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Abstract

We study the spectral and dynamical behavior of two identical, mutually delay-coupled semiconductor lasers. We
concentrate on the short coupling-time regime where the number of basic states of the system, the compound laser
modes (CLMs), is small so that their individual behavior can be studied both experimentally and theoretically. As such
it constitutes a prototype example of delay-coupled laser systems, which play an important role, e.g., in
telecommunication.

Specifically, for small spectral detuning we find several stable CLMs of the coupled system where both lasers lock
onto a common frequency and emit continuous wave output. A bifurcation analysis of the CLMs in the full rate equa-
tion model with delay reveals the structure of stable and unstable CLMs. We find a characteristic bifurcation scenario
as a function of the detuning and the coupling phase between the two lasers that explains experimentally observed mul-
tistabilities and mode jumps in the locking region.
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1. Introduction

Systems of coupled semiconductor lasers (SLs)
are receiving increasing interest, because of their
practical importance, e.g., for achieving high out-
ed.
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put power or for on-chip integrated optical de-
vices. Moreover, they are important examples of
coupled oscillators in general. The spatial separa-
tion of the lasers always results in a time delay in
the coupling due to finite signal propagation times.
In many situations the time delay in the coupling
has been neglected. However, for semiconductor
lasers this is not always justified due to their large
bandwidth and fast time scales of their dynamics.
It is well known that delay effects can destabilize
a system; see, e.g. [1]. In delay-coupled semicon-
ductor lasers this may even result in chaotic
dynamics as was shown in [2]. On the other hand,
time delay in the coupling can also be used to sta-
bilize a chaotic system [3]. This ambivalent charac-
ter of delayed coupling makes this field attractive
for fundamental investigations. Furthermore, de-
lay-coupled SLs are promising candidates for dif-
ferent technological applications, such as secure
chaos communication [4], ultra-fast optical clocks
[5], and optical flip-flops [6].

The objective of our study is the generic case of
two identical, mutually delay-coupled semiconduc-
tor lasers that receive each others light. Only the
optical frequencies of the two lasers may differ,
which leads to a detuning between the lasers. The
delay s in the coupling is then given by s = L/c,
where L is the distance between the two lasers
and c is the speed of light. We consider the case
of the short coupling time regime as was introduced
in [7] (for the case of a SL subject to conventional
optical feedback). This means that the delay time s
is of the order of the period TRO ¼ m�1

RO of the char-
acteristic relaxation oscillation – a periodic ex-
change between the number of photons and the
number of electron–hole pairs (inversion).

Recently, a number of experimental and theo-
retical studies have been performed on this system.
The dynamical behavior of delay-coupled SLs was
found to be very different depending on the delay-
time s. Theoretical investigations for the limit of
zero delay can be found in [8]. In [2] chaos synchro-
nization in conjunction with symmetry breaking
has been reported for long delay times. The depen-
dence of the onset of chaos synchronization has
been studied experimentally and numerically for
different coupling strengths and injection currents
in [9]. The limit of very large delay is the focus of
theoretical studies in [10,11]. Numerical simula-
tions are performed in [12] and an analytical for-
mula is derived that predicts the oscillation
frequency in the mode beating regime for short de-
lays. Numerical investigations and an approximate
thermodynamic potential can be found in [9,13].
For a short delay time of s � m�1

RO, regular dynam-
ics, such as frequency locking with continuous
wave emission and regular intensity oscillations,
are dominant [14–16]. Depending on the detuning
between the two lasers, a characteristic scenario
has recently been demonstrated [16]. Increasing
the detuning leads from optical frequency locking
towards successive states of periodic intensity oscil-
lations. A detailed bifurcation analysis in depen-
dence on the detuning from the dynamical system
can be found in [17]. The interesting question of
the influence of the pump current, which effectively
gives the transition from short to long coupling
times, is discussed in [18].

