; one with exponentially growing outbreaks and one without 
significant epidemic activity (exponential decay of outbreaks). The critical mobility boundary between both 
phases can be estimated via the contour lines of Fig. 2. We have chosen the contour line corresponding to a 5% 
outbreak scenario as a proxy for the critical mobility boundary separating the stale phase from the outbreak 
phase.

Our model with other implementations of mobility (see Figs. S1–5 in Supplementary Material, SM) or a more 
realistic epidemic model for COVID-19 as the one of Ref.29 (see Fig. S6D in SM) also produce two phases with 
a similar critical curve for the relation between mobility and affected population for an intermediate range of 
infectivity values, especially for those in which the final fraction of infected lays between 10% − 90%, as in this 
range containment interventions on mobility can have an effect. On the extremes, if β is very large, the critical 
boundary will shift upwards in Fig. 2, making nearly all infections happen at the minimum mobility, thus leaving 
a minimal chance for improvement with interventions (see SM, β = 0.25 in Fig. S7). Conversely, with a very 
small infectivity, the critical boundary will shift downwards and thus herd immunity will be located at a very 
small fraction of immune, limiting the length and epidemic size of our simulations and leaving us, yet again, a 
small margin to evaluate the effectiveness of measures (see SM, β = 0.05 in Fig. S7).

Interventions
Two possible types of non-pharmaceutical interventions are implemented in our model. All of them aim to 
control spiking incidences via a reduction of p and, consequently, of the contacts between the individuals. 
Simulations start at p = 0 and try to drive the system to p = 1 with the least epidemiological impact possible. 
In the first intervention procedure, inspired by the COVID traffic light system introduced in many European 
countries, the mobility reductions are triggered by exceeding the established incidence thresholds26. The second 
type of intervention takes Rg  as the main reference variable, trying to keep mobility under control and follow the 
curve of Rg,c in Fig. 2. This can be achieved by either estimating the value of Rg,c via data and epidemiological 
forecasting or via tentative approximation of the Rg,c curve due to its monotonously increasing nature with 
immunity. Various epidemiological and mobility indicators help us compare each of the interventions.

Besides non-pharmaceutical interventions, we can also consider two scenarios regarding population 
immunisation: i) a baseline scenario without vaccination in which only infected individuals can enter the R 
compartment, and ii) mimicking a vaccination campaign where susceptible individuals S pass directly to the 
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removed compartment R at a constant rate each time-step. We show results for the no vaccination scenario as 
a progressive vaccination campaign yields no qualitative difference in the interplay between mobility and the 
epidemic and constitutes only a narrowing of the simulation window before herd immunity at pc → 1 is attained 
(Fig. S8 in SM).

Incidence threshold-based interventions
In this type of interventions, the main variable to monitor is the accumulated incidence per 100, 000 inhabitants 
during the last 14 days, CI14. The ideal objective is to have the epidemic under control whilst driving the mobility 
as swiftly as possible towards p = 1, mimicking the lifting of control measures by the authorities. The value of 
p allowed is revised every Tr  timesteps and adjusted following table 2 in correspondence to the cumulative 
incidence. The selected values are arbitrary and another set can be selected to work with (Fig. S9). In an effort 
to make the simplest assumptions about this procedure, we choose equally-spaced intervals for the mobility 
parameter p and incidence intervals similar to those seen in the recent COVID-19 pandemic53,54. Due to the 
segmented, start-stop, nature of the intervention, we will interchangeably refer to this intervention as “traffic 
lights”. We define a “strict traffic light” intervention as an incidence threshold-based intervention where mobility 
values are adjusted immediately whenever a revision is held.

In a real case scenario, enforcing drastic and strict restrictions may be unfeasible in a practical sense and 
might very well also entail enormous impacts to societal well-being and economic stability. Thus exploring 
an inaccurate adoption of measures is relevant. In consequence, we introduce a less stringent intervention, 
characterised by higher revision times Tr  and by limiting the magnitude of closures and re-openings, even if it 
means reaching the intended mobility state late. In this intervention, the maximum allowed adjustment in the 
parameter p is described by ∆p ∋ pnew = pold + ∆p. The aforementioned procedure defines a “lenient traffic 
light” intervention.

