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The SURF (Summer Undergraduate Research Fellowships) Program is offered by IFISC since
2013 (only interrupted in 2020 due to the Covid-19 pandemic) with the goal of attracting excellent
undergraduate students with majors compatible with IFISC research lines and offers summer research
fellowships at IFISC, typically during the month of July, advised by members of IFISC.

SURF attracted for the summer of 2025 a total of 43 candidates (31 male and 12 female), out
of which 7 candidates were selected, 6 of them male and 1 female candidates. The candidates came
from 22 different universities belonging to 7 different countries, while the candidates were citizens of
8 different countries. The universities with more candidates were the Universidad Yachay Tech with 5
applicants, and the University of Padua, the University of Salamanca, and the University of Valencia,
each with 4 applicants. More than half of the applicants, 26, were Spanish citizens, followed by Italy
and Ecuador with 5 applicants.

These are the proceedings:

1. Marc Rosendo Cerverd, (Supervisor: Antonio Ferndndez Peralta), Network Geometry and Path
Lengths
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Network Geometry and Path Lengths

Marc Rosendo Cerverd, Antonio Fernandez Peralta
Instituto de Fisica Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB)
Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain

Abstract

The following work explores the path length distribution (PLD) in spatial networks with a focus
on urban roadmaps to analyse how efficiently information or flow propagates through these systems
and how the notion of large-world network can be defined and contrasted to the more traditional
concept of small-world. By comparing empirical data from several cities against two different types
of graph (the Random Geometric Graph and gravity models) we examine the degree to which the
spatial structure shapes network connectivity. Our results reveal distinct PLD profiles correspond-
ing to different urban layouts, ranging from lattice-like to more complex clustered structures with
varying curvature. Furthermore, the Gravity model, incorporating both node importance in the
network and spatial decay, captures critical aspects of real city roadmaps despite some limitations.
The study highlights the interplay between spatial embedding and connectivity in defining large-
world characteristics across diverse urban contexts, incorporating metrics for quantifying network
smallness and how they relate to results for different models.

1 Introduction

Many complex systems, both man-made and present in nature, can be modeled in several different
ways. One of the more powerful approaches to describe these systems of interacting components
(with ”interaction” defined very broadly) is through graphs, the system being viewed as a network
composed of nodes and edges that connect them. Under this paradigm, a node can represent almost
anything (road intersections in roadmaps, power stations in power grids, people in social networks,
etc.). Edges generally have a more straightforward interpretation: in spatial networks, they usually
represent a literal connection between two particular points in space. As these kinds of systems
will be the main focus of this paper, we won’t delve into more general networks. In any case, edges
represent an interaction of some type between nodes.

We aim to characterise some cities’ roadmaps by their small-worldness, that is, whether there
is a short path between(almost) any pair of nodes. This concept is generally used to characterise,
among other quantities, ease of flow in a network. It can also be used as a qualitative description,
as this label encompasses many things (such as short average paths, as mentioned, and large
clustering, which means that most nodes have many connections). The most representative small-
world graph is the random (Erdés-Rényi) graph, and the most common examples of large-world
networks are regular lattices, which usually have very long average distances and diameters. We
will, to an extent, identify large-worldness and similarity to a lattice. This will become clearer
when presenting our results, but suffice to say that the path length, in a lattice, scales in a very
particular manner [Tholl]: it follows the relationship N (1) oc 1971, where [ is the path length and
d the dimension of the lattice. For the sake of convenience, will present all our PLD plots in log-log
form, so the relationship will be linear: log(N) o log(l) - (d — 1). It will be usually identified, then,
a linear growth in the (log-log) PLD with a grid-like structure.

The present work explores one particular statistic of a graph: the path length distribution,
N(I) (from now on, PLD). It is, in a very broad sense, a measure of how fast information can
be transmitted through a certain network, as modelled by a graph. It is defined as the all-pairs
distribution of shortest graph distances between said pairs; that is, the least number of edges
between them. We will use it to analyse the similarity of our data and certain classical graph models.
Although analytical expressions for these models are generally not available, some approximations
or asymptotic limits can be obtained for certain graphs. In any case, numerical simulations are
relatively easy to perform.
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The models that we will use can be described as a collection of nodes with fixed positions (given
by the data) and a certain distribution that governs the probability of edges existing between nodes.
The distributions that we will consider, which we will call F; ;, depend on the spatial distance
between nodes (R) and the number of neighbours of each node (that is, the number of nodes k;
for which N(l;,) = 1, called its ”degree”). The dependence on R is easy to justify: interactions
between members of a spatial network generally decrease with distance. The dependence in k is
related to a frequent property of real-world networks: the existence of extremely connected nodes.
These nodes, called "hubs”, are integral to the system and tend to attract many more edges than
the rest of nodes; thus, it is natural to consider a model in which the probability of a node being
connected to another depends itself on its connectedness.