In this paper, we report a detailed experimental
study of the compound laser modes (CLMs) of
two mutually delay-coupled SLs. We focus on the
locking region in dependence of the detuning and
the coupling phase between the lasers. Further-
more, we employ advancedmethods from the bifur-
cation theory of delay differential equations
(DDEs), in particular, numerical continuation of
the CLMs with the package DDE-BIFTOOL [19].
The combination of experimental and theoretical
techniques allows us to explain the observed
dynamics, in particular, mode jumps and multista-
bility leading to hysteresis loops. Hence, this paper
proofs the existence of the CLMs experimentally as
well as theoretically which lays the foundation for
further studies of the dynamics of delay coupled
SLs.Moreover, the good agreement between exper-
iment and advanced bifurcation techniques shows
the power of these techniques and opens the possi-
bility to explain even complicated dynamics on a
fundamental level. In turn this allows one to provide
insight into the behavior of electro-optical systems.
This is of importance because of the increasing
interest in, e.g., multi-section laser devices.

More generally, our results contribute to the re-
search on delay-coupled oscillators, which describe
and explain widely differing phenomena, includ-
ing chemical oscillations, biological clocks and
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information processing in neural networks; see,
for example [20–22] as entry points to the exten-
sive literature on the subject. Phenomena that are
attributed to time-delayed coupling include multi-
stabilities, amplitude death and the onset of delay-
induced instabilities [2,3,16,23].

The paper is organized as follows. In Section 2,
we begin with a description of the system of
coupled SLs and its experimental realization.
Section 3 presents the experimental results, focus-
ing on the influence of a detuning between the
two SLs. Section 4 introduces the rate equation
model of the system and the CLMs. Section 5 com-
pares the bifurcation analysis with the experimen-
tal results. From this comparison we draw
conclusions in Section 6, emphasizing the physical
relevance of short-delay coupling induced locking-
phenomena, and point to further work.
2. The system

We consider a system of two SLs that are mutu-
ally delay-coupled via the electromagnetic field.
The two SLs are assumed to be identical, but they
may have different solitary (i.e., in the absence of
the other laser) optical frequencies leading to a
spectral detuning between the two lasers.

In the experiment two SLs are placed in a face-to-
face configuration as depicted in Fig. 1. We se-
laser 2

L L

BS

ESA, OSA, PIN

laser 1

ESA, OSA, PIN

ISO

ISO

Fig. 1. Setup of the coupled laser system, including lenses L,
beamsplitter BS, optical isolators ISO, electrical spectrum
analyzer ESA, optical spectrum analyzers OSA, and pin-
photodiodes PIN.
lected two 1540 nm single-mode distributed feed-
back (DFB) lasers. To achieve almost identical
devices, both lasers where grown on the same wa-
fer. The threshold currents are 9 mA. Both lasers
have a linewidth enhancement factor a that has
been determined to be about a = 2, which is in
the typical range for DFB laser used in telecom-
munication applications. The temperature of the
lasers can be stabilized with an accuracy of better
than 0.01 K. This allows for temperature induced
frequency shifts with controllable steps smaller
than 300 MHz. The lasers are pumped with two
low-noise current sources.

The beam of each laser is collimated by a lens
(L), propagates along the coupling distance and
is refocused into the active region of its opposing
counterpart. A beamsplitter (BS) extracts 50% of
the output power of each laser towards the mea-
surement devices. The detection branches are sep-
arated from the SLs by two optical isolators (ISO)
to suppress unwanted feedback. The optical spec-
tra of the lasers are measured using two optical
spectrum analyzers (OSA) with a relative resolu-
tion of better than 0.05 nm. To study the dynami-
cal properties of the lasers the optical signal is
converted into an electrical signal by a fast ava-
lanche photodiode with a bandwidth of 12 GHz.
The electrical signal is analyzed with an electrical
spectrum analyzer (ESA). Additionally, the time-
averaged output power of each laser is measured
with two pin-photodiodes (PIN).

