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Abstract
We investigate the dynamical properties of two mutually delay-coupled
semiconductor lasers that are coupled via their optical fields. Because a
semiconductor laser is an oscillator that features strong coupling between
its amplitude and phase, this system serves as a prototype model of coupled
amplitude–phase oscillators. Our main interest here is in the dynamics near and
within the locking region where the two lasers emit light of the same frequency.
We present experimental observations that give evidence for four qualitatively
different dynamical regimes: stable continuous wave emission, oscillations at
the laser’s characteristic relaxation oscillation frequency, oscillation related
to the frequency difference between the two lasers and more complicated
dynamics. We characterize and identify these dynamical regimes and analyse
them by means of a bifurcation analysis of the corresponding rate equation
model with delay. Specifically, we present the underlying bifurcation structure,
where the detuning and the pump current are the main bifurcation parameters.
The combination of experiment and bifurcation analysis shows how changes in
the dynamics arise from the presence of local and global bifurcations near the
locking region.
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1. Introduction

Coupled nonlinear oscillators can be found in many scientific disciplines, including physics,
chemistry, biology and engineering, and it is now well established that they may exhibit rich and
complex dynamical behaviour [1, 19, 39, 53]. An issue that has been acknowledged only quite
recently is the fact that the ensuing dynamics of the system may be affected in an important way
by the presence of sufficiently large time-delay in the coupling. Several dynamical effects have
been attributed to delay, such as the suppression of coupled oscillations and partial locking
or synchronization; see, for example, [3, 5, 6, 30, 44, 48, 50–52, 60]. Nevertheless, there are
still many challenges when it comes to a global understanding of the basic dynamical regimes
displayed by delay-coupled systems.

Mutually coupled semiconductor lasers are an attractive class for the study of delay-
induced instabilities for a number of reasons. First of all, semiconductor lasers are quite
robust and accessible experimentally, and the delay arises naturally due to the travel time of
light (or electronic signals in some schemes) between optical components. The intrinsic time
scales are on the order of pico- to nano-seconds, so that even short distances between optical
elements result in considerable delay times. Furthermore, due to the often low reflectivities
of their facet mirrors, semiconductor lasers are very susceptible to external light injection.
Delayed-feedback and delay-coupled semiconductor lasers are not only of interest from a
fundamental point of view but they also play an important role in technological applications—
most importantly in optical data storage or optical data transmission. For these reasons, delay-
induced dynamics in (semiconductor) laser systems have been studied since the early days after
the invention of the lasers. The original interest has been in the effect of reflections back into
the laser [4, 13–15, 35–37, 41, 45, 47, 49], but more recently there has been a focus on different
types of delay-coupled lasers; see, for example, [2, 7, 16, 17, 24, 26, 27, 28, 43, 46, 55, 56, 59].

From the modelling point of view, semiconductor laser systems can often be described in
very good agreement with experiments via rate equation models, which are simple enough
to allow for comprehensive bifurcation studies in many cases [29, 32, 58]. Importantly,
semiconductor lasers are general nonlinear oscillators with the particularity that they feature
a strong coupling between the amplitude and the phase of the optical field [25]. Thus, a
reduction to simpler amplitude equations or phase-oscillator models is possible only under
particular circumstances. In general, both the amplitude and the phase of the coupling field
have to be taken into account [12]; this is also known from semiconductor lasers with optical
feedback [22, 23]. For delay-coupling between lasers, as well as for delayed feedback, an
extra difficulty is that the rate equation model takes the form of a delay differential equation
(DDE) with an infinite dimensional phase space [8, 21]. However, in recent years advanced
computational tools [9, 18, 33, 54] have become available for the bifurcation analysis of DDEs
with several fixed delays. In fact, the wish to understand laser systems with delays has been
one of the driving factors behind the development of these tools; see also [31].

