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 PDifferentmeasures of directional influence have been employed to infer effective connectivity in the brain.When

the connectivity between two regions is such that one of them (the sender) strongly influences the other (the
receiver), a positive phase lag is often expected. The assumption is that the time difference implicit in the relative
phase reflects the transmission time of neuronal activity. However, Brovelli et al. (2004) observed that, in mon-
keys engaged in processing a cognitive task, a dominant directional influence from one area of sensorimotor cor-
tex to anothermay be accompanied by either a negative or a positive time delay. Herewe present amodel of two
brain regions, coupled with a well-defined directional influence, that displays similar features to those observed
in the experimental data. Thismodel is inspired by the theoretical framework of Anticipated Synchronization de-
veloped in the field of dynamical systems. Anticipated Synchronization is a form of synchronization that occurs
when a unidirectional influence is transmitted from a sender to a receiver, but the receiver leads the sender in
time. This counterintuitive synchronization regime can be a stable solution of two dynamical systems coupled
in a master–slave (sender–receiver) configuration when the slave receives a negative delayed self-feedback. De-
spite efforts to understand the dynamics of Anticipated Synchronization, experimental evidence for it in the brain
has been lacking. By reproducing experimental delay times and coherence spectra, our results provide a theoret-
ical basis for the underlying mechanisms of the observed dynamics, and suggest that the primate cortex could
operate in a regime of Anticipated Synchronization as part of normal neurocognitive function.

© 2014 Published by Elsevier Inc.
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Introduction

Phase synchronization is extensively studied in the brain, where
it has been hypothesized to underlie neurocognitive phenomena
such as binding (Singer, 1999), temporal coding (Brette, 2012), spa-
tial attention (Banerjee et al., 2011) and other higher cognitive func-
tions (Wang, 2010) (see (Uhlhaas et al., 2009) for a recent review).
Phase synchronization (Pikovsky et al., 2001) has been related to
large-scale information integration (Varela et al., 2001), efficiency
of information exchange (Fries, 2005), and both working and long-
term memory (Fell and Axmacher, 2011). Correlation measures in
the frequency domain are the most widely employed tools for mea-
suring phase synchronization, which is typically used to infer inter-
actions between brain areas (Bressler and Menon, 2010; Siegel
et al., 2012). However, correlation alone cannot reveal the influences
65

66

67

68.

Modeling positive Granger c
age.2014.05.063
that are exerted by neurons in one area on those in the other by ax-
onal transmission and synaptic effects.

One approach to detecting directional influence in the brain has
been to infer it from relative phase measures (Gregoriou et al., 2009;
Marsden et al., 2001; Sauseng and Klimesch, 2008; Schnitzler and
Gross, 2005; Williams et al., 2002) of neuroelectric indices, such as the
electroencephalogram (EEG). The assumption here is that the timing
difference implicit in relative phase reflects the transmission time of
neural activity. By contrast, other measures of directional influence,
such as Granger causality (GC or G-causality), have emerged in recent
years as an alternative approach that is grounded in the theoretical
framework of statistical predictability between stochastic processes
(Bressler and Seth, 2011; Granger, 1969). Alternative methods include
partial directed coherence (Baccalá and Sameshima, 2001), nonlinear
GC (He et al., 2014; Marinazzo et al., 2008, 2011) and transfer entropy
(Lobier et al., 2014; Vicente et al., 2011), among others (Pereda et al.,
2005).

A dominant value for directional influence fromonebrain area (A) to
another (B) indicates that the activity of neurons in area A exerts an
ausality and negative phase lag between cortical areas, NeuroImage
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Fig. 1. (A, B) Location of recording sites in monkey GE (zoom in the four analyzed elec-
trodes). (B) Sites 1 and 2 are in the primarymotor cortex and primary somatosensory cor-
tex respectively. Sites 3 and 4 are in the posterior parietal cortex. Arrows indicate the
direction of influence between pairs (Granger causality) and their width are related to
the peak of Granger causality shown in Table 1. Colors indicate the sign of time delay be-
tween pairs, relative to the influence direction. Blue arrows indicate the sender leads the
receiver. Red arrows indicate the receiver leads the sender. (C) Schematic representation
of two cortical areas coupled in a sender–receiver (master–slave) configuration. In the
model the structural connectivity ensures the direction of influence from the sender to
the receiver (mediated by the excitatory synaptic conductance gE