The optical pathlength between the lasers is d =
51 ± 1 mm resulting in a delay of s = 170 ± 3 ps.
This delay corresponds to the round-trip fre-
quency fext = 2.9 ± 0.1 GHz. Although the scheme
of the setup is conceptually simple, it is experimen-
tally demanding: great care has been taken to
achieve stable and well-defined coupling condi-
tions. In particular, the short coupling distances
force high demands on lateral, transverse, longitu-
dinal and angular alignment. In a first step, the
parallel alignment of the two lasers has been ad-
justed with the help of optical reflections. In a sec-
ond step, the relative transverse and lateral
positions of the lasers have been aligned by mea-
suring the photocurrent that is induced in the
respective other laser. Only if the dependence of
the photocurrent is symmetric under variations



H. Erzgräber et al. / Optics Communications 255 (2005) 286–296 289
of the transverse and lateral position of each laser,
it is assured that the light is coupled symmetrically
into the active region of the lasers. Specially de-
signed laser mounts have been used in order to
achieve interferometric stability and full control
over the coupling phase.

Special attention has been paid to determine the
coupling strength and the possible influence of
residual feedback that originates from reflections
from the front facet of the other laser. By a consid-
eration of the reflectivities, transmittivities and
losses in the experimental setup, we have deter-
mined that approximately 5% of the output power
of each laser is injected into the respective other la-
ser. This was complemented and verified via mea-
surements of the induced photocurrent. The
residual feedback in our setup follows to be about
two orders of magnitude smaller than the cou-
pling. Nevertheless, one has to be aware that even
very weak feedback of less than 0.1% can undamp
relaxation oscillations in SLs [20]. Therefore, we
measured the influences of the residual feedback
in our coupling scheme by using one unpumped la-
ser as a mirror. In the experiment we do not ob-
serve any dynamical behavior in the intensity
spectra. The optical spectra exhibit unchanged
lineshape when compared to single mode emission
without residual feedback and we did not find side
peaks due to relaxation oscillations. Thus, we con-
clude that in our experiment the residual feedback
can be neglected.

To study how the behavior of the coupled laser
system depends on a spectral detuning D we have
chosen the following experimental procedure.
The free-running optical frequency m01 of laser 1 is
kept constant during the experiment, while the
free-running optical frequency m02 of laser 2 is chan-
ged in small steps. This results in a variable spec-
tral detuning D ¼ m02 � m01. Since we change D by
detuning laser 2, this laser is called the detuned la-

ser, while laser 1 is called the unchanged laser. The
detuning D can be varied either by changing the
temperature or the injection current of the detuned
laser. Shifting the temperature yields a spectral
detuning of approximately �12 GHz/K, while
shifting the injection current yields a spectral
detuning of approximately �1.1 GHz/mA. The ex-
act dependence of the detuning on the injection
current and the temperature is nonlinear; this non-
linear relationship was measured and used to
determine the detuning. After each step of chang-
ing the detuning the optical spectra, the rf-spectra
of the intensity dynamics, and the output intensity
are recorded simultaneously. It is important that
the coupling conditions remain constant within
the measurement time. This is achieved by using
laser mounts with thermal properties which allow
a fast temperature stabilization and sufficient sta-
bility to accurately define the detuning conditions.
We note that the presented results have been veri-
fied to be independent of the method of detuning,
as well as to interchanging lasers 1 and 2.
3. Experimental results

In Fig. 2, we show the spectral shift of the de-
tuned laser as white circles (�) and that of the un-
changed laser as black circles (�). The detuning
range was �10 6 D 6 10 GHz, where the detuning
has been achieved by varying the temperature of
laser 2. To detect hysteresis effects, panel (a) is
for increasing detuning and panel (b) for decreas-
ing detuning as indicated with arrows. We define
increasing detuning as the positive detuning direc-
tion and decreasing detuning as the negative
detuning direction.

