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We derive a generic model for the interaction of domain walls close to a nonequilibrium-Bloch
transition. The universal scenario predicted by the model includes stationary Ising and Bloch localized
structures (dissipative solitons), as well as drifting and oscillating Bloch structures. Our theory also
explains the behavior of Bloch walls during a collision. The results are confirmed by numerical simulations
of the Ginzburg-Landau equation forced at twice its natural frequency and are in agreement with previous
observations in several physical systems.
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Domain walls are common coherent structures in bista-
ble extended systems, and their dynamics and interaction
determine the different spatiotemporal regimes in a large
variety of driven dissipative systems in fields as diverse as
chemistry, physics, biology, material science, ecology, or
optics. Walls connecting two homogeneous states can be
classified according to their symmetry with respect to the
wall center as Ising, which are symmetric, and Bloch,
which are not. Associated to their asymmetry, Bloch walls
have a defined chirality [1]. Transitions between Ising and
Bloch domain walls are well known in both equilibrium
and nonequilibrium systems [2–6]. They are associated to
spontaneous chirality breaking and have been thoroughly
studied in different physical systems [1,5,7,8]. In non-
equilibrium systems, as the result of nonvariational effects,
chirality breaking induces the motion of Bloch walls [4].
More recently, it has also been shown that delayed feed-
back can also induce motion in an Ising-Bloch (IB)
transition [9,10].
A crucial ingredient determining the dynamical evolu-

tion of domain walls is their interaction. While the
interaction between Ising fronts has been widely studied
in the literature, leading to the formation of localized
structures (LS) or dissipative solitons in a wide range of
complex systems [11–16], only specific cases concerning
the interaction of Bloch walls have been considered
[17–21]. In this Letter we show that the interaction of
Bloch walls can be very generally described in terms of
only two coupled modes of the front, the neutral (or
Goldstone) mode and the chiral mode that become unstable
at the IB transition. Our reduced model provides a universal
framework to understand the instabilities and dynamical
regimes one can observe when two fronts interact in any
system close to an Ising-Bloch transition.
We consider the complex Ginzburg Landau equation

parametrically forced at twice the natural frequency
(PCGLE), which is a paradigm for the study of Ising
and Bloch walls in nonequilibrium systems. In fact,

recently there has been a new surge of interest in the
Ginzburg-Landau equation coming from new applications
in nonlinear optics such as frequency comb generation. In
particular, it has been shown that ring-cavity configurations
[22–24] and delayed systems for which one can identify
two time scales [25–28] can be recast to extended systems
described by the Ginzburg-Landau equation where the
spatial coordinate is associated with the fast time scale
while the slow time plays the role of the usual time
describing the evolution of the field. This make the results
presented in this Letter relevant not only to spatial systems
but also to this special kind of temporal system.
The PCGLE writes

∂tA ¼ ðμþ iνÞAþ γA� − ð1þ iβÞjAj2Aþ ð1þ iαÞ∇2A;

ð1Þ

and for γ2ð1þ β2Þ > ðν − βμÞ2 it has two equivalent
stable homogeneous steady states A�, such that
Aþ ¼ −A− ¼ jAþjeiΦ0 . The existence and stability of
Ising AIðxÞ and Bloch ABðxÞ walls connecting these
two states have been thoroughly studied [4,29–31].
AI;BðxÞ tend to A� for x → −∞ and to A∓ for x → ∞.
For an Ising wall centered at x ¼ xw, AIðxwÞ ¼ 0. An IB
transition occurs when the Ising wall becomes unstable
versus chiral perturbations [4], such that fronts acquire
chirality [AðxwÞ ≠ 0].
For ν ¼ β ¼ α ¼ 0 Ising and Bloch walls are [32]

AI ¼
ffiffiffiffiffiffiffiffiffiffiffi
μþ γ

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ γÞ=2

p
x;

