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In the dynamics of optical systems, one commonly needs to cope with the problem of coexisting deterministic
and stochastic components. The separation of these components is an important, although difficult, task. Often
the time scales at which determinism and noise dominate the system’s dynamics differ. In this Letter we propose
to use information-theory-derived quantifiers, more precisely, permutation entropy and statistical complexity, to
distinguish between the two behaviors. Based on experiments of a paradigmatic opto-electronic oscillator, we
demonstrate that the time scales at which deterministic or noisy behavior dominate can be identified. Supporting
numerical simulations prove the accuracy of this identification. © 2011 Optical Society of America
OCIS codes: 140.1540, 190.3100, 250.5960, 000.5490.

Delayed coupling phenomena play an important role
in optical systems, including semiconductor lasers
with feedback [1], delay-coupled lasers [2], and opto-
electronic oscillators [3]. In particular, the latter have
proven to be practical benchmark systems to study delay
dynamics [3,4]. Moreover, these oscillators have turned
out to be versatile systems for novel applications such
as chaos communications [5] or generation of ultrahigh
spectral purity microwaves [6]. The main dynamical fea-
tures of this test-bed system are well documented and
characterized, both from the theoretical and the experi-
mental point of view [7].
Experimental realizations of the opto-electronic oscil-

lator are usually affected by an unpredictable stochastic
component. In particular, when the dynamical system is
driven into the hyperchaotic regime, it can be hard to
distinguish between the deterministic chaotic dynamics
and the stochastic component when they coexist. To dis-
tinguish between these two components we propose, in
this Letter, to use quantifiers derived from information
theory. In particular, permutation entropy and statistical
complexity [8] are good candidates for this task. They
have already shown to be successful in identifying the
internal structures of time series originated from delay
systems [9,10].
To compute these quantifiers, we analyze the time ser-

ies of the system’s dynamics and from them construct a
probability distribution of their amplitudes. We choose
the Bandt and Pompe method due to its simplicity and
effectiveness [11]. Bandt and Pompe consider the order
of neighboring values by comparing their amplitude
values, rather than partitioning the amplitude into differ-
ent levels. This avoids amplitude threshold sensitivity de-
pendences. The probability distribution of the generated
ordinal pattern for a given time series can be established
once an embedding dimensionD and an embedding delay
time τ are chosen. The embedding dimension D refers to

the number of symbols that forms the ordinal pattern.
The embedding delay τ is the time separation between
symbols, which is directly related to the sampling time
of the time series (see [9–11] for a detailed derivation
and description of the quantifiers).

Our experimental implementation is depicted in Fig. 1.
This opto-electronic oscillator generates intensity pulsa-
tions that are typical for the Ikeda scenario [3,7], includ-
ing a period doubling route to chaos. Figure 2 shows the
power spectrum of the oscillator output once the system
is driven into the hyperchaotic regime. As can be seen
in Fig. 2, relevant spectral contributions can be estimated
up to ∼6MHz. According to the Nyquist-Shannon criter-
ion, a sampling rate of f NS ¼ 12MSamples=s would be
sufficient. Nevertheless, the time series have been ac-
quired with a sampling rate of f s ¼ 500MSamples=s and
a resolution of 8 bits. As will be shown later, this over-
sampling is helpful for the noise and determinism
identification.

Figure 3 illustrates the results of the permutation en-
tropy (H) and the permutation statistical complexity (C)

Fig. 1. The opto-electronic oscillator is composed of a semi-
conductor laser diode feeding a Mach-Zehnder (MZ) modulator
that performs a sine squared nonlinear transformation, an op-
tical delay line, and an opto-electronic feedback for intensity
detection, linear filtering, and amplification. This feedback
serves as the drive of the MZ modulator, closing the delay loop
(delay time ∼21 μs).
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analysis as functions of embedding delay τ when the sys-
tem operates in the chaotic regime. Initially, the value of
H decreases for increasing τ in the range τ ¼ 2:::40 ns.
It reaches a minimum at τ ¼ 40 ns, and increases for
longer τ. On the contrary, the value of C increases for
increasing τ in the range τ ¼ 2:::80 ns, reaches a maxi-
mum at τ ¼ 80 ns, and decreases for longer τ. Previous
works have shown that the correlations present in deter-
ministic chaotic systems typically yield intermediate
values ofH ranging from 0.45 to 0.75 and values of C near
the maximum, which is C ¼ 0:5 for D ¼ 6 [8]. This means
that correlated dynamics is found to dominate in the
range τ ¼ 14:::120 ns in our experimental realization.
Large values of H and small values of C correspond to
uncorrelated dynamics (τ ¼ 2:::12 and 122:::400 ns).
The boundary between correlated and uncorrelated dy-
namics is approximately given by the position of the
two extrema in Fig. 3. Interestingly, the embedding delay
at which the maximum of C is found, τ ¼ 80 ns, coincides
with the sampling rate obtained with the Nyquist criter-
ion (τ−1 ∼ f NS), i.e., this complexity measure is an alter-
native to estimate the minimal required sampling time of
a chaotic time trace. A similar result has recently been
found when analyzing the dynamics of a chaotic semi-
conductor laser with delayed optical feedback [9].
In the following, we present the results in the entropy-

complexity (H − C) plane, as it helps to interpret the
quantifiers in an intuitive manner. The H − C plane was
introduced in [8] to distinguish between the determin-
istic chaotic and stochastic nature of a time series. The
inset of Fig. 3 is a representation of the pair entropy-
complexity at each embedding delay. The value of the

quantifiers for τ ¼ 2 ns is found at the bottom-right cor-
ner of theH − C plane. As the embedding delay increases
in a clockwise manner, the quantifiers reach an extreme
value at the left side and move back to the bottom-right
corner of the H − C plane. In general, stable or periodic
dynamics appear close to the left bottom corner of the
plane (H and C close to zero); correlated dynamics
are located in the top center of the plane (intermediate
H and C values), while uncorrelated dynamics are found
at the bottom-right corner of the plane (H close to one
and C close to zero).