The spectral shift is defined as the difference
g1;2 ¼ m1;2 � m0stat between the optical frequency
m1,2 of the respective laser in the coupled system
and the free-running frequency m0stat of the un-
changed laser. The lasers were pumped at 6.5 times
their threshold; for this pump current their relaxa-
tion oscillation frequency has been extrapolated to
be about 15 GHz.

In Fig. 2 one can distinguish two different re-
gimes. For a detuning near D = 0 both lasers are
locked to the same optical frequency, i.e.,
g = g1 = g2. In this locking region we do not mea-
sure any intensity dynamics in the rf-spectra and
the lasers emit on a single optical mode. Small
deviations between the measured spectral positions
of both lasers in Fig. 2 are due to the limited reso-
lutions of the OSAs. Outside this locking region
both lasers emit with different frequencies, i.e., g1 6¼
g2. This region is indicated by a grey background.
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Fig. 2. Spectral shift g of both lasers for positive (a) and negative (b) detuning direction. White circles (�) indicate the detuned laser
and black circles (�) the unchanged laser. A grey background indicates regions with oscillating intensity dynamics outside the locking
region.
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Here the intensity of both lasers oscillates with
a frequency equal to their spectral separation
|g2 � g1|. A detailed discussion of the oscillatory
behavior outside the locking region can be found
in [16]. Here, we focus on the locking region. For
the positive detuning direction, shown in
Fig. 2(a), the locking region ranges from D =
�6.4 GHz to D = 8.2 GHz. Inside the locking re-
gion we observe three steps of constant frequency
situated at about g = �2.5 GHz, g = 0.1 GHz and
g = 2.5 GHz, while the steps cover a detuning
range of 9.1, 2.7 and 2.8 GHz, respectively. When
increasing D, the width of the first step of the lock-
ing region is more than three times larger than that
of the other two steps. For decreasing detuning,
shown in Fig. 2(b), the locking region is shifted to-
wards lower values of the detuning within
�6.9 6 D 6 4.6 GHz. Here, the locking region
consists of two steps. The first is situated at about
g = 0.4 GHz and the second at g = �2.1 GHz.
Again, the first step covers a detuning range of
9.8 GHz and is much larger than the second step
that covers 1.7 GHz. Comparing Figs. 2(a) and
(b) one can see that, within the experimental accu-
racy, the small step for the negative detuning direc-
tion has the same spectral position g as the large
step for the positive detuning direction. In fact,
both overlap around D = �6 GHz. The same
holds around D = 4 GHz.

We conclude from these experimental results
that the three steps within the locking region cor-
respond to three stable modes of the delay-coupled
laser system. Therefore, we denote these modes as
compound laser modes (CLMs). As is evidenced in
Fig. 2, the CLMs exhibit multistabilities. First, two
of the CLMs overlap over a detuning range of
about 8 GHz which results in the observed hyster-
esis of the two large steps. Second, at the border of
the locking region the CLMs overlap with oscillat-
ing states of the coupled laser system. This results
in the discrepancies of the observed locking
boundaries depending on the detuning direction.
The frequency separation between the CLMs of
2.4 and 2.5 GHz, respectively, is related to the
round trip frequency fext = 2.9 GHz of the system.
However, there are two physical reasons for the
deviation of the CLM separation from fext. First,
the mode separation of two delay-coupled laser
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resonators has been shown to be smaller than its
round trip frequency [24] which is mainly due to
coupling losses. Second, mutual frequency pulling
between the two lasers influences the mode separa-
tion of the coupled system. This effect is similar to
the well-known frequency pulling for SLs with
external optical injection [25]. For a full descrip-
tion of the structure of the CLMs, the nonlineari-
ties of the SLs need to be included in the model.
This is the topic of Section 4.

