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Abstract. Multivariate nonlinear time-series analysis represents a
major challenge in complex systems science, specially when the full un-
derlying dynamics is unknown. Often, time-series forecast relies on the
information contained in a single measured variable. However, in many
cases one might benefit from other available measures of the system
to improve the prediction of its dynamical evolution. Here, we utilize
Reservoir Computing techniques to process sequential multivariate
information. As reservoir, we employ a Mackey-Glass delay system.
We discuss the approximation of a three-dimensional theoretical model
(the Lorenz model) by comparing prediction performance for one
variable using either one or two variables as input. Finally, we apply
these insights to improve the performance of a relevant biomedical
task, namely multi-electrode heartbeat classification.

1 Introduction

Estimation and classification of multivariate time series have become mandatory
tasks in many fields of science including neuroscience, genetics, economy, communica-
tions technology, social sciences and others. If the generating system is deterministic,
it may be possible to reproduce or approximate the dynamics of the system with
a constructed model. According to the Takens embedding theorem [1], a single
variable of a multivariate time series is sufficient to recover the underlying dynamics,
given that the variables are coupled. However, due to noise and other factors, this is
limited for real data and time series estimation and classification may benefit from
the use of additional measurements [2]. In this paper, we explore the benefits of using
multiple data measurements for time series prediction of the Lorenz attractor and
electro-cardiogram classification. We present numerical simulations showing that the
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Fig. 1. a) Schematic view of a traditional reservoir computing system. b) Schematic view of
reservoir computing based on a single nonlinear node with delay. Virtual nodes are defined
as different temporal positions in the delay line. The dashed lines indicate the implicit
connection between the virtual nodes and the readout.

use of multiple variables or data measurements can significantly improve prediction
and classification.
Among the many different options to estimate time series, machine-learning

approaches belong to the most promising ones. Reservoir Computing (RC) (also
known as echo state network [3] and liquid state machine [4]) has emerged as one
of the most successful machine learning approaches. RC is a neuro-inspired concept
that simplifies the traditional Hopfield networks approach, while retaining most
of its computational capabilities. The Hopfield networks approach is a well known
technique that uses recurrent networks to realize certain computational tasks that
are inherently very demanding for traditional computers. In Hopfield networks the
network weights connecting the nodes are trained for a specific task and the states
of the nodes are readout to process the incoming information. The drawback of this
technique is that the complexity of redesigning the reservoir (training the network)
grows exponentially whenever the dimensions of the problem grow linearly. This
problem is typically referred to as the curse of dimensionality. This represents a
difficulty since network’s weights are difficult to train. The advantage of RC is that
the reservoir connections are kept fixed and only the readout weights have to be
adapted for each task [5]. This dramatic reduction in the training requirements does
not result in a performance degradation. Importantly, it has been shown that RC
preserves the properties of recurrent networks [6], namely the capability to compute
and to exhibit a fading memory of previous inputs due to the recurrent connections.
Traditional RC systems consist of three layers: an input layer, a reservoir and

an output layer (see Fig. 1a). An input signal is injected into the input layer which
is often randomly connected to the reservoir. The reservoir is built as a recurrent
network whose connectivity has been chosen (often randomly). The states of the
network nodes under the presence of the input are read out and linearly combined
at the output layer to process the information. The output weights are determined
through a training process by using known input signals, similar to those to be tested
later. Following this idea, computational demanding tasks like time series prediction
or speech recognition [7] as well as the optimization and control of highly complex
physical systems [8] have been successfully performed.
In this paper we adopt a modified approach to implement RC. The approach is

based on the utilization of a single nonlinear element subject to a delayed-feedback
loop [9]. The scheme is shown in Fig. 1b. In this case the nonlinear element is
described by the Mackey-Glass equation modified to include an external input I(t)
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Fig. 2. Schematic view of a traditional reservoir computing system.

and to account for the feedback loop of delay time τ . The equation reads

Ẋ(t) = −X(t) + η · [X(t− τ) + γ · I(t)]
1 + [X(t− τ) + γ · I(t)]p , (1)

with X denoting the dynamical variable, Ẋ its derivative with respect to a dimen-
sionless time t, and τ the delay in the feedback loop. Parameters η and γ represent
feedback strength and input scaling, respectively. The exponent p can be used to tune
the nonlinearity. For small values of η and without an external input (γ = 0), the sys-
tem operates in a stable fixed point. However, in the presence of an external input the
system might show complex dynamics. In particular, we are interested in a dynamical
regime that produces consistent transient responses, i.e., similar inputs generate
similar transient states. Although we have chosen a specific nonlinearity, it has been
shown that other nonlinear functions perform equally well [10–13]. The conceptual
simplicity of delay-based reservoirs has facilitated the electronic, opto-electronic and
all-optical hardware implementations of Reservoir Computing [9,14–18].
As illustrated in Fig. 1b, equally spaced points in the delay line are chosen as