CI14 p

[0,50) 1

[50,100) 0.6

[100,150) 0.3

[150,∞) 0

Table 2. Mobility states, i.e., values for the trip probability p, utilised to control mobility for each 14 day 
accumulated incidence rate CI14 in our incidence threshold-based interventions.

 

Fig. 2. Epidemic size, i.e., the fraction of individuals who suffered infection during simulation time, as a 
function of the population mobility Rg  and the initial immunity levels for infectivity β = 0.065. We include 
the critical mobility level Rg,c and the 10% outbreak contour line.
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Figure 3 exemplifies how incidence based interventions induce oscillations in both the epidemic and 
mobility. More so, drifting away from a strict approach to this system not only significantly increases the period 
of oscillations but also their amplitude. This can be attributed to extended times of Rg  both above and below the 
critical mobility level Rg,c, causing higher peaks and deeper valleys as shown in Fig. 3B,D. The strict approach, 
even when the traffic light values may be distant to the critical mobility curve, approximates the optimum value 
via fast-oscillations in mobility (Fig. 3E). We can thus measure this behaviour via an “effective mobility” defined 
as the moving average of the Rg  curve in a sufficiently large window; which in Fig. 3E stays close to the critical 
value. In contrast, Fig. 3G shows an effective mobility with a higher deviation from Rg,c, remaining frequently 
above the 10% outbreak mobility limit (yellow curve Fig. 2). This implies that in a sufficiently small window as 
to not build epidemiological inertia, strict traffic light interventions manage to approximate the critical mobility 
level at the cost of frequent closures and re-openings, with the inherent social and economic stress induced. 
Metrics to better understand and quantify the results of these interventions are introduced and commented in 
subsection Performance differences below.

Rg-based interventions
Imagining that it was possible to accurately estimate the mobility threshold Rg,c for any state of our population, 
the way to control the epidemic with a minimal intervention would be to conduct the mobility Rg  to Rg,c. Note 
that as the population gets immunised, either by infection or vaccination, Rg,c can only grow, and, therefore, 
mobility policies would comprise of a gradual, smooth and strictly increasing change of Rg  over time, in contrast 
to the on-and-off dynamics of the traffic light interventions. This is, from the epidemiological impact perspective, 
an optimal type of intervention that we are going to illustrate with our model. Later, we will discuss alternatives 
for situations in which the curve of Rg,c displayed in Fig. 2 is not available. We start the simulation by estimating 
Rg,c given the initial immunisation conditions using the contours extracted from Fig. 2. After this, due to having 
a bijection between p and Rg , a value of Rg,c can be translated into a critical value of p, pc, in our model. As in 
the threshold-based case, we need to establish an intervention revision interval Tr . After each Tr , the mobility 
parameter p is increased to match the new estimation of pc.

Unfortunately, calculating Rg,c out of empirical data is not a trivial task. An approximated estimation is 
suggested in recent works46,52. For simplicity and to illustrate the power of the critical insight gained thus far, we 
will later show a heuristic method to remain close to Rg,c without delicate modelling and information required. 
For now, we will use the contour lines of Fig. 2 to obtain an approximation of Rg,c (and pc) for our model given 
the epidemic parameters and a certain initial immunity level in the population. We chose the 5% contour line in 
order to lead the epidemic to herd immunity with the minimum incidence possible as vaccination isn’t included 
in this model. Thus, every Tr  timesteps, if the 14-day cumulative incidence is below 50 points, the mobility 
parameter p is updated to pnew  following:

 pnew = pc ∋ Rg → Rg,c (4)

Fig. 3. Examples of incidence threshold-based interventions for infectivity β = 0.065. (Left column) 
Incidence per 100,000 inhabitants and mobility curves throughout a realisation of strict traffic light 
interventions without vaccination. Mobility is adjusted every Tr = 30 timesteps and adopts the values stated 
in Table 2 immediately. (Right column) Epidemic and mobility curves throughout a realisation of lenient 
traffic light interventions without vaccination. Mobility aims to adopt the values stated in Table 2 progressively, 
in changes of ∆p = 0.1 revised every Tr = 60 timesteps. The grey dashed line in (A) and (B) represents an 
incidence rate of 10 daily cases per 100,000 individuals. (E) and (G) show the effective mobility level, calculated 
as an average of the mobility from the 180 timesteps prior to each date. (F) and (H) System trajectories in the 
immunity-mobility space of Fig. 2 for each intervention. All mobility curves are accompanied by the critical 
mobility levels at different contours shown in Fig. 2.
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An example of this procedure is shown in the left column of Fig. 4. The intervention manages to maintain a 
minimal incidence rate whilst monotonically increasing mobility, thus no stress of sudden behavioural changes 
or difficulties in applying strict changes in short periods apply. The only relevant incidence spikes are found at 
the start of the simulations where, due to outbreak contour lines being closer together at lower immunity levels 
in Fig. 2, any stochastic overshoot in mobility can lead to a higher incidence outcome.