SR). The inhibitory feed-
back is controlled by the synaptic conductance gI

R (see Methods). The effective connectiv-
ity may also be accessed by Granger causality measures (see Fig. 3C). (A, B modified from
Brovelli et al.).
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effect on the activity of those in area B. It is sometimes assumed that
such a directional influence should be accompanied by a positive
time delay (relative phase lead of the activity in area A before that
in area B), indicating that A's activity temporally precedes that of B
(Gregoriou et al., 2009; Sharott et al., 2005). However, this assumed
relationship is not theoretically justified. Furthermore, it has been
empirically observed that a dominant directional influence between
areas of sensorimotor cortex may be accompanied by either a nega-
tive or a positive time delay (Brovelli et al., 2004). Brovelli et al.
showed that steady contractions of arm and hand muscles by ma-
caque monkeys performing a visual pattern discrimination task are
accompanied by phase synchronization of beta-band (14–30 Hz)
Local Field Potentials (LFPs) recorded from somatosensory and
motor cortical areas (Brovelli et al., 2004). Directional influence
among those areas, as assessed by GC, showed that interareal func-
tional relations are usually asymmetrical. Importantly, the interareal
relative phase showed no obvious relation to the directionality de-
termined by the dominant direction of causal influence. Thus, for ex-
ample, even when GC indicated that area A exerted a stronger
influence on area B than in the reverse direction, suggesting an
asymmetric functional relation dominated by the influence from A
to B, it was often the case that area A lagged behind area B in time
(Brovelli et al., 2004).

A similar incongruence between phase difference and GC be-
tween PreFrontal Cortex (PFC) and Posterior Parietal Cortex (PPC)
in monkeys performing a working memory task was reported by
Salazar et al. (Salazar et al., 2012). They observed a dominant
parietal-to-frontal beta-band GC influence that was opposite to the
direction of influence implied by the 2.4–6.5 ms time lead of PFC be-
fore PPC derived from relative phase. The dominant parietal-to-
frontal direction of GC influence was supported by spike-field coher-
ence analysis, again suggesting that relative phase is not a reliable in-
dicator of directional influence.

In the study of nonlinear dynamics, Anticipated Synchronization
(AS) occurs when a unidirectional influence from a dynamical system
(A, the sender) to another dynamical system (B, the receiver) is accom-
panied by a negative phase difference between A and B (Voss, 2000,
2001a,b). This counterintuitive synchronization regime can be a stable
solution of two dynamical systems coupled in a master–slave (send-
er–receiver) configuration, provided that the slave also receives a nega-
tive delayed self-feedback (Che et al., 2013; Ciszak et al., 2003, 2004;
Kostur et al., 2005;Masoller and Zanette, 2001). In AS, the receiver's tra-
jectory is able to precede that of the sender by predicting the sender's
future behavior. AS has been observed in chaotic systems (Pyragas
and Pyragiené, 2008; Pyragiené and Pyragas, 2013; Voss, 2000) and ex-
citable models driven by white noise (Ciszak et al., 2003), and has been
experimentally verified in semiconductor lasers (Sivaprakasam et al.,
2001; Tang and Liu, 2003) and electronic circuits (Ciszak et al., 2009).
It was also shown to occur in 3-neuron microcircuits of noiseless tonic
Hodgkin–Huxley models, with delayed self-feedback replaced by a
feedback loop mediated by an inhibitory interneuron (Matias et al.,
2011). Despite efforts to join concepts of anticipatory behavior and AS
dynamics (Stephen and Dixon, 2011; Stepp and Turvey, 2010), biologi-
cal models of AS, and experimental evidence for it in the brain, have
been lacking.