virtual nodes whose states will be used for the readout process. This follows the
insight that the dynamical degrees of freedom for delay systems are distributed along
the delay line. The input signal is injected to the nonlinear node with certain input
weights following a time-multiplexed masking procedure [9]. In the case of a one-
dimensional input signal, each point of the signal to be processed (Fig. 2a) is sampled
and held during one delay time τ and multiplied by a binary random mask (Fig. 2b)
consisting of {−0.1, 0.1}, giving rise to a sequence of random input weights. The
resulting input to the reservoir is a matrix, I (Fig. 2c), of dimensions M ×N , where
M is the number of sampled points in the signal to be processed and N is the number
of virtual nodes in the delay line. The input matrix I is then fed into the nonlinearity in
a serial manner, creating a pattern of transient activity in the delay line. The response
to every row of I fills the delay vector of length τ . Once all elements of matrix I are
injected, a state matrix S (Fig. 2d), which contains the transient responses to the
input signal at the virtual nodes, is constructed. These state matrices are used for
building an estimator/classifier through a training procedure.

2 Time series estimation: The Lorenz system

The prediction of chaotic time series is a demanding task due to the sensitive depen-
dence on initial conditions and the intricate geometric structures of the corresponding
chaotic attractors. In the following example, we consider time series generated by the
Lorenz system [19] which is described as

ẋ = σ(y − x),
ẏ = x(ρ− z)− y, (2)

ż = xy − βz.
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In our particular case, we choose parameters as follows: σ = 10, ρ = 28, and β = 8/3.
In order to perform the time series estimation, different numerical realizations of the
Lorenz system are computed using random initial conditions and an integration time
step of Δt = 0.01. Then the time series are downsampled by a factor of 20, resulting
in a final sampling step of 0.2. For our analysis, each time series has a final length of
103 points. It is worth mentioning that results shown in this article are for the above
mentioned length of the time series.
To build the estimator, 24 time series, generated from Eq. (3) using different initial

conditions, are used for training and one for testing. Then the procedure is repeated
until all time-series samples are used for training and testing. This procedure is known
as a 25-random-fold cross-validation evaluation [20,21].
As it is typical in RC, a linear regression method is used to computed the weights

of the virtual nodes. For this task, 400 virtual nodes are used to capture the dynamics
of the system. In the case of time series prediction using a single variable as the input
to the reservoir, the mask contains two values {−0.01, 0.01} assigned randomly to the
corresponding virtual nodes. In the case of time series prediction using two variables
of the Lorenz system as input to the reservoir, the mask then contains three different
values {−0.01, 0.0, 0.01} assigned randomly following a proportion of [30, 40, 30]%
respectively. Note that the mask is a matrix of dimensions 2 × N in the case of
2-dimensional input signals.
We choose the Mackey-Glass equation (Eq. (1)) as the reservoir. The exponent

p = 1 allows for a long fading memory in the reservoir, which is important in the
context of time series prediction.
To solve our task, the parameter η in Eq. (1) is chosen as η = 0.45, after exploring

the parameter space η − γ and finding a good performance for this parameter value.
To measure the accuracy of our prediction, we compute the Normalized Mean Square
Error (NMSE) which is an estimator of the overall deviations between predicted and
measured values. The NMSE is defined as,

NMSE =
1

m

∑m
k=1(targetk − inputk)2

σ2(tk)
, (3)

were m is the number of samples in the time series: input represents the original
input signal and target is the predicted time series. σ denotes the standard deviation
(STD).
Time series prediction is often performed using a single variable since other vari-

ables are usually hidden or not accessible. However, we will show below that if one
has access to other variables of the system, the prediction can be significantly im-
proved. For the Lorenz system we concentrate on the variables x and y since they are
the most difficult to predict because they move between the two wings of the Lorenz
strange attractor. We initially predict the values of the x one step ahead in time (a
test called one-step prediction task) in two ways. First, based only on its own trace
(but only a single point of x is presented to the reservoir at each delay period) or on
the time series of the y variable. Second, the prediction is based on its own time series
and the time series of the y variable, i.e. we perform a multivariate prediction of the
x variable. In Fig. 3 we plot the NMSE of the one-step prediction as a function of the
input scaling γ for the variable x using its own trace (red lines and crosses) and using
only the trace of y (green line and plus signs). It can be seen that a better prediction
is obtained when using the own time series of the x variable, with a NMSE that does
not depend much on γ(<1). This highlights the robustness of the results to changes
in parameter values. For values of γ > 1 the prediction degrades since we place the
system beyond the bifurcation point of the Mackey-Glass equation which affects the
consistency of the responses.
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Fig. 3. NMSE as a function of γ for the estimation of variable x. Green curve (crosses)
corresponds to the NMSE of x when using only y variable. Red curve (plus signs) corresponds
to the NMSE of estimating x when using only x variable. Blue curve (stars) corresponds to
the NMSE of x when using both x and y variables. Magenta curve (squares) is the error of
estimating x when using x and its delayed version, xt−1. Error bars were computed as the
STD of the 25 different folds.