Due to the delayed relationship between epidemiological evolution and mobility/social contacts, the previously 
mentioned methods for estimating the critical mobility level can only produce results retroactively. This means 
that the critical mobility level estimated for the time period (t1, t1 + T ) can only be determined via correlating 
the corresponding epidemic curves at a posterior time period (t2, t2 + T ) with t2 > t1 and T > 0. To estimate 
the current critical mobility level at any given time with these techniques, a precise epidemiological, demographic 
and mobility model most be developed to predict the epidemiological outcome of mobility levels at the moment 
and then use the aforementioned procedures. The complexity and precision these models entail, plus the vast 
amount of detailed data required to make these predictions accurate, can make this enterprise prohibitive for 
many governments and institutions. This challenge becomes particularly difficult when it comes to collecting 
precise and relevant data on social contacts and patterns.

Staircase approach to Rg,c
Fortunately, the knowledge gained from analysing the existence and evolution of the critical mobility level can 
help us design a heuristic to approximate this threshold without needing prior modeling and field knowledge. 
As we saw in Fig. 3, epidemic thresholds with a sufficiently quick update speed can stabilize the system in a low 
incidence regime but a great back on forth in mobility is needed to approximate the critical level. To avoid this 
social stress due to fast oscillations in mobility policies and restrictions, we can attempt to move with the critical 
mobility level. As stated, the monotonous increase of the critical level allows us to correct any overshoot in 
mobility by maintaining the mobility level until immunity makes the critical level catch up to the mobility. This 
allows us to design an intervention based on a progressive, yet always increasing re-opening, yielding very small 
incidence rates with no modeling necessary. This is done by only observing the incidence curves and staying on 
the safe side of the critical mobility level, only releasing mobility by a small increase if incidence is decreasing 
and the epidemic is deemed controlled. Thus, for every revision of measures at Tr  timesteps:

 

if CI14 < 50 & ∆I < 0 then
pnew = p + ∆p;

else
pnew = p;

end if

Fig. 4. Examples of Rg-based interventions for infectivity β = 0.065. (Left column) Incidence per 100,000 
inhabitants and mobility curves throughout a realisation of an Rg-based intervention with theoretically 
estimated Rg,c (outbreak contour 5%) without vaccination. Mobility is adjusted every Tr = 30 timesteps 
following 4. (Right column) Epidemic and mobility curves throughout a realisation of staircase interventions 
without vaccination. The mobility parameter p is forced to be monotonically increasing through time in 
gradual steps of ∆p = 0.001 every Tr = 30 timesteps. The grey dashed line in (A) and (B) represents an 
incidence rate of 10 daily cases per 100,000 individuals. (E) and (G) show the effective mobility level, calculated 
as an average of the mobility from the 180 timesteps prior to each date. (F) and (H) System trajectories in the 
immunity-mobility space of Fig. 2 for each intervention. All mobility curves are accompanied by the critical 
mobility levels at different contours shown in Fig. 2.
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The right column of Fig. 4 shows the epidemiological outcome and the behaviour of mobility resulting from 
the aforementioned procedure. Incidence shows only minimal peaks, predominantly below an incidence rate 
of 10 points, caused by any small overshoot of mobility above the critical mobility level, which we see is easily 
stabilised by holding mobility in place.

Performance differences
We are going to calculate the following epidemic and mobility metrics to each simulation in order quantify the 
performance of the different intervention protocols:

• The proportion of cases happening above 10 incidence points per 100,000 expressed as a percentage of the 
total population, designated as “surplus incidence”, to focus on possible health care system saturation and also 
omit large periods of lockdown where the epidemic is not active.