Here we present a dynamical systems model of two cortical re-
gions, coupled with a well-defined directional influence, that dis-
plays AS, and compare the model's dynamics in the AS regime to
that of LFPs from the cortical data set of Brovelli and coworkers
(Brovelli et al., 2004). We report that our model reproduces delay
times, as well as coherence and GC spectra, from the cortical data.
Our findings provide a theoretical basis for the observed dynamics,
in which the primate cortex operates in a dynamical regime where
the information flow and relative phase lag have opposite signs.
The model further suggests that the local inhibitory interactions in
a receiving neuronal population in the cortex will determine
Please cite this article as: Matias, F.S., et al., Modeling positive Granger c
(2014), http://dx.doi.org/10.1016/j.neuroimage.2014.05.063
whether that population will anticipate or lag behind the sending
population.

Methods

Modeling synchronization in large-scale systems

To simplify the modeling of the asymmetry observed in the Granger
causal influences between pairs of areas, we simulated two unidirec-
tionally coupled cortical-like neuronal populations: a sender (S) and a
receiver (R), see Fig. 1C. Each one was composed of 500 neurons
ausality and negative phase lag between cortical areas, NeuroImage

http://dx.doi.org/10.1016/j.neuroimage.2014.05.063
http://dx.doi.org/10.1016/j.neuroimage.2014.05.063


T

143

144

146146

147

149149

150

151Q4

152

153

154

155

156

157

158

159

160

161

162

163

164

165

167167

168

169

171171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

214214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

3F.S. Matias et al. / NeuroImage xxx (2014) xxx–xxx
U
N
C
O

R
R
E
C

(Gollo et al., 2011) described by the Izhikevich model (Izhikevich,
2003):

dv
dt

¼ 0:04v2 þ 5vþ 140−uþ
X
x
Ix; ð1Þ

du
dt

¼ a bv−uð Þ: ð2Þ

In Eqs. (1) and (2) v is themembrane potential and u the recovery
variable which accounts for activation (inactivation) of K+ (Na+)
ionic currents. Ix is the current provided by the interaction with
other neurons and external inputs. If v ≥ 30 mV, v is reset to c and
u to μ+ d. To account for the natural heterogeneity of neuronal pop-
ulations, which can exhibit a variety of neuronal dynamics (spiking,
bursting, etc. (Izhikevich et al., 2004)), the dimensionless parameters
are randomly sampled as follows: (a, b) = (0.02, 0.2) and (c, d) =
(−65, 8) + (15,−6)σ2 for excitatory neurons (80% of the population)
and (a, b) = (0.02, 0.25) + (0.08, −0.05)σ and (c, d) = (−65, 2) for
inhibitory neurons (20%), where σ is a random variable uniformly dis-
tributed on the interval [0,1] (Izhikevich, 2003; Izhikevich et al.,
2004). Equations were integrated with the Euler method and a time
step of 0.05 ms.

The connections between neurons in each population are assumed
to be fast unidirectional excitatory and inhibitory chemical synapses
mediated by AMPA and GABAA. The synaptic currents are given by

Ix ¼ gxrx v−Vxð Þ; ð3Þ

where x= E, I (excitatory and inhibitorymediated byAMPA andGABAA,
respectively), VE=0mV, VI=−65mV, gx is themaximal synaptic con-
ductance and rx is the fraction of bound synaptic receptors whose dy-
namics is given by:

τx
drx
dt

¼ −rx þ
X
k

δ t−tkð Þ; ð4Þ

where the summation over k stands for pre-synaptic spikes at times tk.
The time decays are τE = 5.26 ms τI = 5.6 ms. Each neuron is subject
to an independent noisy spike train described by a Poisson distribution
with rate R. The input mimics excitatory synapses (with conductances
gE = 0.5 nS) from n pre-synaptic neurons external to the population,
each one spikingwith a Poisson rate R/nwhich, togetherwith a constant
external current Ic, determine the main frequency of mean membrane
potential of each population. Unless otherwise stated, we have
employed R=2400 Hz and Ic =0. Connectivity within the S popula-
tion randomly targets 10% of the neurons, with excitatory conduc-
tances set at gES =0.5 nS and inhibitory conductances set at gIS=4 nS.