In this paper we consider a system consisting of two similar semiconductor lasers that
are mutually delay-coupled in a face-to-face configuration via their optical fields; see figure 1
for the experimental realization. In previous studies we considered the role of compound
laser modes (CLMs) for locking between the two lasers [12], the influence of the pump
current [10] and the detuning (frequency difference) between the two lasers [11]. The dynamics
outside the locking region was investigated in [59]. The focus here is on a comprehensive
bifurcation analysis of the system near and within its locking region, guided by the experimental
identification of different dynamical regimes. The measurements consist of recorded peaks of
optical spectra and radio frequency (rf) spectra (also referred to as relative intensity noise (RIN)
spectra) as a function of the detuning for three fixed levels of the pump current. Specifically, we
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Figure 1. Experimental setup of two mutually delay-coupled lasers with collimating lenses
(L), beamsplitter (BS) and optical isolators (ISO); the detection branches consist of an electrical
spectrum analyser (ESA) with fast avalanche photo diodes (APD) optical spectrum analysers (OSA),
with slow photo diodes (PIN).

show how the observed stable locking, relaxation oscillations (ROs), detuning oscillations
(DOs) and more complicated dynamics are organized by a bifurcation diagram in the two-
dimensional parameter plane of detuning versus pump current. Transitions between different
dynamical behaviour of the system are thus identified as the crossing of certain bifurcation
curves. The bifurcation curves in turn divide the parameter plane into regions of stable CLMs,
stable ROs and stable DOs; transitions to more complicated dynamics are also identified.

This paper is organized as follows. The delay-coupled laser system is described in
section 2, both in terms of the experimental realization and the rate equation model. In
section 3 we present the experimental findings of the dynamical behaviour; the measurements
are directly compared with numerical simulations of the rate equations (to demonstrate the
accuracy of the latter). We proceed with a comprehensive bifurcation analysis of the locking
region in section 4, identifying regions of stable CLMs, ROs and the DOs. Finally, in section 5
we summarize our results, draw conclusion and point to future work.

2. Face-to-face coupled semiconductor lasers

The experimental setup consisting of two semiconductor lasers that receive part of each other’s
emitted light in a free-space face-to-face configuration is sketched in figure 1. The lasers are
single-mode distributed feedback (DFB) semiconductor lasers, which were hand selected to
obtain two practically identical devices. Under uncoupled conditions, the nominal wavelength
of each laser is 1540 nm, which corresponds to a frequency of about 1.9 × 1014 Hz, and their
threshold currents (defining onset of laser operation) are 9.0 mA. Above its lasing threshold the
laser is ‘on’ and its output power increases linearly in good approximation over a wide range of
the pump current. Like most semiconductor lasers, the two lasers display characteristic damped
ROs when perturbed; the relaxation frequencies for both lasers were estimated experimentally
to range from 0 to 10 GHz, for pump currents between 9 and 24 mA. The coupling between the
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amplitude and the phase of the optical field can be expressed by the linewidth-enhancement
(or Henry) factor [25], which was determined experimentally as α = 2 for both lasers by
analysing the gain spectrum [20]. The optical path length between the two lasers results in a
time delay τ = L

c
in the coupling, where L is the optical path length from laser 1 to laser 2 and

c is the speed of light. In our setup we choose L = 51±1 mm, which results in a delay time of
τ = (170±3)×10−12 s, corresponding to a round-trip frequency of νext = 2.9±0.1 GHz. The
coupling between the lasers was estimated experimentally: approximately 5% of the output
power of each laser entered into the respective other laser.

