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Communities are clusters of nodes with a higher than average density of internal connections. Their detec-

tion is of great relevance to better understand the structure and hierarchies present in a network. Modularity has
become a standard tool in the area of community detection, providing at the same time a way to evaluate
partitions and, by maximizing it, a method to find communities. In this work, we study the modularity from a
combinatorial point of view. Our analysis (as the modularity definition) relies on the use of the configurational
model, a technique that given a graph produces a series of randomized copies keeping the degree sequence
invariant. We develop an approach that enumerates the null model partitions and can be used to calculate the

probability distribution function of the modularity. Our theory allows for a deep inquiry of several interesting
features characterizing modularity such as its resolution limit and the statistics of the partitions that maximize
it. Additionally, the study of the probability of extremes of the modularity in the random graph partitions opens
the way for a definition of the statistical significance of network partitions.
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I. INTRODUCTION

Graphs are used as mathematical representations of com-
plex systems. Examples can be found in biology, technology,
social, and information sciences [1-3]. Real world networks
show several nontrivial topological features, among which
one of the most fascinating is the organization of their nodes
in local clusters or modules known as communities. Commu-
nities are groups of nodes with a high level of internal and
low level of external connectivity. They are subgraphs rela-
tively isolated from the rest of the network and are expected
to correspond to groups of elements sharing common fea-
tures and/or playing similar roles within the original system.
The last few years have witnessed an increasing interest in
defining and identifying communities [4—12] (see [13] for a
recent review). Different methods have been proposed from
topological considerations [6,7,9] to the study of the influ-
ence that communities have in the properties of dynamical
processes running on the network such as random walks dif-
fusion [5,12] or the Potts model [8].

A major role in this context is played by the modularity
function Q introduced by Newman and Girvan [6]. The
modularity is a quality measure aimed at quantifying the
relevance of the community structure in a network partition.
It is defined as

1 C
QC= Mz (egp,<p_<e(p,go>)’ (1)

where M is the total number of links in the network, the sum
runs over the C communities of the partition, oo stands for
the number of internal links in the community ¢, and (e, ,)
is the expected value of this quantity in a random null model
(typically, the configurational model). The modularity corre-
sponds thus to the comparison between the actual number of
internal links of the modules and the number they would
have in a random null model. The partition with maximal Q
is then considered the best and most significant division of
the network in communities [6]. The search for such optimal
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partition is in general a great challenge since it was proved to
be a NP-complete hard problem [14]. Many heuristics rely-
ing on different approaches have been introduced to approxi-
mate the optimal partition: Some based on cluster hierarchi-
cal division or aggregation methods [6,15-22], on simulated
annealing [10,23], spectral methods [24-26], genetic algo-
rithms [27], or extremal optimization [28] to mention a few.
Still modularity maximization as a procedure for community
detection is not free from shadows. It was shown that the
modularity suffers from resolution limits [29,30], not being
able to discern the quality of modules smaller than a certain
size (V’M). Also optimized partitions even in random graphs
have nonzero modularity [31], posing the question of the
significance of a partition. And, finally, the huge number of
degenerate local maxima of Q in common examples can
practically prevent the finding of the real optimal partition
[32].

In this paper, we choose a different route to study the
modularity function, trying to shed some additional light on
its limits and intrinsic properties. We develop a combinato-
rial method to estimate the distribution of modularity values
in the partitions of the configurational model [33-35]. Our
approach leads us to write explicit formulas for the modular-
ity distribution and to analyze in details the characteristics of
this function. We focus our attention on the resolution limit
of modularity [29] showing that, even in the case of random
networks, modularity prefers to merge small groups into
larger ones. We also focus on the evaluation of the statistical
significance of communities, basing our estimates on the
probability associated to modularity in the configurational
model and extending previous results on the topic [31,36].

The paper is organized as follows. In Sec. II, we introduce
the configurational model (i.e., the null model of modularity)
and propose a combinatorial approach for the study of its
networks’ partitions. In particular, Sec. II A is devoted to the
description of the model, while Sec. II B deals with the
theory of communities in the configurational model. In Sec.
II C, we show how to estimate the number of internal con-
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nections of a community. From Sec. III, we start with the
analysis of the modularity function in the configurational
model. We show exact expressions for the probability distri-
bution function of modularity and analyze its main features.
In Sec. IV, we focus on the statistics of the maximal modu-
larity in the configurational model and propose a simple, but
efficient way for the determination of the statistical signifi-
cance of partitions in networks. In Sec. V, we extend our
whole theory to the case of directed and bipartite networks.
We draw our final comments and considerations in Sec. VI.