AB ¼ ffiffiffiffiffiffiffiffiffiffiffi
μþ γ

p
tanh

ffiffiffiffiffi
2γ

p
xþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ − 3γ

p
cosh

ffiffiffiffiffi
2γ

p
x
: ð2Þ

Ising walls are stable for γ ≥ ðμ=3Þ. At γ ¼ ðμ=3Þ Bloch
walls appear through a pitchfork bifurcation. For γ < ðμ=3Þ
Bloch walls are stable while Ising walls are unstable.
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For general ν ≠ 0, β ≠ 0, α ≠ 0 Eq. (1) still has Ising and
Bloch wall solutions, but they have to be computed
numerically [4]. Because of the nonvariational terms,
Bloch walls move with a velocity proportional to their
chirality [1,29–31]. Both Ising and Bloch walls also present
spatially oscillatory tails. This affects the interaction
between walls leading to a rich dynamical behavior, as
explained in this Letter and observed, for instance, in
localized current filaments [17], optical cavities [18], or in
systems with feedback [33].
Performing numerical simulations of (1) for parameter

values around the IB transition, very generally, one
observes distinctive dynamical regimes. Well before the
IB transition, Ising walls bound due to oscillatory tail
interaction forming LS [Fig. 1(a)]. Each side of the Ising LS
is essentially an Ising front [AðxwÞ≃ 0, Fig. 1(d)]. This
mechanism for the formation of LS has been largely studied
(see, for instance, [34–38]), and commonly observed in
different physical systems [11–16].
Beyond the IB transition LS formed by two Bloch walls

with opposite chirality [Figs. 1(c) and 1(f)] are observed.
Since both walls have opposite orientation the result is
that both move in the same direction and the LS drifts.
Such a bound state was observed in [18]. Other kinds of
LS can also undergo an IB transition leading to drifting LS
[39–41].
We also find a different kind of LS formed by two Bloch

walls with the same chirality and opposite orientation
[Figs. 1(b) and 1(e)]. The two walls push or pull in opposite
directions, but the oscillatory tail’s interaction keeps them
bound and the LS is at rest. These resting Bloch LS occurs
for parameters before the IB transition, where isolated walls
are always of the Ising type.
For other parameters, still below the IB transition, we

observe oscillating LS (Fig. 2) in which chirality induced

motion manifests but domain walls remain bound. The wall
separation d and the chirality χ oscillate periodically. Such
a regime has been observed in localized current filaments
[17] and optical cavities [18]. Beyond the IB transition this
cycle is destroyed and the domain walls escape to infinity.
In this case Bloch walls moving towards each other collide
and bounce back (Fig. 3), as also reported in [18].
To understand the different dynamical regimes described

above, we study, close to the IB transition, the dynamics of
two opposite fronts located at x1ðtÞ and x2ðtÞ (x1 < x2)
using the ansatz

~ALSðx; tÞ ¼ ~As½x − x1ðtÞ� − ~As½x − x2ðtÞ� − jAþj
þ χ1ðtÞ ~Aa½x − x1ðtÞ� þ χ2ðtÞ ~Aa½x − x2ðtÞ�
þ ϵWðx; tÞ; ð3Þ

where ~A≡ Ae−iΦ0 , ~Asðx − xjÞ is the front symmetric part,
~Aaðx − xjÞ the chiral mode becoming unstable at the IB
transition and χjðtÞ its amplitude. For small ν, β, and α,
~As ≈ X and ~Aa ≈ iY, being X and Y the real and imaginary
parts of the front. Replacing (3) in (1) and projecting on the
neutral modes X0ðx − xjÞ (0 refers to the spatial derivative)
and chiral modes Yðx − xjÞ we get [42]

FIG. 1. (a) Ising LS of Eq. (1) for γ ¼ 0.4, (b) resting Bloch LS
for γ ¼ 0.35, and (c) drifting Bloch LS for γ ¼ 0.3, above the IB
transition. Other parameters: μ ¼ 1, ν ¼ 0.2, β ¼ −0.1, and
α ¼ 1. Panels (d)–(f) show the homoclinic trajectory in the plane
(ℜ½A�,ℑ½A�).

FIG. 2 (color online). Oscillatory Bloch LS. (a) Cycle in the
phase space (χ,d), where the chirality χ is measured as ℑ½A� at the
spatial location where ℜ½A� ¼ 0. (b) Spatiotemporal representa-
tion ofℜ½A�. Bright (dark) colors indicate high (low) values. Here
μ ¼ 1, ν ¼ −0.2, γ ¼ 0.35, β ¼ −0.5, and α ¼ 2.