Due to the fast time scales of the intensity oscillations in semiconductor lasers, the
dynamics is characterized via spectra. They are measured from two detection branches,
which include optical isolators (ISO) to prevent unwanted feedback. Firstly, to identify the
characteristics of the optical fields we measure optical spectra with an OSA. Secondly, we
also measure rf spectra of the laser intensities, by detecting the intensity fluctuations via two
avalanche photo diodes (bandwidth 12 GHz) and then analysing them with an ESA. The main
bifurcation parameters in our studies are the pump currents of both lasers and the optical
frequency ν2 of laser 2. Differences between the two pump currents will mainly lead to a
small detuning between the lasers; this effect was kept well within the experimental accuracy
and did not affect the measurements significantly. The optical frequency ν1 of laser 1 is kept
fixed. The optical frequency of a semiconductor laser can be detuned via small adjustments
to the controlled temperature of the laser. Effects of the temperature change on other laser
parameters can be neglected. Changing the optical frequency ν2 results in a relative detuning
� = ν2 − ν1 between the lasers. We characterize the dynamics of the coupled laser system by
recording the peaks of the optical and rf spectra as a function of � for different fixed values
of the pump current.

The delay-coupled two-laser system can be modelled by rate equations for the complex-
valued slowly varying envelopes of the optical fields E1,2(t) and the real valued inversions
N1,2(t) of the lasers; see, for example, [42]. In dimensionless form the model equations can
be written as

Ė1(t) = (1 + iα)N1(t)E1(t) + κe−iCpE2(t − τ) + i
ν1

2π
E1(t), (1)

T Ṅ1(t) = ξ

2�ph�el
(J − Jthr) − N1(t) − (1 + 2N1(t))|E1(t)|2, (2)

Ė2(t) = (1 + iα)N2(t)E2(t) + κe−iCpE1(t − τ) + i
ν2

2π
E2(t), (3)

T Ṅ2(t) = ξ

2�ph�el
(J − Jthr) − N2(t) − (1 + 2N2(t))|E2(t)|2, (4)

where time t is in units of the photon decay time. Equations (1)–(4) are DDEs, where the
time delay τ accounts for the propagation time of the light between the two spatially separated
lasers. The main assumptions in equations (1)–(4) are weak coupling (only a few per cent
of the output of one laser is coupled into the other laser) and single-mode operation of both
lasers. See, for example [38, 40, 57] for alternative modelling approaches. The lasers are
characterized by (equal) values of the linewidth enhancement factor α, the electron decay rate
�el, the photon decay rate �ph, the differential gain ξ , the ratio T = �ph

�el
and the current density

at the threshold Jthr. The coupling terms are symmetrical and contain the coupling rate κ ,
while Cp controls the phase relationship between the two electric fields. Note that Cp can be
adjusted by sub-wavelength changes in the distance between the two lasers [22]; in this study
we assume Cp = 0 throughout. The detuning between the two lasers enters in the last term of
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Table 1. Parameters of the model and their values.

Symbol Meaning Value

α Linewidth enhancement factor 2.0
κ Coupling rate 0.047
T Decay constant 150
�ph Photon decay rate 150 × 109 s−1

�el Electron decay rate 1 × 109 s−1

ξ Differential gain 790 s−1

Jthr Threshold current density 1 × 1018 s−1

(1) and (3) via the optical frequencies ν1,2 of lasers 1 and 2, respectively. Numerical values of
the parameters are chosen to match the experimental conditions; they can be found in table 1.

Linear stability analysis of the solitary laser model, i.e. in the absence of coupling
(κ = 0), reveals two states of the laser as equilibria of equations (1)–(4): the off-state,
(|Es |2, Ns) = (0,

ξ

2�el�ph
(J −Jthr)), and the on-state (|Es |2, Ns) = (

ξ

2�el�ph
(J −Jthr), 0). Below

the threshold (J < Jthr) the on-state is unstable and the off-state is stable. At the threshold
J = Jthr the two states interchange stability, so that the on-state becomes stable and the off-
state unstable. This is associated with the onset of the laser oscillation. Furthermore, above
the threshold (J > Jthr) we find damped intensity oscillations as a response to perturbations
from the equilibrium state. These characteristic oscillations are known as the ROs. The RO
frequency in Hertz is given by

νRO = 1

2π

√
ξ(J − Jthr), (5)

and it defines a characteristic time scale of the lasers. The damping rate of these ROs in s−1 is
given by

γRO = �el

2

(
1 +

ξ

�el�ph
(J − Jthr)

)
. (6)

Already quite small external influences, such as feedback or coupling, can destabilize the laser
by undamping the ROs. Significantly further above the threshold, one expects more stable
behaviour because in this case, the RO damping rate is considerably larger.