To check whether the prediction can be improved, by taking into account its own
time series and that of the variable y, we again compute for this case the NMSE of
the x variable. As shown in Fig. 3, the NMSE significantly reduces, reaching values
around 10−7 for γ < 1. When comparing the results for x using x trace and using x
and y traces, it can be seen that we have reduced the NMSE by about three orders of
magnitude. It is worth noting that the prediction can also be improved if a delayed
version of the x variable is given as an input to the reservoir. However, in this case,
including x and y variables is more significant than including the x variable and its
delayed version (magenta curve and square signs).
To substantiate our results further, we compute the prediction error of x for more

than one time step ahead. In Fig. 4 it can be seen that the NMSE remains below 1%
up to 11 predicted points ahead when using both x and y variable time series. When
using only the time series of x only 7 points ahead can be predicted withing the same
error bounds. Therefore, the prediction of x is clearly improved when both x and y
are presented as input to the reservoir.
Time series prediction is one of the most common tasks in machine learning as

well as classification tasks. In the next section we present a real-world classification
problem that can help for the diagnosis and exploration of cardiovascular diseases.
We will apply a similar multivariate analysis to study the classification of ECG sig-
nals when a single or two channels are taken into account to classify healthy and
pathological subjects with a delay-based reservoir.
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Fig. 4. NMSE as a function of the predicted steps for the variable x. Red curve (plus
signs) corresponds to the NMSE of x when using only its own time series. Blue curve (stars)
corresponds to the NMSE of x when using both x and y time series. Error bars were computed
as the STD of the 25 different folds.

3 Electrocardiographic signal classification

Cardiovascular disease (CVD) is the primary cause of death throughout the world,
accounting for 24% of all deaths globally [22]. Electrocardiograms (ECG) have been
a powerful and irreplaceable tool in the exploration and diagnostic of CVDs. Its ac-
quisition requires only simple and low-cost devices with a minimum impact on the
patient. The ECG is an essential diagnostic tool for common pathologies such as my-
ocardial ischemia [23,24], arrhythmia and other rare pathologies as cardiac muscular
dystrophy or Brugada syndrome [25]. Continuous monitoring in medicine has given
physicians the ability to collect hours and days worth recordings of physiological sig-
nals, involving physicians in a time-consuming analyzing process. This has prompted
researchers to develop automatic diagnosis tools for the detection of cardiac diseases
in order to reduce the diagnosis time.
In the following, we choose the MIT-BIH Arrhythmia Database [26] which con-

tains 48 ambulatory ECG recordings of half hour each, in order to test our method-
ology with this real-world problem. Twenty-three recordings were selected at random
while the remaining 25 recordings were selected to include less common but clinically
significant arrhythmias. Each ECG record includes two time series originating from
different electrodes. The most common derivation in the database is the modified
limb lead II (MLII), present in 41 recordings. The second most common derivation
is V 1 present in 35 recordings. We have restricted our database to 35 recordings in
order to include these two derivations for our multivariate analysis.
To perform heartbeat classification, the ECGs were divided into heartbeats using

a fixed-length window of 170 samples around the R-peak. This particular point of the
ECG is annotated in the database. The window was positioned around the maximum
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Fig. 5. ECG traces of the two main derivations, namely MLII and V1, for a normal subject.
Vertical lines represent the position of the R-peak. Figure taken from Physionet.org

peak of the QRS complex to extract the waveform (see Ref. [28] for details). Seventy
samples before the R-peak were extracted to include P waves, and 100 samples
after the R-peak were also included to have information about the T wave and the
duration of the heartbeat. Figure 5 shows the beginning of an ECG of a normal
subject. Both, MLII and V1 channels are represented. Vertical lines represent the
position of the R-peak. The N in the plot means that the heartbeats are normal.
For this particular application, we employ logistic regression for the training pro-

cedure. This is in contrast to standard Reservoir Computing which uses linear regres-
sion methods. The logistic regression (LR) [27] is a widely used learning technique
in biostatistical applications in which binary responses occur quite frequently, i.e. for
questions whether a condition is present or absent. LR is specified in terms of logit
transformations, defined as

logit(P ) = ln(odds) = ln
( P

1− P
)