• Peak incidence, as another indicator of possible healthcare saturation29.
• Standard deviation of the relative mobility, Θ(t) := Rg(t) − Rg,c(t), as a measure of mobility fluctuations 

relative to the critical level.
• An accumulated measure of the effective mobility above the 10% outbreak mobility limit as a measure of 

when, even when oscillating, the intervention is staying a significant time in the outbreak phase of the immu-
nity-mobility diagram.

The distribution of these metrics over 100 realisations of all previously described interventions are summarised 
in Fig. 5. With no vaccination, all simulations arrive stably at a 40 − 50% epidemic size, as expected from Fig. 2, 
independently of the intervention typology. The first column of Fig. 5 shows different parameter combinations 
for traffic light interventions. As expected, higher revision intervals and less reactive mobility adjustments 
produce higher peaks and surplus incidence (Fig. 5A,B). Many reactive and frequent revisions (Tr = 30, ∆p = 1
) manage to achieve a less than a 5% surplus incidence rate. In contrast, the lenient example shown in the right 
column of Fig. 3 can produce surplus incidence rates of up to 30%. This is also manifested in the peak incidence 
metrics, where a strict approach causes peaks of up to 50 incidence points whilst the lenient approach can 
produce peaks of over 300 incidence points. Regarding metrics related to mobility, traffic light systems produce 
the largest standard deviation around the critical mobility level from all interventions tested (Fig. 5C,H,M), 
as their efficacy is inherently tied to fast oscillations that can approximate the effective mobility to the critical 
mobility level as seen in Fig. 3. This is supported by Fig. 5D where we can observe slower traffic light applications 
leading to more effective time above the 10% outbreak level. Due to having the worst epidemic performance, 
outbreak duration times (Fig. 5E,J,O) are lower than the rest of the interventions as more individuals get infected 
per timestep, leading to a faster arrival to herd immunity in the absence of vaccination.

Concerning Rg  focused interventions, both interventions show extremely low epidemic metrics (Fig. 
5F,K,G,L) with all of the cases tested. Surplus incidence rates and peak incidences manage to stay comparable 
to the best performing case of traffic light interventions, even with approximate methods such as the staircase 
approach. Of course, by design, they show much better performing mobility metrics, with standard deviations 
and effective mobilities over the 10% outbreak level staying lower than their traffic light counterparts. Naturally, 
due to having extremely low incidence rates, epidemic duration times are almost guaranteed to be larger than for 
traffic light interventions, which is not an issue having in mind that in a real case scenario, vaccination is set to 
arrive at some moment, by which we expect to have caused the minimum amount of epidemic impact if possible.

Discussion
The increasing precision and availability of mobility data calls to try new ways in which to monitor and contain 
epidemics. From individual-based approaches such as app-based digital contact tracing to wider, policy-based 
approaches such as monitoring commuting flows and general mobility levels, recent studies have been proposing 
a possible critical mobility level due to the coupling between epidemic outbursts and mobility observed through 
various sources of data and their derived metrics. In this work, we have introduced a very simple connection 
between mobility and epidemic contacts, together with a compartmental model with timescales similar to 
the recent COVID-19 pandemic, and have observed this to be sufficient to not only witness the appearance 
of a critical mobility level, but also to capture the evolution and behaviour of this critical level throughout an 
epidemic. This model has allowed us to comprehend, evaluate, and compare different interventions based on 
their approach towards mobility and the epidemic information available, and has allowed us to verify the various 
effects on the oscillatory behaviour of an epidemic produced by the proposed couplings between mobility and 
the incidence.

Our agent based model with mobility reduced to a single parameter, the trip probability p, allows us perfectly 
relate epidemic contacts to the empirically measurable observable Rg . The proposed model also incorporates 
mobility data from Call Detail Records, reproducing known social behaviours such as a distribution of trip 
distances that decays with an exponent close to the inverse square of the distance. With these simple assumptions 
and minimal data, our model is capable of reproducing a phase diagram with a critical mobility level, separating 
an outbreak phase from a stale phase. Together with epidemic observables such as the incidence per 100,000 
inhabitants, we are able to monitor the state of the system and define interventions to safely conduct the 
population to herd immunity, aiming to minimise the oscillation of the system into the outbreak phase.