The simplest non-trivial solutions of equations (1)–(4) in the presence of coupling (κ > 0),
known as CLMs, are given as

(E1(t), E2(t), N1(t), N2(t)) = (Rs
1eiωs t , Rs

2eiωs t+iφ, Ns
1 , Ns

2 ) (7)

for given fixed values Rs
1,2, Ns

1,2, ωs and φ. CLMs describe continuous wave (cw) emission
of the coupled laser system, where the optical fields oscillate with the joint frequency
ωs , while the intensities and inversions of the two lasers are constant in time, that is,
(|E1,2(t)|2, N1,2(t)) = ((Rs

1,2)
2, Ns

1,2). Hence, operation at a CLM corresponds to locking
between the two lasers. To find the CLMs one needs to solve six coupled transcendental
equations, which is best done with numerical continuation techniques; this has the advantage
that the stability of the CLM and their bifurcations can be determined as well [11].

In this paper we are interested in bifurcations of CLMs that give rise to dynamics associated
with the RO frequency and the detuning frequency. We proceed by providing experimental
evidence for different types of dynamics, which are then explained via bifurcation scenarios.
Throughout, we use for ease of comparison the detuning � (via the frequency ν2 of laser 2)
and the identical pump current J of both lasers (presented in units of the threshold current Jthr)
as the bifurcation parameters.
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Figure 2. (Colour online) Experimental bifurcation diagrams for increasing � and the currents
27 mA (a), 21 mA (b) and 17 mA (c). Shown in panels (a1) (b1) and (c1) is the frequency of the
main peaks of the optical spectra of laser 1 (large open circles) and laser 2 (small dots) with respect
to a reference wavelength λ0 as given in the panels. Shown in panels (a2), (b2) and (c2) are the
main peaks of the rf spectra (defined as at least 1.2 dB above the noise level). The dashed lines
indicate the locking region where both lasers emit at the same optical frequency; the shaded regions
indicate intervals of stable cw emission of the coupled laser system.

3. Characterization of the dynamics

Figure 2 shows experimental measurements of the dynamics of the coupled laser system for
increasing the detuning � for three different pump currents of the laser, 27 mA (a), 21 mA
(b) and 17 mA (c). Panels (a1), (b1) and (c1) show the deviation of the peak wavelength
of the optical spectrum of both lasers from a reference wavelength λ0 (given in each panel)
for the different pump currents, respectively. Because of the asymmetric way the detuning
is changed—by changing the frequency of laser 1 only—the bifurcation diagrams are not
symmetric with respect to zero detuning. Experimentally this method of tuning is more
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convenient and accurate, since a symmetrical change in � would require a simultaneous
change in ν1 and ν2 in opposite directions and by the same magnitude.

For small detuning, on the order |�| � 5 GHz, it can be seen that the wavelengths of both
lasers coincide. This defines the locking region, where the two lasers operate at the same optical
frequency and have constant intensities; recall that these are the defining characteristics of the
CLMs given by equation (7). As a function of the detuning, the optical frequency features
a characteristic step-like behaviour. This was reported in [12], where the step-like structure
was attributed to saddle-node bifurcations of the CLMs. The locking boundary in figure 2 is
indicated by the dashed lines; its width is almost constant for the three different pump currents.
Panels (a2), (b2) and (c2) show the peaks of the rf spectrum of laser 1. Importantly, inside the
locking region one may also find dynamical instabilities (even though the two lasers remain
locked at the same frequency). For high pump currents, as in figure 2(a), one can identify ROs
of the two lasers with a single frequency in the rf spectrum and possible higher harmonics.
For lower pump current, as in figure 2(b), complicated dynamics can be also found around
� = 3 GHz; they are characterized by broadened peaks in the low-frequency part of the rf
spectrum. These regions of complicated dynamics become larger for a lower pump current, as
is shown in figure 2(c).