FIG. 3 (color online). Bouncing of two Bloch walls above the
IB transition. Here γ ¼ 0.3. Other parameters as in Fig. 2.
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_d ¼ fðdÞ þ κðχ1 þ χ2Þ;
_D ¼ −κðχ1 − χ2Þ;
_χ1 ¼ gðdÞ þ ηχ1 − ρχ31;

_χ2 ¼ gðdÞ þ ηχ2 − ρχ32; ð4Þ

The neutral modes of the fronts lead to a global neutral and
an interaction mode with amplitudes proportional to
DðtÞ ¼ x1ðtÞ þ x2ðtÞ and dðtÞ ¼ x2ðtÞ − x1ðtÞ. In (4)

fðdÞ ¼ 2ΓI

Z þ∞

−∞
fℜ½R−ðx; dÞ�XLSðx; dÞgX0ðxÞdx;

gðdÞ ¼ ΓB

Z þ∞

−∞
fℑ½R−ðx; dÞ�XLSðx; dÞgYðxÞdx;

κ ¼ ΓI

Z þ∞

−∞
f½ℑ½Rþðx; dÞ� − 2ν�YðxÞgX0ðxÞdx;

η ¼ ΓB

Z þ∞

−∞
f(2μ −ℜ½Rþðx; dÞ�)YðxÞgYðxÞdx;

ρ ¼ ΓB

Z þ∞

−∞
Y4ðxÞdx; ð5Þ

where XLSðx; dÞ ¼ XðxÞ − Xðx − dÞ − jAþj, R�ðx; dÞ ¼
ð1þ iβÞ½jAþj2 � X2

LSðx; dÞ�∓ð1þ iαÞ∇2
x, and ΓI;B such

that

ΓI

Z þ∞

−∞
X02ðxÞdx ¼ ΓB

Z þ∞

−∞
Y2ðxÞdx ¼ 1: ð6Þ

fðdÞ is the interaction between individual walls and has
been found to behave as fðdÞ≃ −b cosðqdÞe−rd [32].
Close to the IB transition gðdÞ is proportional to fðdÞ.
η ¼ 0 corresponds to the IB transition.
Equation (4) admits solutions of the form χ1 ¼ −χ2 ¼ χ,

for which DðtÞ ¼ −2κχt, while d relaxes to a fixed point
given by a zero of fðdÞ, so that the structure moves as a
whole. This case was considered in [45] and corresponds to
the drifting Bloch LS discussed above [Figs. 1(c) and 1(f)].
Equation (4) also admits solutions of the form χ1 ¼

χ2 ¼ χ so that the center of mass D does not move and

_d ¼ −b cosðqdÞe−rd þ 2κχ;

_χ ¼ −βb cosðqdÞe−rd þ ηχ − ρχ3: ð7Þ
In this case the system presents a rich variety of dynamical
regimes (see phase diagram in Fig. 4). One can rescale χ, d
and t so that ρ ¼ b ¼ r ¼ 1 and, without loss of generality,
take κ > 0. We consider negative values of β, since, as
explained later, this is the case describing the scenario
observed in the full model (1). The case with positive values
of β will be reported elsewhere.
Equation (7) have zero chirality fixed points given by

χI ¼ 0; dIn ¼ ð2nþ 1Þπ=2q; n ¼ 0; 1; 2;…; ð8Þ

which correspond to Ising LS of the full model [Figs. 1(a)
and 1(d)] with different widths. A linear stability analysis
shows that, for η < 2κβ, the fixed points with n odd are
stable, while those with n even are saddles (region I
in Fig. 4).
Increasing η, Ising fixed points (8) undergo a pitchfork

bifurcation at η ¼ 2κβ. At the pitchfork, each Ising LS
leads to two solutions with opposite chirality (Bloch LS):

(a) (b) (c)

FIG. 5. Phase space of Eq. (7) for (a) η ¼ −1.5 and β ¼ −3 (region III), (b) η ¼ −1.5 and β ¼ −2.8 (region II), and (c) η ¼ −1.0 and
β ¼ −2.4 (region III). κ ¼ 0.3. Symbols indicate fixed points and solid lines stable and unstable manifolds. The bold line in
(a) corresponds to the limit cycle. The undulating dotted line displays fðdÞ for reference.

FIG. 4 (color online). Phase diagram of Eq. (7) for κ ¼ 0.3 (see
text). We show only the bifurcation lines of the fixed points dIn
and dBn with n ¼ 1; 2. The phase diagram is qualitatively the same
for other values of n.
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χB� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η − 2κβ

p
; cosðqdBn�Þe−d

B
n� ¼ 2kχB�: ð9Þ

Stable Ising LS (n odd) lead to stable Bloch LS, which are
found in the parameter region II delimited by the pitchfork
line and the SN-SNIC line to be discussed later. These
solutions correspond to the resting Bloch LS of the full
model shown in Figs. 1(b) and 1(e). Saddle Ising LS (n
even) lead to two saddle Bloch LS, and simultaneously, if
β > βcn ¼ −An=2κ, where An ¼ ð−1Þnqe−dIn the Ising LS
becomes stable (region Ib in Fig. 4). Physically, the
destabilizing interaction of the tails is counterbalanced
by the motion induced by chirality.
These solutions found for β > βcn undergo a Hopf