Having mainly separated interventions in 2 categories: threshold-based interventions and mobility-based 
interventions, we have been able to understand the principles and consequences behind the use of both kinds 
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of interventions, plus how to better use these interventions to avoid harmful side effects such as saturation of 
healthcare resources and economic-social stress due to an unstable climate of restrictions and re-openings.

Traffic light interventions are inherently short-sighted and work by applying restrictions and re-openings 
just by observing the current epidemic state of the system. The fact that the system is forced into a handful 
of states, in our case 4 (see Table 2), depending on the epidemiological state means this system is blind to the 
key factor in this mobility-driven system; the value of the current critical mobility threshold. Restricting the 
states of the system means the system requires rapid oscillations between states so that the effective mobility, a 
key observable to understand the observed phenomena, is close to the critical threshold in a sufficiently small 
window of time. Additionally, looking only at the incidence to correct the status of your system is inherently 
a sub-optimal approach to interventions as the information provided inevitably carries a delay of weeks; the 
incidence observed at any time is a direct consequence of the events and contacts of a few weeks prior. These 
interventions become less accurate with worst case detection, a higher incubation period and a high infectivity of 
a possible asymptomatic case. Combining an overlooking of the critical mobility level of the system, the inherent 

Fig. 5. Histograms and gaussian kernel density estimation (KDE) of the different metrics and interventions 
tested. Legends on the first row show the parameter combinations plotted. The number of simulations for each 
intervention is 100. First row: Surplus incidence as a percentage of the total population. Second row: Peak 
incidence as incidence per 100,000. Third row: Standard deviation of Θ(t) := Rg(t) − Rg,c(t). Fourth row: 
Accumulated effective mobility (180 t.s. window) above the 10% outbreak level. Fifth row: Duration of the 
simulations. The center column of the figure shows Rg,c modelled as different contours of Fig. 2.
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delay and a possible lenient application of the measures will probably drive the system into a highly oscillatory 
regime of overshooting and undershooting, as seen in Fig. 3. Quickness and decisiveness when applying changes 
in mobility, plus the social stress they inevitably entail, are paramount if one desires to keep both the average 
incidence and peaks to a minimum when using a traffic light system, as shown via comparison in Fig. 5.

On the other hand, the proposed interventions based on mobility are fundamentally about utilising the 
knowledge and insight gained from observing and understanding the system in terms of its critical mobility 
level and outbreak phases. In the both examples mentioned, interventions with a modelled Rg,c and the staircase 
heuristic, we either directly set the mobility level to as close to the critical value as possible (assuming it is 
known) as in the former intervention (left column of Fig. 4) or we try to approximate it by tentatively increasing 
and sustaining mobility in reaction to outbreaks in order to follow its ascent as we did for the latter approach 
(right column of Fig. 4). These methods seem extremely well behaved, displaying minimal oscillations and very 
low peak incidences (Figs. 4A and B). In essence, the staircase approach to Rg,c would also be looking at the 
CI14 threshold, and thus could be subject to the same problems as the traffic light counterparts presented earlier. 
The real difference between the staircase approach and the traffic light system, even though they both look at the 
epidemic state to decide the next mobility level, is in incorporating the knowledge gained from observing Rg,c

, and most importantly, on the increasing nature of Rg,c, plus allowing a relaxation of the spectrum of states 
the mobility can be in. By doing this tentative increase and sustaining of the mobility, the staircase manages to 
approximate the critical level well enough to not produce large overshoots and undershoots when changing 
state. This would allow administrations that do not count with precise data and modelling to benefit from the 
knowledge of the critical mobility threshold. Whichever the case, utilising the notion of a critical mobility level 
and an outbreak phase is of the utmost importance in order to minimise epidemic impact.

Other very important benefits of Rg-based interventions are related to the effects interventions and 
restrictions have on economy and social tissue. Although these interventions do not maximise mobility above 
Rg,c (Fig. 5I,N), they provide less unnecessary closures (mobility below Rg,c) and less stress from oscillations 
(Fig. 5H,M). The progressive and monotonous increase in mobility allows for a better adaptation and planning 
for businesses and individuals, plus it can eliminate the stress and uncertainty sudden and drastic closures 
may produce on the public. The most notorious downside of these interventions is their extremely slow rate 
of achieving herd immunity, achieving simulation times of double or even triple length compared to traffic 
light measures. If vaccination is not an option, societies are not able to withstand their economy with closures 
happening along a very prolonged amount of time. As we have seen with some countries in the recent COVID-19 
pandemic, governments had to choose a trade-off between economic collapse and public health. This downside 
can be solved with other complementary interventions, as Rg,c-based measures can buy time and keep the 
population safe whilst other developments such as vaccines can be developed and put into use, accelerating the 
journey towards herd immunity.