For large detuning, and any value of the pump current in figure 2, the optical frequencies
of the two lasers are not identical anymore. Hence, the coupled system operates outside its
locking region, and both lasers operate close to their solitary laser frequency. The frequency
of the undetuned laser 1 stays almost constant, whereas the frequency of the detuned laser 2
changes in accordance with the detuning �, but in characteristic steps. The rf spectra of the
lasers show intensity oscillations with a frequency that corresponds to the difference between
the two laser frequencies. We refer to this type of periodic dynamics as DOs. The rf spectra
are limited by the detection bandwidth of the photo diodes, and DOs are only shown up to
8 GHz. However, the optical spectra in figure 2 indicate the existence of DOs for larger values
of |�| also.

Figure 3 shows the dynamics as found by the numerical simulation of the coupled
laser model (equations (1)–(4)) for increasing � for three pump currents, J = 4.5Jthr (a),
J = 3.5Jthr (b) and J = 1.4Jthr (c). The agreement with the experimental results in figure 2 is
so good that the different dynamical regimes can be identified clearly. There is a locking region
around zero detuning, where the lasers operate at the same frequency. As in the experiment,
we find cw emission (stable locking) and ROs inside the locking region. Furthermore, we
again find DOs in the region of large detuning. The boundary of the frequency locking region
was identified in [12] as a saddle-node bifurcation of a CLM; the dashed lines in the individual
panels of figure 3 give the location of these saddle-node bifurcations and, hence, the locking
boundary. Because of multistability at the locking boundary (as we see later in section 4),
only the saddle-node bifurcation at positive � can be detected as a change in the dynamics
of the system by direct time integration for increasing �. Indeed, we observed associated
hysteresis loops for increasing and decreasing detuning (not shown here) both experimentally
and theoretically.

Overall it can be seen that the dynamics becomes more complicated when the lasers are
operated closer to their laser threshold. Furthermore, the rf spectra show that the frequency of
ROs remains practically unchanged as the detuning � changes; this is to be expected since the
RO frequency scales with the pump current. For large detuning, on the other hand, the DOs
indeed depend on the detuning �. For very large detuning this dependence is approximately
linear, but as the detuning approaches the locking region a typical stair-like structure emerges,
which gives rise to hysteresis loops of DOs (not shown) when the detuning is swept up and
down; see [59].
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Figure 3. (Colour online) Bifurcation diagram for increasing � obtained by numerical simulations
of equations (1)–(4) for the pump currents J = 4.5Jthr (a), J = 3.5Jthr (b) and J = 1.4Jthr (c).
Shown in panels (a1) (b1) and (c1) is the frequency of the main peaks of the optical spectra of
laser 1 (large open circles) and laser 2 (small dots) with respect to the reference wavelength λ0.
Shown in panels (a2), (b2) and (c2) are peaks of the rf spectra that are at least 1.2 dB above the
noise level. The dashed lines indicate the width of the locking region, as given by the outermost
saddle-node bifurcation of CLMs; the shaded regions indicate intervals of stable cw emission of
the coupled lasers system.

4. Bifurcation analysis

In order to get a comprehensive and consistent picture of the dynamics of the coupled laser
system we now present a bifurcation analysis of the model equations (1)–(4) with the tool
of numerical continuation; specifically we use the packages DDE-BIFTOOL [9] and PDDE-
CONT [54]. As was already mentioned, our main bifurcation parameters are the detuning �

and the pump current J .
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4.1. Locking region

We start with the stability analysis of the CLMs from equation (7). They are the basic states of
the coupled laser system and form the underlying structure for all other dynamical instabilities.
Specifically, bifurcations of CLMs reveal the structure and the dynamics within the locking
region.