bifurcation at η ¼ −An, leading to the oscillatory regime
III. Figure 5(a) shows the limit cycle arising at the Hopf of
dI2. In the reduced model, oscillations occupy a large region
in parameter space, and, in fact, this regime is easily found
in the full PDE (Fig. 2). Note also that region II overlaps
with Ib and III. In the overlapping regions several regimes
coexist.
Regimes I, II, and III are actually the result of the

unfolding of the codimension-2 bifurcation point (η ¼ 2κβ,
β ¼ βcn), where the pitchfork and Hopf lines meet. This is a
double-zero (DZ) point [46]. The DZ also unfolds a saddle-
loop (SL) bifurcation (SL1 line in Fig. 4). At the SL the
cycle originated at an Ising LS with a given even n collides
with one of the saddle resting Bloch LS that was born at the
pichfork, and it is destroyed. In Fig. 5, panels (a) and
(b) show the phase space before and after the collision of
the limit cycle originated from dI2 with the Bloch LS dB2þ.
The solutions of (9) are the intersection of an exponential

with a cosine. Then, changing parameters, solutions with
consecutive n collide close to the extrema of the cosine,
beyond which there are no Bloch LS. This is a saddle-
node (SN) bifurcation that takes place approximately at
η ¼ 2κβ þ e−2d

�
n =4κ2, where d�n ¼ ð2nþ 1� 1Þπ=2q (see

Fig. 4). The SN and SL1 lines collide tangentially at a a
second codimension-2 point which is the saddle-node
separatrix loop (SNSL). At the other side of the SNSL
the saddle-node happens on the circle defined by the cycle;
hence, it is a saddle-node in the circle or SNIC bifurcation.

In Fig. 5, panels (b) and (c) show the phase space when
crossing the SNIC line from region II to region III.
The oscillatory region III ends at a second saddle-loop

(SL2 in Fig. 4) where the cycle centered at an Ising LS with
an even n collides with the Ising LS for nþ 1. Panels
(a) and (b) in Fig. 6 show the transition from region III to
region V crossing the SL2 line, where the cycle centered at
dI2 collides with the saddle dI3.
Remarkably the destruction of the limit cycle at SL2

opens an outgoing channel in phase space along its
remnants. Two walls initially separated a distance between
dI2 and dI3 move towards each other until reaching a
minimal distance close to dI1 and bounce back. As they
move apart the interaction strength decreases exponentially
and, for η < 0 (below the IB transition), walls become of
the Ising type and finally stop at an stable equilibrium
distance [Fig. 6(b)]. This is regime V which, despite
existing in a relatively small parameter region (see
Fig. 4), is also found in the full PDE as shown in Fig. 7.
For η > 0walls are intrinsically Bloch and after colliding

they escape to infinity (regime IV). An incoming channel
also opens and Bloch walls initially far away and moving
towards each other bounce after reaching a minimal sepa-
ration [blue bold dashed line in Fig. 6(c)]. The escape
trajectory is confined by the unstablemanifolds of dI1 andd

I
3,

which quickly get close due to the stable transverse
direction. This regime corresponds to Fig. 3 for the full PDE.

(a) (b) (c)

FIG. 6 (color online). As Fig. 5 for (a) η ¼ −0.15 and β ¼ −3.17 (region III), (b) η ¼ −0.05 and β ¼ −3.15 (region V), and
(c) η ¼ 0.2 and β ¼ −3.17 (region IV). The blue bold dashed line in panel (c) corresponds to a bouncing trajectory of two Bloch walls.

FIG. 7 (color online). Oscillatory Bloch LS in the PCGLE after
the cycle has destroyed by changing a parameter. It expands until
a large width Ising LS is formed. Here γ ¼ 0.32. Other param-
eters as in Fig. 2.
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We have derived a simple model for the dynamics of
Ising and Bloch walls close to a nonequilibrium Ising-
Bloch transition. It describes the coupled evolution of wall
motion, interaction, and chirality. It predicts the formation
of Ising and Bloch LS as well as a variety of spatiotemporal
behavior including drifting and oscillatory Bloch LS. These
results are generic and should thus be observable in
different physical systems. In particular, we have repro-
duced them by numerical simulations of the Ginzburg-
Landau equation and they have also been observed in
different physical systems [17,18].
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