2 Theoretical models

Graph models, for our purposes, can be divided in two: spatial and non-spatial, which precede the
former. In spatial models, the nodes have a defined position and P; ; depends on this ”geographic”
distribution. Non-spatial models, however, are defined only by their connectivity and not where
the nodes might be located (in general, they have no particular location). Since our focus is on
eminently spatial networks, such as roadmaps, spatial models will be of main interest. Nevertheless,
classical non-spatial models will be reviewed too, given that they do display some key properties
of the more complex spatial graphs and are simpler to analyse.

The first graph model to appear was devised by Paul Erdos and Alfred Rényi, in their seminal
1959 paper [ER5S9]. It can be described as a fixed set of nodes, each connected with a probability p
to any other node in the graph independently of other edges. It can be proven that its degree dis-
tribution is poissonian and, if p is high, the average distance between nodes is small compared with
the network size. This last property is a benchmark of what are known as ”small-world” networks:
those that are so interconnected that the average distance is much shorter than what could be
generally expected. This is commonly summed up as the average distance growing logarithmically
with N instead of linearly, which would be more intuitive.

A second classic graph model, the Barabdsi-Albert model, is an extension of the former. It is a
constructive model as well, in which nodes are added sequentially, but it differs from the ER model
in that it incorporates preferential attachment, the very common occurrence of some nodes that are
more important to the network (they are central, more connected) than others. Its implementation
is simple: every time a node is added, a sample of a fixed number of nodes is made and the new
node has a probability of being attached to each of these, with this probability being linear with
the degree of the node in the network. This way, the connectedness of certain nodes in the network
will keep escalating, and they will become completely fundamental for the behaviour of the system.
Of course, they tend to have much smaller average distances than other graphs (lattice graphs, for
example, and even ER graphs), as most nodes are connected to a very small subset of components
of the network. In any case, these graphs were the first that could explain the tendency of many
systems to have some members with much greater influence and connectivity than others.

As was commented before, a relatively modern innovation in the field of network science are
spatial graphs. These incorporate a metric, and so the graph is embedded in a certain space, almost
invariably 2D Euclidean or hyperbolic space. In our case, the graphs considered use the Euclidean
norm and are in the Cartesian plane. Spatial maps add a layer of complexity to graph theory
because they cannot be described only by their topology, but they expand the realm of applications
to real-life network modelling enormously, given that infrastructure networks, international trade
and travel fluxes and local-level transportation, just to name a few examples, are all fundamentally
spatial networks.

One of the more general families of spatial graphs are the random geometric graph (RGG) and
its derivates. As their name suggests, they usually describe networks in which the nodes are in
random positions embedded in a certain space. Of course, since their connectivity depends on the
relative positions of the nodes, the geometric distribution is fundamental to connectivity. However,
this does not mean its application to a set of already positioned nodes is not possible: since the
important thing is the connectivity of the graph and not geometry (for example, a lattice graph is
defined by a uniform k, not the reticular structure), we will just consider our nodes’ positions set
and apply the algorithm to those. Of course, this geometry will impact which edges are formed, but
the models are useful to assess the dependencies of the edge probability. At any rate, the original
RGG is a disk model; the probability of a node being connected to another is a constant p if they are
closer than a certain distance and zero if they are not. It can be expressed as P, ; = p-O(R—1; ),
for some tunable R. Depending on the geometry of the problem, it can lead to a lattice network,
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an essentially random one or an intermediate behaviour. In fact, they can be seen as interpolations
between these two extremes. The "soft” version of this model, the SRGG, is similar in the sense
that connection probability decays with distance, but it differs in that the distribution describing
this decay is now continuous and non-zero everywhere. This lack of a sudden decrease translates
into the existence of some long-range edges that cannot exist in standard RGGs.