Figure 4 illustrates the CLM structure near the locking region. Shown in panels (a)–(c)
are one-parameter bifurcation diagrams for three different values of the pump current J , while
panel (d) shows the two-parameter bifurcation diagram of CLMs near the locking region in
the (�; J )-plane. The width of the locking region is given by the two outermost saddle-node
bifurcation curves in figure 4(d); note that this width is practically constant as a function of J

and only changes close to the laser threshold; see [10] for a detailed study of the bifurcation
structure of the CLMs close to the laser threshold. The CLMs branches in figures 4(a)–(c) for
the pump currents, J = 4.5Jthr, J = 3.5Jthr and J = 1.4Jthr, exist inside the dashed lines,
marking the outermost saddle-node bifurcations. While the lasers are frequency locked inside
the locking region, this does not mean that the CLMs are necessarily stable. Their stability
is gained or lost in saddle-node bifurcations (+) or Hopf bifurcations (∗), and stable CLM
branches appear as thicker curves in panels (a)–(c). Recall that a stable CLM corresponds to
stable locking, meaning that the lasers produce constant intensity output at the same frequency.
As J decreases, the width of the locking stays almost constant—however, the stability and the
dynamics within the locking region change. In particular, Hopf bifurcations mark the onset of
ROs within the locking region.

Figures 4(a)–(c) correspond to horizontal cross sections of the two-parameter bifurcation
diagram in the (�; J )-plane in figure 4(d). Shown are the curves of saddle-node bifurcations
and Hopf bifurcation, which divide the (�; J )-plane into regions of different behaviours. Of
immediate interest is the shaded region of stable CLMs, that is, of full locking. For high
values of the pump current J stable CLMs exist within the whole locking region. However,
a comparison with panel (a) shows that there are different stable CLMs, with different values
of the frequency ωs . The system jumps from one of these stable CLMs to another, which
explains the step-like nature of the optical frequency observed in figure 2; see also [12], where
the stability of the CLMs for high pump currents is studied experimentally and theoretically.
For a lower pump current J the stable CLM region becomes narrower, i.e. the detuning interval
where stable CLMs can be observed becomes smaller. Eventually, around J � 2Jthr there
are no stable CLMs at all. Note the small isolated CLM stability region around J = 1.5Jthr.
Overall, the boundaries of the region(s) of stable CLMs in figure 4(d) are formed by different
parts of saddle-node and Hopf bifurcation curves, which meet at several special points, namely,
saddle-node Hopf (SH) points and double Hopf (HH) points. These are codimension-two
bifurcation points that act as organizing centres for dynamical systems, specifically marking
the change from one type of boundary of the stable CLM region to another. Moreover, these
codimension-two bifurcation points indicate that there is a more complex bifurcation structure
including bifurcations of periodic orbits [34].

4.2. Stable ROs

We now consider the stable periodic orbits that bifurcate at the different curves of Hopf
bifurcations bounding the stable CLM regions. They turn out to be the typical ROs whose
frequency, given by equation (5), depends mainly on the pump current J . Figure 5 shows
the RO stability regions (hatching) in the (�; J )-projection. Indeed all regions of stable
ROs are inside the locking region, which agrees with the results in figures 2 and 3. The
ROs were continued for fixed J and varying �, and this showed that their frequency remains
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Figure 4. (Colour online) The locking region of equations (1)–(4). Shown are one-parameter
bifurcation diagrams in the (�; ωs)-projection for the pump currents J = 4.5Jthr (a), J =
3.5Jthr (b), J = 1.4Jthr (c); stable CLMs are drawn as thicker curves, plus signs (+) indicate
saddle-node bifurcations and stars (∗) Hopf bifurcations. Panel (d) shows the two-parameter
bifurcation diagram in the (�; J )-plane, consisting of curves of saddle-node (S) and Hopf (H)
bifurcations of CLMs, which meet at saddle-node Hopf (SH) and double Hopf (HH) points. The
CLMs are stable in the shaded region; the scale on the right shows the RO frequency of the solitary
lasers. The dashed lines indicate the one-parameter sections.
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Figure 5. (Colour online) Two-parameter bifurcation diagram in the (�; J )-plane also showing
regions (hatched) of stable ROs; compare with figure 4. RO stability regions are bounded by curves
of the saddle node of limit cycles (SL) bifurcations, period doubling (P) and torus (T) bifurcations.
These bifurcation curves of ROs may meet at degenerate Hopf (DH), 1 : 1 resonance and 1 : 2
resonance points. The dashed lines indicate the one-parameter sections we considered previously;
compare with figure 4.