II. STATISTICAL MODEL

The configurational model is a prototypical algorithm for
the generation of uncorrelated networks with prescribed
number of nodes and of node connections (degree). The pro-
cedure for the random networks construction was originally
introduced by Molloy and Reed in Ref. [33]. This model has
been the subject of many research papers along the last de-
cade. Typical properties observed in real networks are gen-
erally tested against the model graphs in order to asses
whether they are effectively genuine or just induced by the
constraints to which the network is subjected as keeping a
degree sequence invariant. Examples range from the simple
determination of degree-degree correlations [37] to cluster-
ing [38]. Community structure, which can be seen as a cor-
relation between connections at a local level, is (must be)
also tested against a null model. The modularity function,
which has become the standard tool in community detection,
is defined using the configurational model as null model [6].
Modularity in fact compares the number of connections be-
tween nodes of the same module with the one expected on
average in the configurational model, i.e., for random net-
works with the same set of vertices and node degrees as the
given graph. Before going further, it is worth stressing that
other, more or less restrictive, null models can be also em-
ployed in defining the modularity function [39-41]. We
chose the configurational model as a paradigmatic example
for our analysis essentially due to its simplicity, to the fact
that it was the original null model in the definition of Q and
that it keeps being the most extensively used.

In the next subsections, we study in details the configura-
tional model. We propose a combinatorial approach for the
enumeration of all possible network partitions belonging to
the ensemble generated by the model and formulate exact
expressions for the probability of the number of internal con-
nections of their modules. The whole theory represents there-
fore a combinatorial approach to the configurational model
with explicit application to modularity.

A. Configurational model

The basic ingredients of the configurational model are the
number of nodes and the degree sequence of the network
nodes. Consider therefore a network composed of N nodes
and denote the degree of the jth node by k;. The full degree
sequence is then the set {k;}={k,,k,,...,ky}. The procedure
to construct the networks is very simple: each node j is con-
nected to other k; randomly chosen nodes but always satis-
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FIG. 1. (Color online) A simple network generated according to
the configurational model. The network is composed of N=6 nodes
and M=6 edges. The degree sequence is {k;}={k;=3, k=4, k3
=2, ky=1, ks=1, k¢=1}. (a) A sequence of node labels is gener-
ated and (b) according to it connections are drawn in the network. If
node labels are replaced by community labels (in this case,
o1=05=V, oy=04,=0, o3=0¢=0), the network in (b) can be
seen as a graph between C=3 communities with degree sequence
{d }={dy=4, do=5, dm=3}. In this particular case, the measured
values of intra- and intercommunity connections are: {e, ,.€, g}
={eyv=1, e00=0, egpg=0, eyo=2, eyn=0, eon=3}

fying the constraints imposed by keeping the entire degree
sequence constant. We consider first the case of undirected
networks. For this class of networks, the sum of all degrees
should be an even number and we can thus write

N
> k;=2M. ()

J=1

The generation mechanism of the configurational model can
be formulated in an alternative manner (see Fig. 1): (i) ran-
domly fill a list composed of 2M entries with node labels
ranging from 1 to N, where the number of appearances of
each label is equal to the respective node degree; (ii) draw a
connection between each pair of nodes whose labels appear
at positions p,;_; and p,; for each k=1,2,...,M. It is clear
that in the case of this construction procedure, multiple con-
nections and self-loops are not avoided. Their presence how-
ever can be considered negligible under certain realistic as-
sumptions [35], in simple words that no node concentrates a
significant fraction of the network connections [42].

The construction procedure just introduced is the most
common technique to build the graphs of the configurational
model. Note that it samples homogeneously out of the set of
all possible sequences of node labels, not out of the set of all
possible graphs with given degree sequence. The reason is
that the same graph may be represented by different se-
quences of node labels and its multiplicity may vary as a
function of several factors (i.e., number of self-loops, mul-
tiple connections, etc.). The total number of possible se-
quences of node labels with prescribed degree sequence {k;}
is simply given by

2m)!