The R population is also composed of 400 excitatory and 100 in-
hibitory neurons, forming the excitatory receiver (ER) and inhibitory
receiver (IR) subpopulations (respectively represented by the purple
and orange circles in the receiver of Fig. 1C). Neurons in the ER sub-
population receive 40 synapses (gER = 0.5 nS) from other neurons of
the ER subpopulation, and 10 synapses (with conductance gI

R) from
neurons of the IR subpopulation. Neurons in the IR subpopulation re-
ceive 40 synapses (gER = 0.5 nS) from neurons of the ER subpopula-
tion and 10 synapses (g I

R = 4 nS) from neurons of the IR
subpopulation (Fig. 1C). Note that neurons of the IR subpopulation
project synapses with different synaptic conductances to neurons
in the same subpopulation (g I

R =4 nS) and to neurons in the ER sub-
population (gIR). Subpopulation IR accounts for the inhibitory loop
previously reported to be essential for the emergence of AS (Matias
et al., 2011). The S and R populations are connected as follows:
each neuron of the R population receives 20 fast synapses (with con-
ductance gE

SR) from random excitatory neurons of the S population.
Please cite this article as: Matias, F.S., et al., Modeling positive Granger c
(2014), http://dx.doi.org/10.1016/j.neuroimage.2014.05.063
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Characterizing time delay in the model

Since themeanmembrane potential Vx (x=S, R) of each population
(which we assume as a crude approximation of the measured LFP) is
noisy, we average within a sliding window of width 5–8 ms to obtain
a smoothened signal, from which we can extract the peak times {tix}
(where i indexes the peak). The period of a given population in each
cycle is thus Tix ≡ ti + 1

x − ti
x. For sufficiently long time series we compute

the mean period Tx and its variance.
In a similarwaywe calculate the time delay in each cycle τi= ti

R− ti
S

(Fig. 2A). Then we calculate τ as the mean value of τi and στ as its vari-
ance. In all those calculations we discard the transient time. If TS ≈ TR
and τ is independent of the initial conditions, the populations exhibit
oscillatory synchronization with a phase-locking regime. We also char-
acterize the regime by the cross-correlation function between the LFPs
of the S and R populations (Fig. 2B):

C VS;VR; tð Þ ¼
∑Vi

S−VS

� �
∑Viþt

R −VR

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ Vi

S−VS

� �2∑ Vi
R−VR

� �2q : ð5Þ

When directly comparing model results with the experiments, time
series obtained from the model had to be downsampled, and the above
analysis could not be applied. In that case, the same spectral analysis
was applied to both model and data (see below).

Spectral analysis of LFP and simulation data

Coherence, Granger causality and phase difference spectral anal-
yses were calculated following the methodology reported in Brovelli
et al. (Brovelli et al., 2004) using the GCCA Matlab toolbox (Seth,
2010). Data were acquired while the monkey was performing a
GO/NO–GO visual pattern discrimination task which required it to
release (on GO trials) a previously depressed hand lever. Our analy-
sis focuses on 710 trials of the 90-ms period (18 points, 200-Hz sam-
ple rate) ending with the visual stimulus onset (wait window). Only
correct trials (both GO and NO–GO) were analyzed.

The autoregressive modeling method (MVAR) employed by Seth
andBrovelli and coworkers (Brovelli et al., 2004; Seth, 2010) to estimate
the spectral analysis from the LFP time series requires the ensemble of
single-trial time series to be treated as produced from a zero-mean sto-
chastic process. Therefore, we have preprocessed the LFP time series by
including detrending (subtraction of best-fitting line), demeaning (sub-
traction of the ensemblemean) and normalization (division by the tem-
poral standard deviation) of each trial.

It was also necessary to determine an optimal order for the MVAR
model. For this purpose we obtained the minimum of the Akaike Infor-
mation Criterion (AIC) (Akaike, 1974) as a function of model order. The
AIC droppedmonotonicallywith increasingmodel order up to the num-
ber of points in a trial minus one (17).We consider that themodel order
of 10 (50 ms) used in (Brovelli et al., 2004) is sufficient to provide good
spectral resolution and avoid overparameterization. In fact, we verified
the consistency of the results using model orders of 5 and 15.