We now take a more detailed look at the indi-
vidual CLMs. Fig. 3(a) depicts the spectral shift
of the lasers inside the locking region for the neg-
ative detuning direction. For simplicity, only the
spectral shift of the unchanged laser is shown as
both lasers are frequency locked. The dashed line
indicates the free running frequency of the detuned
laser. In Fig. 3 the detuning was achieved by
increasing the pump current of the detuned laser
between 36 and 47 mA, where D = 0 corresponds
to 40 mA. The unchanged laser was pumped at
40 mA. Fig. 3(b) depicts the output power of the
a

b

Fig. 3. Spectral shift g of the unchanged laser (a) and measured outpu
are for the detuned laser and black circles (�) for the unchanged laser
laser 2; in (a) the free-running frequency shift of the detuned laser
indicates the output power of the uncoupled detuned laser.
unchanged and the detuned lasers. For compari-
son, the output power of the uncoupled detuned
laser is indicated by the continuous line.

The output power of the unchanged laser re-
mains almost constant on each CLM. When the
coupled SLs jump towards a CLM at a lower opti-
cal frequency the power of the unchanged laser de-
creases by about 20% at each mode jump. The
power of the detuned laser does not remain con-
stant on one CLM but increases in the negative
detuning direction. This increase is not due to
the increasing injection current alone: the slope
of the power is significantly steeper for the detuned
laser as compared to solitary operation. In fact,
the output power of both lasers depends on the
difference between the frequency of the coupled la-
ser system m = m1 = m2 and the frequency of the
respective solitary laser m01;2. With increasing differ-
ence m� m01;2, the power of the respective laser in-
creases. If m� m01;2 changes into the negative
direction, the power of the respective laser de-
creases. A change of m� m01;2 originates from two
t power (b) of both lasers in the locking regime; white circles (�)
. The detuning was achieved by changes in the pump current of
is indicated with a dashed line, and in (b) the continuous line
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distinct mechanisms: in the case of the unchanged
laser, only mode jumps result in changes of m. For
the detuned laser, in addition to mode jumps, a
change of m� m01;2 occurs also due to the variation
of m2 (i.e., the detuning). Therefore, in the latter
case the steps of the output power exhibit an
underlying slope. Corresponding mode jumps (in
different positions due to the hysteresis) are found
for the other detuning direction.
Table 1
Laser parameters and their values

Laser parameter Value

a-parameter 2.0
Photon decay rate 150 ns�1

Electron decay rate 1 ns�1

Differential gain 790 s�1

Coupling rate 7 ns�1

Coupling time 0.17 ns
Pump current 6 · threshold
Carrier density at threshold 1018
4. Rate equation model

We model the coupled laser system with rate
equations for the normalized complex slowly vary-
ing envelope of the optical fields E1,2 and the
normalized inversions N1,2. As for the Lang–
Kobayashi rate equations for a laser with conven-
tional optical feedback [26], the main modeling
assumption is that the feedback rate is small enough
so that multiple roundtrips can be neglected. See
[27] for a detailed derivation of these equations,
which can be written in dimensionless form as

dE1

dt
¼ ð1þ iaÞN 1E1 þ je�iX1snE2ðt � snÞ; ð1Þ

dE2

dt
¼ ð1þ iaÞN 2E2 þ je�iX1snE1ðt � snÞ þ idE2;

ð2Þ

T
dN 1

dt
¼ P � N 1 � ð1þ 2N 1ÞjE1j2; ð3Þ

T
dN 2

dt
¼ P � N 2 � ð1þ 2N 2ÞjE2j2. ð4Þ

Eqs. (1)–(4) are written in the reference frame of
the unchanged laser, i.e., laser 1. Thus the optical
fields of the lasers are represented by EiðtÞeiX1t,
where X1 is the optical angular frequency of laser 1
operated solitary at threshold. The time t is mea-
sured in units of the photon lifetime. Apart from
the difference in their solitary optical frequencies,
the two lasers are considered to be identical.