2M
>=—- 3)
kl’kZ’ ...,kN k]’kz'kN'

Ty({ki}) = (

The term on the right of Eq. (3) is a multinomial coefficient
and counts the total number of ways of organizing N node
labels with multiplicities {k;} subjected to the constraint of

Eq. (2).
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B. Communities in the configurational model

Consider now a partition of the network in C groups or
communities. For partition we mean a division of nodes in
several nonoverlapping node groups. The degree d,, of the
group ¢ (where ¢ canbe 1,...,C) is given by the sum of the
degrees of all nodes belonging to it

dy= 2 k;. (4)

jee

The network between communities in the configurational
model is equivalent to a configurational model composed of
C “super nodes,” one per group, with degree sequence
{d}={d,.d,, ...,dc} (see Fig. 1). Similarly to the argument
leading to Eq. (3), also in this case the total number of se-
quences of communities labels can be written as

@2em)!

=, 5
dl’dZ""’dC> dlldz!"'dc! ( )

Tc({da}) = (
If we refer as e,y to the number of edges present between
the ¢th and the 6th community since the network is undi-
rected we have for symmetry that e, y=¢ ,, for any ¢ and 6.
The links intracommunity are completed by the internal
group links, denoted as e, , for each group ¢. By definition,
these quantities should obey the C relations

C
dy=egot+ 2 epp YVeo=1,....C, (6)
=1

because the degree of the ¢th community is equal to the sum
of all edges having only one end in ¢ plus twice the number
of edges having both ends in the group. Fixed a particular set
of values for intra- and intercommunity edges, namely,
{ea,a’ea,ﬁ}={el,lve2,2’ s €C,C1€12,€1 355 €1 Cr s €Ol s
the total number of sequences of community labels that sat-
isfy these requirements are

C 1 c-1 C 1
C-1xC
RC({ea,asea,B}) = M' H ! 22“’:126:“”—16%6]] H .

e=1€p.0° =1 b=¢+1 e%ﬁ!
(7)

Equation (7) states that the number of sequences of commu-
nity labels, with given intra- and intercommunity edges
{ea,a,eaﬁ}, can be obtained as the product of three factors:
(i) M!, the number of permutations of the M edges; (ii)
ngle:w!, the inverse of the different number of times to list
all the intracommunity edges; and (iii) Hg;llﬂg:wﬂﬁ, the
inverse of the total number of ways to arrange all the inter-
community edges, where in particular the factor

222;,‘2;0”%,, is needed due to the fact that the presence of
an intercommunity edge is independent of the order in which
the community labels appear on the list (i.e., e, y=ey,, for
any ¢ and 6). The probability therefore to observe a particu-
lar sequence of label communities with certain set of values
{eqar€apt is given by the ratio between the quantities de-
fined in Egs. (7) and (5),

Teld)) ®)

PC({ea,w ea’,B}) =
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C. Internal connectivity of communities

In the case of communities, we are not generally inter-
ested in the whole set {e, ,.e, g} for the intra- and intercom-
munity edges, but only in the set of possible sequences with
given intracommunity edge sequence {e, ,}. This basically
amounts to calculating the marginal distribution of the prob-
ability in Eq. (8) by summing over all the possible configu-
rations of the intercommunity edges {e, g},

1

where in the sum the intercommunity edges {e, g} are sub-
jected to the constraints of Egs. (6).

Pc({eq.q}) is the probability that groups of nodes, with
degrees specified by {d,}, have internal connections equal to
the sequence {e, .} in the hypothesis that connections have
been drawn according to the configurational-model rules.
The distribution Pc({e, ,}) can be easily obtained for C=2
and C=3. In these cases, the intercommunity edges {e, g} are
completely determined by the constraints of Egs. (6) given
the number of intracommunity edges {e, .}, hence no sum is
actually required. For example, for C=2 Eq. (9) becomes

PC({e a, a}) =

M) d1 '(2M _ dl)!2d1—2el,l
2M)! ey (M —dy +ey)!(d) —2e; 1)
(10)

7)2({31,1}) = (

given that from Eqs. (2) and (6) we have e; ,=d;—-2¢;; and
ey,=M—d,+e; ;. Notice that P,({e; ;}) depends only on e i,
since e, ; is fixed for any value of e; | and vice versa. Inter-
estingly, the distribution of Eq. (10) has been also found as
the solution of a completely different problem in survival
analysis where is known as the Univariate Twins Distribu-
tion and has applications also to the study of the genetic
variability of neutral alleles in a population [43].