For each pair of sites (l,k) we calculated the spectral matrix ele-
ment Slk(f) (Brovelli et al., 2004; Lütkepohl, 1993), from which the
coherence spectrum Clk(f) = |Slk|2/[Sll(f)Skk(f)] and the phase spec-
trum ϕlk(f) = tan−1[Im(Slk)/Re(Slk)] were calculated. A peak of
Clk(f) indicated synchronized oscillatory activity at the peak frequen-
cy fpeak, with a time delay τlk = ϕlk(fpeak)/(2πfpeak). Directional influ-
ence from site l to site k was assessed via the Granger causality
spectrum Il → k(f) (Brovelli et al., 2004; Lütkepohl, 1993) (arrows
in Fig. 1B).

We also tested our model against published results from a different
experiment, where monkeys performed a working memory task while
LFP activity from two cortical regions (PFC and PPC) were recorded
(Salazar et al., 2012).
ausality and negative phase lag between cortical areas, NeuroImage
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From the experimental data, we have selected four pairs of elec-
trodes for which the two following criteria were satisfied: strongly
asymmetric influence inferred by Granger causality and strong coher-
ence. In these cases, both the coherence and Granger causality peaks
were at similar frequencies. Those results are represented in Fig. 1 and
summarized in Table 1. In all cases the pairs were synchronized in the
beta band (around 24 Hz).

Whenever a site l strongly and asymmetrically Granger causes k, we
refer to l as a sender (S) site and k as a receiver (R) site. Intuitively, in
these cases onewould expect S to lead R (i.e. τlk N 0), but the counterin-
tuitive result revealed by Table 1 is that there is no consistent relation
between GC and τ (Brovelli et al., 2004; Salazar et al., 2012). Given the
U

Table 1
Peak of coherence, Granger causality and time delay between all 6 pairs of sites shown in 1. In
other site,which receives the larger influence, is the receiver (R). Positive values of time delay ind
behind the receiver (AS). A dash (-) indicates that no peak was observed in the Granger Causa

Site pairs Peak coherence Peak Granger causality

S → R Magnitude fpeak (Hz) S → R fpeak (Hz)

2 → 1 0.3051 24 0.1944 25
2 → 3 0.4029 24 0.1547 26
2 → 4 0.2552 24 0.1086 24
3 → 1 0.2546 24 0.1610 24
3 → 4 0.7186 24 0.4203 26
4 → 1 0.2072 24 0.0644 26

Please cite this article as: Matias, F.S., et al., Modeling positive Granger c
(2014), http://dx.doi.org/10.1016/j.neuroimage.2014.05.063
complexity of the cortical interactions, several mechanisms could
account for this phenomenon. Here we propose a minimal model that
explains how asymmetrically coupled neuronal populations can syn-
chronize with either positive or negative time delay.

Delayed and anticipated synchronization in the model

The asymmetry between S and R neuronal populations is struc-
turally built-in in the simulations (Fig. 1C). Despite the noise and
heterogeneity (see Methods), the mean membrane potential of the
S and R populations can synchronize with the same main frequency.
Depending on the synaptic conductances, the system can exhibit de-
layed synchronization (DS), with τ N 0 (Fig. 2A), or anticipated syn-
chronization (AS), with τ b 0 (Fig. 2B). The cross-correlation
each pair, the site which exerts a larger influence on the other is called the sender (S). The
icate that the sender leads the receiver (DS),while negative value indicates the sender lags
lity spectrum.

Phase Time delay

R → S fpeak (Hz) Difference (rad) τ (ms)

– – −1.3166 −8.73 (AS)
0.0892 25 −2.1316 −14.14 (AS)
0.0265 26 −1.6706 −11.08 (AS)
– – 0.4637 3.08 (DS)
0.0859 28 0.3799 2.52 (DS)
– – −0.4313 −2.86 (AS)

ausality and negative phase lag between cortical areas, NeuroImage
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function CSR(t) corroborates these results, displaying a peak for τ N 0 in
the DS regime and for τ b 0 in the AS regime (Fig. 2C).

AS and DS can also be observed in the model at the level of spikes.
For each pair of a pre-synaptic neuron in the S population and a post-
synaptic neuron in the ER subpopulation, we have sampled the relative
time t between spikes. The histogram of these relative times is again
consistent with the previous analyses, with peaks at positive (negative)
values for DS (AS) (Fig. 2D). Besides, note that in this figure the peak of
the spike-time interval probability density is larger at negative values
than for positive ones.