The mutual coupling is given by the second
term of Eqs. (1) and (2). It contains the coupling
strength j, the delay time sn and the coupling
phase Cp = X1sn. The detuning between the two la-
sers is taken into account by the last term of (2)
where d = (X2 � X1), and X2 is the optical angular
frequency of the second laser operated solitary at
threshold. It is an important observation that the
coupling phase Cp depends very sensitively on sn
and X1: tiny changes of sn and X1 lead to substan-
tial changes of Cp. Therefore, it makes sense to
consider Cp as an independent parameter. This is
helpful in the mathematical analysis and in good
agreement with the experiment. Note that Cp is
the analogue of the feedback phase in the Lang–
Kobayashi equations for a laser with conventional
optical feedback, which is also often considered to
be an independent parameter for the same reasons;
see, e.g. [28,29].

The remaining parameters are the linewidth
enhancement factor a, the coupling strength j,
the normalized carrier lifetime T and the pump
parameter P. We consider here the values sn =
25.49, a = 2.0, j = 0.047, T = 150.0, and P =
13.17, which were derived from the physical values
in Table 1.

As in the case of the Lang–Kobayashi equa-
tions [26], the basic solution of (1)–(4) are contin-
uous wave solutions which we call CLMs. They
can be written in the following form:

E1ðtÞ ¼ Rs
1e

ixst; E2ðtÞ ¼ Rs
2e

ixstþir;

N 1ðtÞ ¼ Ns
1; N 2ðtÞ ¼ Ns

2; ð5Þ

where Rs
i ; Ns

i ; xs, and r are time independent and
real valued. Furthermore, the Rs

i are taken to be po-
sitive. The lasers must have the same frequency xs

but there may be some time-independent phase
shift r between them. Furthermore, the lasers
may have different steady state amplitudes Rs

i and
different steady state inversions Ns

i . Physically, a
CLM corresponds to a frequency locked state
where the two lasers have constant output power;
compare Section 3. It is important to note that
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Fig. 4. CLMs in the (X2,x
s)-plane and their dependence on the

feedback phase Cp. From (a) to (f) Cp takes values from 0 to
�5

6
p. Saddle-node bifurcations are marked by pluses (+) and

Hopf bifurcations by stars (*); stable regions are plotted as
thick curves.
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CLMs are periodic orbits in phase space. However,
they are special in that the periodicity is due to the
S1-symmetry of the system (1)–(4) of rotation of
both E1 and E2 (over any angle). As a consequence,
Rs
i and Ns

i are constant; see [17] for details. (Mathe-
matically, a CLM is a group orbit of the S1-symme-
try.) In particular, in a rotating frame with
frequencyxs, a CLM is a single point. The situation
is conceptually the same as that for the Lang–
Kobayashi equations of a laser with conventional
optical feedback, where the external cavity modes
are periodic orbits due to S1-symmetry [29,30].

The main difficulty for any analysis is that Eqs.
(1)–(4) are a system of delay differential equations
(DDEs). Consequently, their phase space is the
space of continuous functions over the delay inter-
val [�sn, 0]; see [31,32]. This reflects the fact that
one needs as initial condition not only the present
time point but also the entire history of length sn –
in the case of Eqs. (1)–(4) the values of E1, E2, N1

and N2 over [�sn, 0].
We use the approach of considering individual

CLMs as starting data for the numerical continu-
ation of CLMs with the package DDE-BIFTOOL
[19]. This software allows one to find and follow
(or continue) branches of equilibria and periodic
solutions. Stability information is computed along
such branches so that basic bifurcations can be
detected. We mention here briefly that DDE-BIF-
TOOL requires solutions to be isolated. Therefore,
to compute branches of CLMs one must fix the
phase of the CLM under consideration. Effectively
one picks one CLM in the group orbit of the S1-
symmetry. This is done here as in [33,34], where
further details can be found.