For C=3, the calculations are a little more cumbersome
but we obtain

M!
@am)!

M-Mint

Ps({el,l,ez,z,e_%,.%}) =

3

!
XH d(P.

ool Cog! (M =M —d,+2e

%‘P)!,
(11)

where M ,-m:E?p:le(P,(P is the total number of intracommunity
edges.

The general case (i.e., arbitrary number of groups C) in-
cludes a sum over all the possible configurations of the in-
tergroups connections. This turns the calculation of
Pc({eq.q}) quite hard, in fact we were not able to find an
analytical closed form for it. This problem is similar to those
appearing in the enumeration of contingency tables (whose
most celebrated examples are the latin and magic squares)
and represents still an open problem in combinatorics
[44-46]. Tt is still possible to numerically determine the sum

with a computational time growing as mMe [the number of
free indices in the sum of Eq. (9) is C?/2-3C/2]. Another
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possibility is to relax the constraints of Egs. (6) considering
the groups as independent of each other. This “pair approxi-
mation” yields

C
Pellewa)) = Pelfead) = [T Palle, o). (12)
e=1

which stands for the product of C independent bipartitions,
each of them weighted by the probability P,({e, ,})
of Eq (10), where the constraints are now 51mply
2e,,=d,, Ve=1,...,C. Due to the reduced calculation bur-
den, this approximation can be helpful in some cases in
which a fast evaluation of Pc({e, .}) is needed. We expect it
to work better when the number of communities C is larger.

III. MODULARITY FUNCTION
A. Modularity distribution in the configurational model

Up to now we have introduced a formalism which allows
to compute, given C groups of nodes and their degree se-
quence {d,}, the probability distribution function that such
groups have a set {e,,} of internal connections under the
hypothesis that the network is generated according to the
configurational-model algorithm. As explained before, the
modularity function Q. of a partition in C groups with de-
gree sequence {d,} and internal connectivities {e, .} is de-
fined as

= Vc({da})

C
1 M,
= M% (e(p,(p_ <e(p,tp>) M > (13)

where V-({d,})= EC _i{e,  represents the sum of the ex-
pected internal connectlvmes over all modules and is deter-
mined by the degree sequence of the modules {d,}. The av-
erage value of the intracommunity edges of the module ¢
can be obtained by marginalizing the general distribution
Pc({eq.qt) of Eq. (9) and turns out to be

(o) = 20le= ] 14
eM-1)

Notice that this average value is slightly different from the
one used in the original formulation of the modularity, i.e.,
(e(p,(p>:(d¢)2/ (4M), which is a rougher approximation to the
value expected in the configurational model. The probability
of the modularity function to have a value Q for the networks
of the null model ensemble can be then calculated as

PoQ) = 2 Pclfead) d0cfeaad) -0l (15)

{eaat

Note that the term [ Qc({e,. .})—Q] adds to Egs. (6) the new
constraint M;,,=MQ+V({d,}). For instance, this implies
that for C=2 and C=3 the distribution of the modularity in
the configurational model can be obtained by modifying ac-
cordingly Egs. (10) and (11).

B. Properties of Q. and P(Q)

We illustrate now some characteristics of Q. and its dis-
tribution P-(Q) in the null model with a few examples

PHYSICAL REVIEW E 82, 026102 (2010)