Smooth transitions between AS and DS are obtained when the
synaptic conductances are varied. Starting from the AS regime, for
instance, by increasing the inhibitory synaptic conductance gI

R it is
possible to continuously decrease the anticipation time, crossing
the zero-lag point into the DS regime (Fig. 2E). It is worth highlight-
ing that the mechanism by which AS emerges in the model is clearly
not a delay which increases so much that, once it becomes larger
than half of the mean period, looks like an anticipation. Note that
both the delay times and the anticipation times are always shorter
than T/2.

For fixed inhibitory conductances, non-monotonic but continuous
transitions AS–DS–AS can also be obtained by increasing the excitatory
conductance gESR (Fig. 2F). Altogether, the phase diagramof themodel in
the plane of synaptic conductances (gESR, gIR) exhibits large regions of AS
and DS phases (Fig. 2G), revealing that these collective behaviors are
stable. We have found that these results are robust if we employ the
membrane potentials of both ER and IR subpopulations as proxies of
the slave population LFP (see below), as well as if other model parame-
ters are varied.

We tested the robustness of these results against several variants of
the model. For instance, we found that the transition AS–DS still occurs
if the relative proportions of the different types of excitatory neurons in
the slave population are altered (via a different choice of the dimension-
less parameters c and d in the Izhikevich model (Izhikevich, 2006); re-
sults not shown). More importantly, since in the mammalian cortex
most areas have bi-directional connections (Markov and Kennedy,
2013), we have checked the effects of a bidirectional interaction in the
model, by adding 20 fast synapses (with conductance gERS) to each excit-
atory neuron of the M population projected from neurons of the S pop-
ulation. Increasing gERS from zero (i.e. the originalmodel), a system in the
AS regime (τ b 0) clearly remained in the AS regime until gERS ≃ 0.5gESR

(above this value, the networks reached τ ≃ 0, i.e. zero-lag synchroniza-
tion; results not shown). Therefore, an asymmetry in the synaptic
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coupling of mutually connected populations is sufficient to yield AS in
the model.

Model reproduces experimental coherence and GC spectra

The aim of this section is to verify whether our model can be tuned
to reproduce the results reported in Brovelli et al. (2004) for monkeys
performing a cognitive GO/NO–GO task. Aswe have shown in the previ-
ous sections, the model already qualitatively reproduces the experi-
mentally observed mismatch between directional influence and phase
lag. To reach a quantitative agreement, however, we needed to vary
the model parameters.

In particular, to tune the peak frequency in the coherence spectrum
(24Hz in Fig. 3),we added a constant current to each neuron (Ic=9pA)
and adjusted the synaptic conductances (gSI ¼ egRI ¼ 3:2 nS, gESR=0.5 nS
and gI

R = 12.6 nS). These modifications also produced noisier time se-
ries, as compared to those shown in Fig. 2A and B, that better mimic
the measured LFPs (Fig. 3A). In addition, and for a fair comparison
with data, the simulated LFPs were computed by considering the activ-
ity of both the ER and IR subpopulations. Moreover, we have down-
sampled themodel time series to the same rate used in the experiments
(200 Hz), after which simulated data was analyzed exactly like experi-
mental data.

In Fig. 3we compare simulation resultswith experimental data from
sites 1 and 2 (primary motor and somatosensory cortices respectively,
see Fig. 1B), which showed a clear unidirectional influence (from 2 to
1) and negative time delay. Tuned to AS, themodel yielded a coherence
spectrum similar to that of the data (Fig. 3B), particularly in its sharp-
ness around the measured peak frequency. Not surprisingly, the abso-
lute values of the peak in the coherence spectrum for the simulations
is larger than for the data, probably reflecting the fact that, differently
from our simple model, in the brain one region is also influenced by
many other regions. Note, however, that the interpretation of these ef-
fects in the experimental results is limited by the bivariate nature of
the GC and coherence analyses. Besides the GC spectral analysis, we
have also computed the Transfer Entropy (a nonlinear measure of cau-
sality detection) by using the HERMES software package (http://
hermes.ctb.upm.es/) (Niso et al., 2013) obtaining similar directional
influences.