practically constant with �; compare with figure 2. Relaxation oscillations that are born in
Hopf bifurcations of CLMs can be identified in figure 2 by a peak in the rf spectrum that lies
inside the locking region.

There are further bifurcations of ROs where their stability is lost, including saddle-node
bifurcations of limit cycles (SL) bifurcations, period doubling (P) bifurcations and torus (T)
bifurcations; note that we only show those branches that actually bound unstable RO regions.
Figure 5 also shows that there is multistability in the system: different ROs and CLMs may be
stable simultaneously. This is due to the fact that the locking region contains several CLMs,
each of which can undergo a Hopf bifurcation to ROs. Specifically, for high pump current J ,
ROs bifurcate from Hopf bifurcations of CLMs and their stability regions overlap with other
stable CLMs. Thus, hysteresis effects are to be expected when parameters are changed.

4.3. Stable DOs

Outside the locking region stable DOs dominate the dynamics. Figure 6 shows branches of DOs
for different values of the pump current, J = 4.5Jthr (a), J = 3.5Jthr (b) and J = 1.4Jthr (c),
and the stability region of the DOs in the (�; J )-plane (d). From panels (a)–(c) it can be seen
that the frequency νDO of the DOs approaches |�| for sufficiently high detuning � at all values
of J . This agrees with the experimental observation outside the locking region in figure 2; see
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Figure 6. (Colour online) Stability region of DOs of equations (1)–(4). Shown are one-
parameter bifurcation diagrams in the (�; νDO)-projection for the pump currents J = 4.5Jthr (a),
J = 3.5Jthr (b), J = 1.4Jthr (c); stable DOs are drawn with thicker curves, crosses (×) indicate
saddle-node of limit cycle bifurcations, squares (�) torus bifurcations and triangles (�) period
doublings. Panel (d) shows the DO stability region (light hatching) in the (�; J )-plane. The
dashed lines indicate the one-parameter sections.

also the findings for high pump currents in [12, 59]. When approaching the locking region the
DOs undergo a sequence of saddle-nodes of limit cycle bifurcations in which they destabilize
and then restabilize. Each saddle-node bifurcation of limit cycles is associated with a jump
in the frequency νDO of the DOs. As observed in figure 2, this jump is on the order of the
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Figure 7. (Colour online) Periodic orbit close to a homoclinic bifurcation for (�; J ) ≈
(1.5 GHz; 1.41Jthr) (where νRO ≈ 2.89 GHz). Shown are the time series of the intensities of laser 1
and laser 2 over one period (a) and the corresponding periodic trajectories in (Im[E]; Re[E]; N)-
space (b). The grey circles in panel (b) are CLMs that are closely followed by parts of the trajectories
of laser 1 and laser 2, respectively.

external round-trip frequency. Eventually, for sufficiently high J the branch of DOs ends at
a homoclinic bifurcation; here the period of the DOs goes to infinity and, thus, the frequency
goes to zero. In this homoclinic connection the periodic orbit corresponding to the DO ‘hits’
an unstable CLM. Figure 6(d) shows the complete stability region of DOs (light hatching);
note the curves SL that are responsible for the steps in panels (a) and (b), where the dynamics
is dominated by stable locking, ROs and DOs. On the other hand, for pump currents below
2.5Jthr much more complicated behaviour is to be expected; compare with figures 2(c) and 3(c).