simple enough to admit an analytic or semianalytic treat-
ment. The interest in the use of modularity is generally fo-
cused on the search of the partition with the maximum Q.
This search, as has been discussed, is a hard problem [14],
mainly due to the huge amount of almost degenerate local
maxima in the modularity landscape [32]. Such abundance of
local maxima has been even found when the modularity op-
timization is applied to the random networks generated with
the configurational model. With our formalism we are not
able to judge whether a partition is a local maximum in Q.
landscape, but we can already evidence the problem of the
abundance of local structure by considering our results from
a more restricted point of view. For the first of our examples,
we choose to split the null model networks in three groups, a
case for which we can obtain analytical solutions. We com-
pute the average value ((Q3)) and the standard deviation
(0p) of P5(Q) as a function of the relative degree of the
communities [i.e., d,/(2M) and d,/(2M)]. These quantities
are calculated only over the partitions corresponding to the
top g% instances of the modularity. For g=100, (Q;)=0 ev-
erywhere, as expected since the expected modularity in the
null model is zero, while the standard deviation exhibits a
regular behavior. The results for o, can be seen in the panel
(a) of Fig. 2. Then to approximate the local maxima of Q,
we restrict the calculations to only the top g=5% instances
of the modularity distribution. Recall that we are doing this
analytically so the analysis precision does not suffer for con-
centrating in extreme values. In the panel (b) of Fig. 2, one
can observe how the average is not longer null and varies
consistently from the region of imbalanced partitions
[i.e., d,/(2M) =0 for one the ¢ group] to the zone of homo-
geneous partitions [i.e., d,/(2M)=1/3 for all ¢]. There is a
wide region in which large changes of d,/(2M) and d,/(2M)
do not produce important variations in the average value. At
the same time, it is possible to observe a fine structure point-
ing to a rich local landscape geometry for Q5. This result is
just indicative since the projection of the partitions space in a
plane with only two parameters [d,/(2M) and d,/(2M)] is
too gross. See for instance [32] for a more systematic method
to do such projection. The standard deviation of the top 5%
modularity instances, (panel ¢ of the Fig. 2), continues to be
large for homogeneous partitions and decreases as the parti-
tion becomes more imbalanced following similar patterns as
(03).

We consider next another interesting application related to
the so-called resolution limit of the modularity function
[29,30]. We analyze all the possible divisions in C=3 groups
[as before monitored as a function of the relative degree of
two groups, d,/(2M) and d,/(2M)] and calculate the modu-
larity Q5. Fixed d,/(2M) and d,/(2M) [and d5/(2M)], we
calculate also O, which is the modularity of the partition
with groups 1 and 2 merged together. The quantity Q;—Q, is
then measured and its average value and standard deviation
over all partitions corresponding to the top g% values of Qs
is estimated. Note that if Q,> Q5 according to modularity
optimization it would be more convenient to merge both
communities. When all the partitions are considered
(i.e., g=100) the average is always zero and the standard
deviation [see Fig. 3(a)] shows a regular pattern with maxi-
mum at d,/(2M)=d,/(2M)=1/2. When, again to approxi-

026102-4



COMBINATORIAL APPROACH TO MODULARITY

@ 5, q=100

0.06

0.05

0.04

0.03

0.02

0.01

0

0.14
0.12
0.1

0.08
0.06
0.04
0.02

-0.02
0 02 04 06 08 1
d,/2M)

C

© g q=5
0.02
0.018
0.016
0.014
0.012
0.01
0.008
0.006
0.004
0.002
0

0 02 04 06 08 1
d,/(2M)

FIG. 2. (Color online) Fixed the partitions corresponding to top
q% of modularity, we compute the average and standard deviation,
over this ensemble, of the modularity Q5 as a function of the rela-
tive degrees of the groups [i.e., d;/(2M) and d,/(2M)]. For
q=100, the average value (not shown) is zero for every value of
d;/(2M) and d,/(2M). On the other end, the standard deviation
(panel a) tends to be small when the degree of one of the commu-
nities is small and grows as the communities become similar in
their degrees. For ¢g=5 (panel b and c), both average value and
standard deviation grows as the partition becomes more homoge-
neous. Here we set M=100.

mate the local extrema of the Q distribution, only the top 5%
of the partitions is considered, the difference between Q5 and
0, is not longer zero, but there is wide range of values of
d,/(2M) and d,/(2M) for which Q,> Q5 [see Fig. 3(b)].
This happens when at least one of the merged community is
“small,” the limit of resolution is related to VM [29]. Modu-
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FIG. 3. (Color online) Fixed the partitions corresponding to the
top g% of modularity, we compute the average and standard devia-
tion, over this ensemble, of the difference Q;—Q, as a function of
the relative degrees of the groups [i.e., d,/(2M) and d,/(2M)]. For
g=100, the average is always zero, while the standard deviation
(panel a) grows as d,/(2M) and d,/(2M) tends to 1/2 (i.e., the third
community is empty). For g=>5, there is a region in which Q, is
larger than Qs, while Q3—Q, grows as d,/(2M) and d,/(2M) tends
to 1/2. The standard deviation (panel c) is maximal for an homoge-
neous split of the network [i.e., d\/(2M)=d,/(2M)=1/3] and regu-
larly decreases to zero as one move far from the homogeneous split.
Here we set M=100.

larity optimization would then tend to aggregate the two
groups in one under such circumstances regardless of the
other groups’ properties. The standard deviation of Q;—0Q, in
the top 5% behaves differently from what is observed for
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¢=100. The maximal standard deviation is obtained for ho-
mogeneous partitions, while it decreases as the partition be-
comes more and more imbalanced as can be seen in Fig.
3(c).