In practice, a sufficiently accurate model of Rg  would provide better results than the one presented in this 
work. This is due to our choice in modelling as, for simplicity purposes, we keep mobility always a fix amount 
above Rg,c by using the 5% contour line. As we have seen, the 10% outbreak mobility level is closer to Rg,c at 
the start of the epidemic and then leaves more room for error. Most negative effects of this intervention shown 
in this work are due to not correcting the distance between Rg  and Rg,c as the epidemic evolves, leaving less 
distance at the start and increasing mobility respect to Rg,c as times advances. In any real scenario, if an outbreak 
is detected by using this approach, mobility can be held or even lowered if necessary, options not included in our 
model for simplicity’s sake.

The limitations of our setting and model are evident. Our model assumes mobility as being the only factor 
in disease spreading and incorporates no information on variable transmissibility, variable behaviour on each 
stage of the compartmental model, seasonal mobility and changes in social contacts, demography, precise social 
contact modelling, realistic vaccination campaigns, improved detection and tracking of the incidence, and the 
problem of how to precisely estimate immunity in the population. Another crucial limitation for a real case 
application would be that, apart from absolute lockdown, any given mobility policy may have an undetermined 
reaction by the population. A population may ignore or overreact to a policy depending on their knowledge 
of the disease, opinion, beliefs and even the amount of time they have been under stress due to containment 
policies. The recent pandemic has seen some incidence spikes due to pandemic paranoia and lockdown/
restriction-induced psychological ill-being in the population, where epidemic risk warnings were relatively or 
completely ignored due to burnout with the hopes of returning as soon as possible to a normal life regime. Thus 
a natural progression of this work would be to not only focus on mobility as the single factor to produce this 
critical phenomena, but also how to incorporate changes in disease transmissibility, include other strains and 
variants of the disease and changes in average number of contacts, as this would change the parameter β without 
necessarily increasing the mobility level Rg . In policy making practice, it is in fact very complicated to know 
exactly how policies impact mobility with precision. If jobs and activities can be ordered or classified depending 
on how essential they are to society or how many contacts they can potentially generate, this could be a way to 
decide which shops and services are allowed to re-open and allow the citizens to attend those places. Anyhow, 
any proposed policy can be monitored via the radius of gyration. A precise modelling of human behaviour 
related to complying with policy making and how that affects the observed mobility level and contact patterns 
would also be necessary to improve results. Note that, although the infectivity depends on other factors, these 
would only alter the critical boundary in the Rg  vs immunity diagram, but not the validity of our analysis and 
control framework. More so, even with our assumptions, mobility and immunity are not the only factors that can 
cause outbreaks as the current prevalence of the disease in the population plays a great role. Further works must 
add this third axis to the phase diagram as outbreaks stemming from a given mobility and immunity level will 
surely be affected by the disease prevalence in the population. Possible future works include incorporating better 
data on contacts and transmission, mobility, incidence and demography in an attempt to produce estimations 
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for the critical mobility level and check via the known methods if a more refined model can accurately predict 
these critical thresholds. Precise information and observation of the critical mobility threshold would take us 
a step closer to shifting epidemiological interventions primarily into prevention territory and not mainly into 
mitigation efforts, as we have seen in the recent COVID-19 pandemic.

Thanks to the knowledge gained from studying the criticality associated to mobility in epidemics and the 
increasing amount of data available for administrations and research bodies, we hope our study can help to 
retroactively clarify the role of mobility in the observed phenomena during the recent COVID-19 pandemic 
together with designing better strategies for policy making in the case of future epidemic events; minimising the 
impact of the disease on the population whilst allowing for a better, smoother transition to normality for both 
the economy and society alike.

Data Availability
The code and data used to perform simulations is available at  h t t p s :  / / g i t l  a b . i fi   s c . u i  b - c s i c . e s / j e s l o p / c r i t i c a l - i n t e r 
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