(4)

where the odds represent the ratio of the probability P that an event will occur to
the probability that the same event will not occur. In the logistic regression, the aim
is to linearly relate the logit function with the data S finding the values of parameters
a and b that satisfy

logit(P) = a+ b · S, (5)

where S are the state matrices and each component of P contains the probability for
the corresponding state matrix. Consequently, results can be directly interpreted as
the probability of a condition to be true or false via the following equation

P =
ea+bS

1 + ea+bS
· (6)

Note that logit functions are linearly related to the data S, but the probabilities are
nonlinearly related to it. This is an advantage since in classical linear models it is
usually assumed that the outcomes are independent and normally distributed with
equal variance. These assumptions are often inadequate in medical applications.
For the classification of the ECG signals, we again employ the Mackey-Glass delay

system as the reservoir. We have numerically checked that, for this task, the optimal
number of virtual nodes is 25. A smaller number of nodes leads to a high bias problem,
i.e. the reservoir is too simple to classify the different ECG signals. A larger number
of nodes (>25) leads to a high variance problem (overfitting), i.e. the reservoir is able
to learn the training samples but it is not able to generalize to new samples. The
optimal number of nodes can be extracted from the learning curves of the system
[28]. In [28], we have also explored the parameter space of the Mackey-Glass model
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Table 1. Accuracy of the classification of ECGs using one or two channels.

Channel Accuracy (%)

MLII 71.5

MLII/V1 78.6

finding a richer dynamics on the state matrices for η = 0.8 and γ = 0.5. In addition,
we choose parameter p = 7 in Eq. (1). For this value the Mackey-Glass oscillator
exhibits shorter memory but a higher nonlinearity, which is more convenient for a
classification task.
One standard measure for the performance of a classifier is the accuracy measure,

which is defined as:

Accuracy =
true positive + true negative

sum of all samples
· (7)

For further information on the evaluation of performance in machine learning, please
refer to [29].
For a clinically-relevant, multiclass, ECG classification problem of 45 subjects

from the MIT-BIH Arrhythmia Database the average accuracy of the classifier was
98.43% [28], showing improvement over previously reported results.
Here, and in contrast to [28], we construct the classifier from two channels, namely

the MLII and the V1 channels. We have also increased the tolerance of the algorithm
to 10−1 to leave room for improvement on the results shown in [28]. These two chan-
nels are only available for a reduced set of patients (35 subjects), leading to a smaller
usable database and a degradation in performance. Table 1 shows the accuracy of the
classifier when using one or two channels, for the restricted database containing both
derivations. The classification for a single channel is performed using channel MLII
alone. Then a combination of channels MLII and V1 is used to build a multivariate
classifier. It can be observed that the accuracy increases about 7% when using two
variables in comparison with the case of one variable. This is in agreement with re-
sults reported by De Chazal [30] and highlight the potential of multivariate timeseries
prediction using reservoir computing. More tests and larger data sets are, however,
needed to further verify the usefulness of our approach.

4 Conclusions

In this paper we have numerically shown the ability of reservoir computing, based
on delay-coupled systems, to perform time series prediction and classification tasks
following a multivariate analysis. We have concentrated on two tasks, the prediction
of a chaotic time series, given by the Lorenz system, and the classification of heart
beats, obtained from ECG derivations.
For the one-step prediction task of the Lorenz system, we found a significant

reduction (∼3 orders of magnitude) of the normalized mean square error (NMSE)
when using two variables to predict one, than when using only one variable. Moreover,
we found that the NMSE remains smaller than 1% when predicting 11 steps ahead
when using two variables compared to only 7 steps using one variable. We expect the
results obtained for the well-known Lorenz system in the chaotic regime to be valid
for similar multivariate dynamical systems.
We have also applied the multivariate approach to the classification of heart beats.

We found an improvement of 7% when using two channels of the ECG as compared to
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the case when the classification was performed using a single channel. In this context,
the accuracy in the classification can improve if a database with a larger number of
subjects is used.
Our results highlight that the use of more than one variable can significantly

improve predictions when using reservoir computing techniques. More tests with real-
world data are however needed to explore the full potential of our approach.
It is worth noting that the fading memory present in recurrent networks resem-

bles the time-delay embedding in Takens theorem. This fading memory implies that
information about previous inputs is still present in the reservoir after a number of
delay times τ . In our case, adding explicitly a delayed version of the same input does
not provide as much information as adding the y variable. Thus, we find a signifi-
cant improvement in the prediction capabilities of reservoir computing when using an
additional variable.
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