IV. STATISTICAL SIGNIFICANCE OF PARTITIONS

The most important application of finding an explicit form
for the distribution of the modularity values of the partitions
of the random graphs of a null model, as the configurational
model, is that the extremes of the distribution offer compari-
son points to establish the statistical significance of the par-
titions of equivalent real networks [31,36]. Given the degree
sequence of the communities {d,}, Eq. (15) provides the
computation of the probability distribution of the modularity
function P(Q|{d,}). In order to consider the different parti-
tions of a graph, we need to obtain the unconditional prob-
ability P-(Q) (only conditioned to the node degree se-
quence). This probability can be obtained from the
convolution

Pc(Q) = {E} POHdNP(d,}), (16)
da

where P-({d,}) depends also on the degree sequence of the
nodes in the network (i.e., {k;}). The computation of this
probability is very expensive and we have done it only for
C=2. In this case, the number of partitions in which one of
the groups has degree d; can be obtained as

G, =311 (N:) (17)

it &

where N, indicates the number of nodes with degree k
present in the network and n; the number of vertices with k
connections belonging to the group. Their sum is subjected
to the constraints

N:Enk and d,:Eknk. (18)
k k

The resulting probability can be calculated as
Po({diH)=G,({d,})/2".

We consider next, as examples, three social networks: the
unweighted and weighted version of the Zachary Karate
Club [47] and the friendship network between Dolphins [48].
In Fig. 4, we plot the cumulative distribution of Q for the
configurational-model graphs obtained with these networks
nodes’ degree sequences. As the main plot shows, the distri-
bution of Q depends on the original network (that is, on the
particular nodes’ degree sequence). The inset (a) of the figure
shows that the conditional distribution of Q for different val-
ues of d; (i.e., they have same average value, but different
standard deviation) differs and that the resulting uncondi-
tional P,(Q) strongly depends on the shape of P,({d,}) and
therefore on the degree sequence [see Fig. 4(b)]. The modu-
larity calculated for the original bipartitions of these net-
works is high when compared with the typical values ob-
served for the bipartitions of the equivalent graphs generated
by the configurational model. The modularities found for the
partitions of the real networks are: Q,,,;,=0.374 69 for the
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FIG. 4. (Color online) Cumulative distribution function of
modularity for bipartitions P,(>(Q), calculated for three real net-
works: Zachary Karate Club, unweighted (thick black line) and
weighted (thin red curve), and Dolphins social network (dotted blue
line). In the inset (a), we plot P,(Q{d,}), only for the unweighted
version of the Zachary Karate Club, for d;=28 (black circles)

and d;=78 (red squares). In the inset (b), we report
P,({d,})=G,({d,})/2" for the same networks.
unweighted version of the Zachary Karate Club,

Q,.1=0.395 959 for the weighted version of the same net-
work and Q,,,,=0.374 779 for the Dolphins social network.
In all these three cases, the probability of finding such values
among all the partitions of the equivalent configurational-
model random graphs is quite low. Still this method to evalu-
ate a partition significance presents a bias. Since all the pos-
sible partitions are considered for P-(Q), even those with
low modularity and disconnected groups, the partitions
found by a modularity optimization algorithm will tend to be
generally dubbed as “unlike.” A possible solution, in the
spirit of our recent work [36], is to restrict the sum in Eq.
(16) to a suitable subset of partitions. An example can be the
partitions that are local maxima in the Q. landscape when
the random graphs generated by applying the configurational
model to the given network are analyzed. This, however,
involves a systematic search for such maxima that goes be-
yond the scope of this paper.