Bifurcation analysis of delay equations with
numerical continuation is a very powerful tool
[35]. In terms of the system at hand, it can be used
to give a detailed description of the bifurcation
structure of the CLMs in terms of the mutual effect
of detuning and feedback phase. This structure is
organized by the case of zero detuning, which fea-
tures the additional phase-space symmetry of
exchanging the two lasers. When the pump current
is sufficiently far above threshold (as is also the
case in this paper) there is a typical scenario; see
[17]. Note that the influence of the pump current
on the CLM structure is discussed in detail in [18].
5. Dependence of CLMs on the detuning

In this paper, we present a bifurcation study
that is limited to the direct vicinity of the locking
region of the system, in analogy to the shown
experiments. Specifically, we study how the struc-
ture of the CLMs of Eqs. (1)–(4) changes when
the detuning d is allowed to vary freely in the po-
sitive or negative direction. As it was done in the
experiments described in Section 2, we keep the
frequency X1 of laser 1 fixed and change the fre-
quency X2 of laser 2. Of particular interest is
how stable regions change with the feedback phase
Cp.

Fig. 4 shows the CLMs in the (X2,x
s)-plane for

six different values of Cp; from panels (a) to (f) the
coupling phase Cp decreases from 0 to �5

6
p. Each

panel shows a closed self-intersecting curve. The
exact shape depends on the value of Cp, and the se-
quence repeats after Cp has been changed by p.
CLMs are born and lost in saddle-node bifurca-
tions as X2 is increased or decreased. For each va-
lue of Cp there are multiple stable regions, which
may overlap. The boundaries of a stable region
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are typically formed by a saddle-node bifurcation
on one side and a saddle-node or Hopf bifurcation
on the other side. The intensities Is1;2 ¼ ðRs

1;2Þ
2 of

the CLMs depend on the detuning in a similar
way. Indeed, a plot of the intensities of the lasers
corresponds to a different projection of the curves
of CLMs shown in Fig. 4. In particular, the stabil-
ity regions agree.

In Figs. 5(a) and (b1)/(b2), we show the CLMs
in projection onto the (X2,x

s)-plane and the
ðX2; Is1Þ- and ðX2; Is2Þ-planes, respectively, for the
value of Cp = 0.63p. Note that it is not possible
to determine the absolute value of Cp in the exper-
iment. The value of Cp = 0.63p was chosen be-
cause it represents the best agreement with the
experimental measurements shown in Figs. 2 and
3(b). We remark that we performed more measure-
a

c

–0

–0

–0

–0

Fig. 5. Full branches of CLMs for Cp=0.63p in the (X2, x
s)-plane (a)

bifurcations are marked by pluses (+) and Hopf bifurcations by stars
show the parts of the branches that are followed for decreasing detuni
laser 2.
ments than shown, which verify the dependence on
the coupling phase Cp as illustrated in Fig. 4.

To interpret the theoretical Figs. 5(a) and (b1)/
(b2) in terms of the experimental measurements
shown in Fig. 3 one needs to consider only the sta-
ble (bold) branches. The mode jumps observed in
the experiment, when X2 is decreased, correspond
to the left endpoints of stable branches. This is
illustrated in Figs. 5(c) and (d), which show what
is observed in terms of the frequency x and the
intensities I1,2 when the rightmost stable CLM is
followed for decreasing X2. Specifically, the right-
most stable CLMs is born in a saddle-node bifur-
cation at X2 � 0.16, and it corresponds to stable
locking where both lasers exhibit stable emission
with the common frequency xs. This frequency
changes slightly as X2 decreases (Figs. 5(a) and
–

b1

b2

d

–0

–0

, the ðX2; Is1Þ-plane (b1) and the ðX2; Is1Þ-plane (b2). Saddle-node
(*); stable regions are plotted as thick curves. Panels (c) and (d)
ng. In (d) black circles (�) are for laser 1 and white circles (�) for
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(c)). Notice that the intensity of the unchanged la-
ser remains almost constant (Figs. 5(b1) and (d)),
while that of the detuned laser increases with
decreasing X2 (Figs. 5(b2) and (d)). This stable
CLM disappears in a saddle-node bifurcation at
X2 � �0.03 and the system �drops down� onto
the middle stable branch of stable CLMs (Figs.
5(c) and (d)). The lasers� frequency xs and the
intensities I s1 of the unchanged and Is2 of the de-
tuned laser are now lower. When X2 is decreased
further, xs and Is1 remain almost constant, while
Is2 increases. In the saddle-node bifurcation at
X2 � �0.13 also this CLM disappears and the sys-
tem drops to the lower stable branch of CLMs.
The frequency xs of the coupled laser system is
now at an even lower frequency, again almost con-
stant. Also the intensities I s1 and Is2 drop in value.
Finally, this CLM disappears in the saddle-node
bifurcation at X2 � �0.2 and the system leaves
the locking region. The steps and the jumps in
the measured frequency and intensities in Fig. 3
are well explained by this scenario.