The values of the quantifiers as functions of τ in the
inset of Fig. 3 tell us that the system is uncorrelated
for small embedding delays, it becomes correlated for
an intermediate range of τ, and is again uncorrelated
for longer τ. However, with this information alone, it is
not possible to identify determinism or stochasticity.
Since the bandwidth of the experimental system is nar-
rower than the one of the detection apparatus, we benefit
from the oversampling to smooth the original time series.
We perform a simple moving average using different win-
dow lengths. We take the average value of the points over
the respective windows before moving one sample ahead
to repeat the procedure. This is performed for the full
time series. Figure 4(a) shows the value of the quantifiers
in the H − C plane for different lengths of the moving
average. It is clear that the position of the quantifiers
in the plane is modified when the original time series
is smoothed. In particular, the positions of the quantifiers
for small embedding delays move gradually from the
right hand corner to the left hand corner of the H − C
plane for larger lengths of the moving average.

To gain insight into the obtained experimental results,
we performed numerical simulations of the system. The
advantage of using model equations is that it allows
us to treat independently the deterministic and sto-
chastic contributions. The deterministic version of the

Fig. 2. Power spectrum of the experimentally recorded time-
traces of the delayed opto-electronic oscillator operating in the
chaotic regime.

Fig. 3. Permutation entropy (H, circles) and permutation
statistical complexity (C, crosses) for an experimental time
series recorded in the chaotic regime as functions of τ. The
inset represents the pair entropy complexity at each embedding
delay [8]. Embedding dimension D ¼ 6 and sampling rate
500MSamples=s are used.

Fig. 4. Values of the permutation entropy and statistical
complexity as functions of the embedding delay in the H − C
plane for (a) original experimental time series [circles] and
corresponding moving averages of different lengths [squares
correspond to 20ns, stars to 40ns, and crosses to 160 ns length],
and (b) numerical time series without noise [crosses], with
added noise [circles], and corresponding moving averages of
different lengths [squares correspond to 20ns and stars to
40ns length]. Parameters, β ¼ 3:6, T ¼ 87:2, Φ ¼ 0:85 rad.
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opto-electronic oscillator with delay feedback is
described by [12]:

dxðt0Þ
dt0

¼ −xðt0Þ þ β sin2½xðt0 − TÞ þΦ�; ð1Þ

where t0 is the time in normalized units (t0 ¼ t=ð240 nsÞ),
β is the feedback strength, T is the delay time, and Φ is
the phase. The parameters have been rescaled to match
the experimental conditions.
For the numerical analysis, we have chosen the param-

eters such that the system displays chaotic oscillations.
Crosses in Fig. 4(b) correspond to the permutation quan-
tifiers in the H − C plane for the deterministic system de-
scribed by Eq. (1). The position of the quantifiers in the
H − C plane as a function of the embedding delay moves
from the bottom-left corner towards the middle-top as
the embedding delay increases. The final position of the
quantifiers lies at the bottom-right corner. We interpret
these results as follows: The deterministic chaotic dy-
namics is (i) oversampled at low values of the embedding
delay, resembling a pseudoperiodic behavior, (ii) cap-
tured at intermediate values of the embedding delay that
are near the internal time scale of the system, and (iii) un-
dersampled at large values of the embedding delay re-
sembling a noisy behavior. Qualitatively similar results
are found for other values of β and Φ, as long as the sys-
tem stays in the chaotic regime.
The representation of the quantifiers in the H − C

plane for the deterministic system [crosses in Fig. 4(b)]
and the experimental system with a moving average of
160 ns [crosses in Fig. 4(a)] are very similar to each other.
Therefore, we conclude that the uncorrelated component
of the experimental time traces at large embedding de-
lays has a deterministic origin. It is a consequence of
undersampling the chaotic dynamics rather than originat-
ing from a stochastic process.
We can also identify the effect of adding a stochastic

component to the system described in Eq. (1) by simply
adding a Gaussian white noise to the numerical time
series. We chose a noise of zero mean and a standard
deviation of 0.03 times the standard deviation of the ori-
ginal time series, being compatible with 8bits resolution
in the acquisition. The circles in Fig. 4(b) correspond to
this case. From the comparison between experimental
and numerical results with moving averages of different
lengths, we conclude that the uncorrelated component of
the experimental time traces at small embedding delays
(high frequency range) has a stochastic origin, which is
mainly originating from the digitization of the oscillo-
scope. We have checked that other noise sources can be
neglected.

In conclusion, we demonstrated that the method,
based on the estimation of permutation entropy and
statistical complexity, is able to distinguish between
deterministic and stochastic components present in the
chaotic dynamics of an opto-electronic oscillator with
delayed feedback. The characterization of the quantifiers
as functions of the embedding delay reveals the scales
at which one or the other component dominates. In par-
ticular, characteristic time scales present in the system
dynamics can be detected through the presence of clear
extrema of the quantifiers. The method proposed here
can also be useful in other practical situations, where the
deterministic and stochastic components are more subtly
distributed in the Fourier spectrum than in the reported
experiments. The proposed method could thus be viewed
as a spectral correlation distribution of any signal, which
would consist of a complex contribution of noise and
deterministic motions. The size of the embedding delay
is defining the inverse of the Fourier frequency for
which the deterministic or stochastic contribution is to
be evaluated.
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