V. DIRECTED AND BIPARTITE NETWORKS

Our combinatorial approach can be easily extended to di-
rected and bipartite networks. In these cases, one needs to
distinguish two classes of nodes (bipartite) or connections
(directed). In the new null model (i.e., the extension of the
configurational model), one needs to reflect this distinction
and construct simultaneously two different lists of labels.

We start with the directed networks. Fixing C groups
means defining two degree sequences {d’;‘} and {d?""}, corre-
sponding to the sequences of in-coming and out-going con-
nections, respectively. In analogy with Eq. (6), each number
appearing in these sequences is represented by the sum of the
in- and out-degrees of all nodes belonging to a given group.
The total number of possible label sequences that can be
formed is
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M! M!
iny gin iny jouty jout outy ’
d™MdT - d d g - 2

(19)

TA{dmy fdo") =

with constraints given by E‘pd’;’=2¢d{;’”=M . Equation (19) is

the product of the total number of lists of community labels

that can be constructed for the in-coming and out-going

stubs, respectively. The total number of lists of community

labels that satisfy the constraints {e ,.e, g} are
cc

R?r({ea,a’ea,ﬁ}) = M' H H _"

e=1 6=1 €0.6°

(20)

which is the analogous of Eq. (7), but corrected in this case
for the absence of symmetry (i.e., it may happen that
407 €g,). The probability to observe a configuration with
intra- and intercommunity connectivities given by {e, 4.¢, g}
is again the ratio R4/ 7%, while the marginal distribution
for the only intracommunity connections {e,, .} can be calcu-
lated by summing over all values of the intercommunity arcs
subjected to the constraints d,y =24y, and d‘;”’ =2y, g As
in the case of undirected networks, for C=2 and C=3 no
sum is effectively required and the computation of the mar-
ginal probabilities is straightforward. For C=2 for example,
we obtain

di"(M — di™)!
Mley W(d]'=e))!
d5"\(M — di")!
(d" ey )| (M - dlin —d"' + erq)! ’
(21)

with average <e1,1):d'i”dT”’/M. Equation (21) can be used
directly for the computation of the probability distribution of
the modularity since, for directed networks, Q. is defined
with an expression similar to the one in Eq. (13) for undi-
rected networks (only the term for the expected value of
internal links in the null model changes) [25].

A similar procedure also applies to bipartite networks. In
this case nodes are distinguished in two classes and only
vertices belonging to different classes can be connected. The
equations valid for the case of directed networks can be di-
rectly applied to bipartite networks. There are two different
definitions of modularity for bipartite networks. In the defi-
nition of Barber [49], modules can be constructed by nodes
of both classes and therefore the probability distribution of

Pgir({el,l}) =

PHYSICAL REVIEW E 82, 026102 (2010)

the modularity can be calculated directly from the previous
equations. The definition of Guimerd er al. [50] differently
requires that modules are composed only of vertices of the
same type. Our equations need to be modified and in particu-
lar Egs. (19) and (20) should take into account explicitly the
presence of C; and C, groups with different type of nodes
instead of only C modules.

VI. SUMMARY AND CONCLUSIONS

The study of the community structure of networks has
attracted much attention during last years. Most of the work
performed in this field of research has focused on the so-
called modularity function, which has become a standard in
this context with widespread usage in many different disci-
plines. Modularity has the nice characteristics of abstracting
into a single number the strength and significance of the
whole community structure of a network. Modularity is
based on the comparison of the level of internal links in a
given graph partition and the expected value of this quantity
in the configurational model. This model generates the en-
semble of all uncorrelated networks compatible with the one
under study and therefore constitutes a good term of com-
parison for the evaluation of correlations as those at the basis
of the existence of communities. In this paper, we study the
modularity via complete enumeration of the partitions of the
networks generated by the configurational model. Our com-
binatorial approach allows to formulate exact calculations in
the framework of the null model and therefore to write an
equation for the probability distribution function of the
modularity. Thanks to this, we are able to study several in-
teresting features of modularity. We focus on the so-called
resolution limit of modularity, which is statistically observ-
able in the best partitions of the configurational model, and
on the properties of the top ranking instances of the modu-
larity that can be related to the local maxima in the Q. land-
scape. We additionally study an estimator of the statistical
significance of partitions in networks by measuring how
probable is the possibility to observe a particular value of the
modularity in the configurational model. Although as warned
in the text, this technique is better applied in a distribution of
Q0 restricted to a smaller, more selective, set of partitions.
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