The model also successfully reproduces the main features of the GC
spectrum of the data (Fig. 3C). A sharp peak was obtained in one direc-
tion (S→R in themodel), whereas the reverse direction showed aweak
and flat spectrum. The fact that the frequency of the peak in the GC
2    1
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spectra approximately coincides with the frequency of the peak in the
coherence spectra suggests that G-causality is mediated by the coher-
ence oscillations around 24 Hz (Brovelli et al., 2004).

Results by Brovelli et al. showed positive aswell as negative time de-
lays, given an asymmetrical GC between two sites (Brovelli et al., 2004).
By changing the inhibitory conductance gI

S, the model is able to repro-
duce both regimes (Fig. 3D), which correspond to what we refer to as
DS and AS, respectively.

In the second dataset, the frequencies of the peaks were around 17
Hz and the average relative phase between PPC and PFC was negative
(Salazar et al., 2012). Our simple model yields similar results with
changes in parameters (gESR = 1.0 nS, gSI ¼ egRI ¼ 7:5 nS, gIR from 6 to
20 nS, Ic = 0 and R = 6000 Hz). In Fig. 3D we summarize the compari-
son between phase differences observed in the model and in the data.

Discussion

Neuronal populations can exhibit AS

Although Voss (Voss, 2000) suggested that AS could explain phe-
nomena such as the delayed induced transition in visually guidedmove-
ments (Tass et al., 1996), to the best of our knowledge there are no
explicit reports of AS in neuronal populations. With rare exceptions
(Pyragiené and Pyragas, 2013), previous observations of AS in theoreti-
cal, physical, and biological systems were based on the original frame-
work, which included a negative delayed self-feedback (Che et al.,
2013; Ciszak et al., 2003, 2009; Kostur et al., 2005; Masoller and
Zanette, 2001; Pyragas and Pyragiené, 2008; Sivaprakasam et al.,
2001; Tang and Liu, 2003; Voss, 2000, 2001a,b). Despite efforts to join
concepts of anticipatory behavior and AS dynamics (Stephen and
Dixon, 2011; Stepp and Turvey, 2010), direct evidence for it in the
brain have not been reported. Here we have shown that substituting
the negative delayed self-feedback by a biologically plausible dynamical
inhibition can lead to AS in amodel of coupled cortical populations. This
development opens newperspectives to investigate the existence of the
AS regime in other biological systems.

In particular, we have observed the emergence of AS in populations
of neurons from the sensorimotor cortex of a monkey performing sen-
sory discrimination tasks and studied its robustness against external
noise, heterogeneity and synapses characteristics. Similarly to what oc-
curs in a 3-neuronmotif (Matias et al., 2011), here the anticipation time
emerges from the system dynamics, instead of being explicitly hard-
wired as a tunable parameter in the dynamical equations (Voss,
2000). Since the time delay depends on the strength of the synapses,
AS could be tuned by neuromodulation.

Our simple model shows that very few ingredients are necessary for
the emergence of AS between two neuronal populations. Furthermore,
when numerical time series are downsampled, subject to noise and an-
alyze in conditions similar to those of cortical LFP data, the model qual-
itative reproduces the experimental data. In our model, AS yields time
lags, as well as coherence and GC spectra, that are in good agreement
with experimental results.