As it is clear from Figs. 5(a) and (b1)/(b2), ow-
ing to hysteresis loops the jumps between CLMs
will take place at different values when X2 is in-
creased. This explains the jumps in the intensity
at different values of X2 depending on the direction
of scanning in the experimental measurements in
Fig. 2. Note that multistability and hysteresis
loops occur irrespective of the value of Cp, as
can be seen from the panels of Fig. 4.

Finally, we would like to point out already two
other sources of multistability and possible hyster-
esis loops, which are both beyond the scope of this
paper. First, there may be multistability between
CLMs and periodic solutions that can emerge
from Hopf bifurcations within the locking region
(when they are supercritical). Depending on the
value of Cp there may be small regions of (small
amplitude) oscillations inside the locking region.
Second, there is multistability between stable lock-
ing and the dynamics outside the locking region.
This has also been observed in experiments, and
it is responsible for the different size of the region
of measured stable locked dynamics in Figs. 2(a)
and (b). These two effects may, in fact, be in com-
petition. For example, we found that the Hopf
bifurcation bounding the lowest step to the right
in Figs. 5(a) and (b1)/(b2) is supercritical. How-
ever, the locking region is entered even later for
increasing X2 because the system is still in another
dynamical state that loses its stability for even lar-
ger X2. This hints at an interesting interplay of
other stable dynamics with the underlying CLM
structure as discussed here. The exact nature of
this interplay is a topic of ongoing research.
6. Conclusions

We have provided a detailed characterization of
a system of two SLs that are mutually coupled via
the electromagnetic field. The delay time in the
coupling due to the spatial distance between the la-
sers gives rise to a characteristic structure of com-
pound laser modes (CLM). For small detuning we
found multistabilities between different modes
where both lasers lock to a common optical fre-
quency and exhibit stable emission. When chang-
ing the detuning between the lasers we observed
that the coupled laser system undergoes mode
jumps to other stable CLMs within the locking re-
gion. The multistability of the CLMs has been
experimentally evidenced by the observation of
hysteresis for positive and negative detuning direc-
tions. A second kind of multistability between the
locking region and the regime with oscillating
intensity dynamics outside the locking was found
in the experiment. Additionally, we showed how
the output intensity of each laser on an individual
mode depends on the detuning.

For a deeper understanding, we used a rate
equation model to study the underlying structure
of the CLMs using numerical continuation of the
full DDE system. Focusing on the locking region
around zero detuning, multiple stable CLMs are
found. They typically destabilize via a saddle node
bifurcation that give rise to the observed hysteresis
loops. However, destabilization is also possible in
Hopf bifurcations, some of which may give rise
to amplitude oscillations. How this dynamics
interacts with the stable CLMs is ongoing
research.

Our analysis focused on the locking region
around zero detuning and the local bifurcations
found there. We find good qualitative agreement
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between experiment and theory. In particular, our
results show the importance of the coupling phase
Cp. The next step is to understand the dynamics
outside the locking region and different scenarios
on the route to locking. Preliminary investigations
suggest that this requires the study of global struc-
tures in phase space, which is an interesting topic in
its own right. At the same time, it will bring to light
dynamical effects that are crucial for understanding
the performance of coupled laser systems.
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Peil, W. Elsäßer, I. Fischer, Phys. Rev. Lett. 94 (2005)
163901.
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