Generalized diffusion in graphs/networks


Normal and anomalous diffusion are ubiquitous in many complex systems. In this talk, I will define a time and space generalized diffusion equation (GDE), which uses fractional-time derivatives and transformed d-path Laplacian operators on graphs/networks. I will find prove that the solution of this equation covers the regimes of normal, sub- and superdiffusion as a function of the two parameters of the model. I will also extend the GDE to consider a system with temporal alternancy of normal and anomalous diffusion, which is able to sucessfully model the diffusion of proteins along a DNA chain. Finally, I will briefly comment how a subdiffusive-superdiffusive alternant regime allows the diffusive particle to explore more slowly small regions of the chain with a faster global exploration.

Detalles de contacto:

Sandro Meloni

Contact form

Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.

Más información De acuerdo