Finally, figure 7 shows evidence of a homoclinic bifurcation; specifically, an example of
a periodic orbit very close to a homoclinic bifurcation. Panel (a) shows the time series of the
intensity of laser 1 and laser 2 and panel (b) the projection onto the (Im[E]; Re[E]; N)-space.
The trajectory stays for a long time in the vicinity of an unstable CLM (the grey circles). It then
drifts away along the unstable manifold of the CLM, which leads to an large excursion into
phase space. Eventually the trajectory spirals back towards the unstable CLM, by following
its stable manifold. This involves oscillations on the RO time scale. The existence of this
homoclinic bifurcation suggests that, nearby, one might find excitable behaviour similar to
that described in [33]; this possibility is an interesting subject for future investigations.

4.4. Overall bifurcation diagram

The dynamical complexity of the two mutually delay-coupled semiconductor lasers can be
summarized best by assembling the stability regions of CLMs, ROs and DOs with the associated
bifurcation curves into a single bifurcation diagram, as shown in figure 6(d). This image can
be understood as an ‘explorer’s map’ to the dynamics of this delay-coupled laser system. In
particular, this representation brings out the different kinds of multistabilities as overlapping
CLM, RO and DO stability regions. The white region in figure 6(d) corresponds to even more
complicated and possibly chaotic dynamics. It can be entered via torus and period doubling
bifurcations, which hints already at two classic routes to chaos.
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5. Conclusions and outlook

We presented a comprehensive study of the dynamics of two mutually delay-coupled
semiconductor lasers, where we focused on the influence of the detuning between the two
lasers for different values of the pump current. Experiments show a qualitatively different
behaviour for low as opposed to high pump current, and this has been confirmed by the
bifurcation analysis of the rate equation model.

Our study provides an important insight into the dynamical complexity of delay-coupled
oscillators. Namely, since the individual lasers are stable, all of the dynamics we found arises
due to coupling-induced instabilities. We identified three different relevant time scales of
the system: (i) the intrinsic RO frequency of the individual oscillators, (ii) the DO frequency,
which is due to the coupling and characterizes the frequency difference between the individual
oscillators, and (iii) the external round-trip frequency associated with the delay time. The
overall dynamics of the system arises from the interplay between the oscillations associated
with these different time scales.

Generally, a delay in the coupling leads to locking with multiple frequencies. In the
delay-coupled laser system this is expressed by multiple CLMs with different frequencies,
which are created and destroyed in saddle-node bifurcations; see also [12, 51, 60]. Because
the different CLMs may undergo Hopf bifurcations, we find several regions of stable ROs. For
large detuning, on the other hand, the dynamics of the coupled system is dominated by the
detuning frequency, which goes to zero as the locking region is approached [1]. However, due
to the presence of the delay, we find frequency jumps on the order of the external round-trip
frequency; see also [59]. Bifurcation analysis of the coupled laser system reveals that this
‘frequency discretization’ is associated with saddle-node bifurcations of periodic orbits.

We identified the locking regions (frequency locking and stable locking) and the stability
regions of ROs and DOs and assembled them into a two-parameter bifurcation diagram in the
plane of detuning versus pump current. The overall conclusion is that for sufficiently high
pump current only stable CLMs, ROs and DOs can be found. For low pump currents, below
two times the threshold current, on the other hand, complicated dynamics and possibly chaos
may be observed. Their detailed study remains an interesting subject for further investigation.
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[13] Fischer I, Heil T and Elsäßer W 2000 Emission dynamics of semiconductor lasers subject to delayed optical
feedback: an experimentalist’s perspective Fundamental Issues of Nonlinear Laser Dynamics ed B Krauskopf
and D Lenstra AIP Conf. Proc. vol 548 pp 66–86 (New York: AIP)
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