Relative time delay is a poor indicator of directional influence

It is well known that the correlation between two variables does not
necessarily imply that one causes the other. However, there is a tenden-
cy in the literature to use the relative phase between synchronized pop-
ulations to infer which one is the sender region (Gregoriou et al., 2009;
Sharott et al., 2005). As we have shown, in our model the leading pop-
ulation does not necessarily drive the lagging population. By definition,
in a sender–receiver configuration the direction of information flow is
from the sender to the receiver. It means the sender influences the re-
ceiver in both AS and DS regimes. As there is no violation of causality,
the existence of an AS regime in such systems reveals that the relative
time delay does not always indicate the direction of causal relation.
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In prior analysis of cortical LFP data (Brovelli et al., 2004), an appar-
ent contradiction was found between the time lag and the GC direction
for some pairs of sites (see Table 1). A similar paradoxwas also reported
by Salazar et al. for different cortical regions (Salazar et al., 2012). The
apparent contradiction is caused by an assumption that the direction
of information flow from one process (A) to another (B) must result in
process B following process A in time. It is worth mentioning that LFPs
might be sensitive to the depth of the recording, which can lead to
phase reversal as a function of electrode depth (e.g. (Alonso and
García-Austt, 1987; Chrobak and Buzsáki, 1998; Feenstra and
Holsheimer, 1979)). Although this could shift some phase delays by π
radians and possibly confound AS with DS and vice-versa, that would
not eliminate the apparent contradiction between phase lag and G-
causality. In pairs of brain regions in which DS occurs (as e.g. regions 3
and 1 in Table 1), G-causality and phase lag would not match and
would still require an explanation.

The assumption that a receiver B should lag behind a sender A is not
justified. Actually, our model of AS not only proves that this intuition
can fail but also sets a framework in which an AS regime naturally
emerges, reconciling G-causality with a negative phase lag. To the best
of our knowledge, this is the first model that exhibits AS between corti-
cal populations. The usefulness of the concept of anticipated synchroni-
zation is at least twofold: 1) it provides a concrete (and robust)
mechanism by which the apparent contradiction can be resolved and
specifically highlights the role that local inhibition could play in the re-
ceiver population. 2) Given the abundance of synchronization studies in
neuronal data, the sheer fact that a novel type of synchronization could
occur in the brain seems to be very relevant, offering new possibilities
for modeling, data analysis and interpretation.

Correspondence between dynamical synchronization regime and
functional brain state

In light of the hypothesis that synchronization plays an important
role in neural processing and coding (Brette, 2012; Fries, 2005), differ-
ent dynamical synchronization regimes may be required for flexible
communication to occurwithin a given structural network architecture.
For instance, changes in dynamical synchronization statemay be neces-
sary for short-term changes in functional brain state related to cognitive
processing (Battaglia et al., 2012; Bressler and Kelso, 2001), or long-
term changes related to learning. AS may represent such a dynamical
state of synchronization, and thus may be able to open new and unex-
plored perspectives for understanding this type of coding. Our model
suggests that even populations with a strongly unidirectional connec-
tivity can exhibit dynamical flexibility. Simply by small changes in the
relative weights of excitatory and inhibitory synaptic conductances, a
range of synchronization patterns, displaying positive to negative time
lags, can be achieved for the same anatomical structure. In fact, recent
neurophysiological evidence (Anderson et al., 2013) suggests that top-
down attentional influences act to affect the balance of excitation and
inhibition in visual cortical area V4.

Perspectives

Our results are also relevant in light of the growing experimental ev-
idence that the synaptic strength between neurons can undergo spike-
timing-dependent plasticity (STDP) (Markram et al., 2011). In the DS
regime the sender (pre-synaptic) neuron fires a spike before the receiv-
er (post-synaptic) neuron,which under STDP rules would facilitate long
term potentiation (LTP). On the contrary, in the AS regime the receiver
neuron fires a spike before the sender neuron, contributing to long term
depression (LTD) (Bi and Poo, 1998; Markram et al., 2011). Since we
have shown that a sender–receiver neuronal system can undergo a con-
tinuous transition from DS to AS via changes in synaptic conductances,
the interplay between these regimes and STDP mechanisms is likely to
play a significant role in the process of learning.
ausality and negative phase lag between cortical areas, NeuroImage
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Since the model presented here predicts that the AS–DS transi-
tion is mediated by synaptic changes, a related question is whether
the functional significance of AS and DS regimes (if any) could be un-
veiled by monitoring G-causality and phase lag during the process of
learning a new task. On the conservative side, given the central de-
pendence of phase lag on inhibition in the receiver population, the
observation of AS between primary somatosensory and motor
areas could be just an epiphenomenon, reflecting strong inhibition
at the primary motor cortex in order to prevent movement, as re-
quired by the task (Brovelli et al., 2004). Alternatively, the precise
timing in the coordination among areas might subserve additional
functions, possibly in connection with attention and perceptual
coordination.
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