The gravity model is, in a way, an ”extension” of the SRGG model. The idea of this model is
to account for both distance between nodes and their connectivity. That way, the edge probability
is higher not only between closer nodes, but also between more important nodes. This is crucial
for some systems, like international trade (for which this model is the standard) where the presence
of hubs is fundamental. It mimics Newton’s law of gravitation, but substituting mass by degree,
thus allowing for already connected nodes to have even more edges. The resulting distribution is:

ki - k;
f(Ri ;)

The function f can take several forms; it is usually taken to be a power of R or an exponential
(as in the SRGG model). Of course, much like the other models, it may not be suitable for all
graphs; particularly large-world networks and those without large hubs. Note that it is a descriptive
model, used to describe the system a posteriori.

One drawback of this characteristic is that it necessitates using the data from the real network
to generate the model; while for the RGG family the only real requirement are the relative positions
of all nodes and the values of some tunable parameters, the gravity model requires using the data
on the connectivity of each individual node to simulate what that connectivity would be under the
model. That makes for some computational complications. Another obstacle is how to tackle the
normalization of the probability distribution, as the sum Zl j Gl;%kj would have to be calculated
over the original graph, which is quite difficult to do accurately due to numerical issues. The
approach chosen to solve these complications is to use weighted random sampling with a reservoir
(WRSR) [ES05]. Reservoir sampling goes through the data in one pass and only stores in memory
a number of elements equal to the size of the sample (to be determined before performing the
analysis). This set, the reservoir, is updated constantly taking into account ratios of weights. This
peculiarity allows us to bypass normalization, avoid memory overhead issues and fast-track the
weight calculation dramatically.

Pivj o (21)

3 Results and discussion

We will start presenting the path length distribution results for some real roadmaps, then compare
them to each model. For a direct visual reference for these layouts, see Figure

Comparison of the PLD of several cities Comparison of the PLD of several cities

Figure 1: Distributions of some cities with Figure 2: Distributions of some cities with larger
linear growth. curvature.

As can be seen in Figure [T and Figure [2] cities present PLDs with similar shapes. They can
often be separated in two categories depending on their growth: fully linear or linear in a small-scale
regime but exponential for larger scales.
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Fully linear PLDs come from power-law functional dependences; that is, self-similar structures,
akin to lattices (as mentioned in the introduction). Their layouts are usually reticular at all levels,
which in this case means that the whole roadmap is made of ”squares”, thus the self-similarity.
The most famous example, Chicago (Figure , reflects this perfectly: at a local level, almost all
intersections have four edges and form squares but, zooming out, the agglomeration of the whole
city in one block (permitted by the very level and regular terrain, as the city sits on the Midwest
prairie) allows for the regular pattern to continue until the confines of the city, thus making it
an almost perfect lattice. The slight curvature at the top might be due to the coastline, which
increases border effects, making some paths longer. Barcelona is similar in the sense that the whole
city is one compact block, and so it follows a linear pattern too. Thessaloniki, on the other hand, is
a highly irregular city with two very large population centers around the coast and several smaller
communities inland. This part of the city lies just below Mount Chortiatis and is thus a very rocky
and rough terrain. Those suburban neighbourhoods do not account for a large portion of the total
nodes, which is why the PLD starts linear and only acquires a slight curvature near its peak.

The cases of New York, Fuyang (China) and Las Vegas are markedly different. New York is
often grouped with some famously grid-like cities such as Chicago, but that paints an incomplete
picture of the city. It is composed of five "boroughs”, of which only one is actually like a grid:
Manhattan. It is an uninterrupted, regular patch of land and can thus be modelled quite well as a
rectangular grid. The other four, while always locally resembling a grid (like many other cities), are
highly irregular in shape. Even Manhattan itself isn’t wholly reticular: Lower Manhattan, which
is much older than the rest and was the US capital in the 1790’s, was not planned beforehand like
Upper Manhattan and is much more unevenly distributed. The same is true for the other four
boroughs, so some curvature of the graph is to be expected. Las Vegas does not have many distinct
features (save for Summerlin, and, of course, the Strip); it just has some large irregularities and a
long road crossing the whole city. The road was used for logistics during WWII and thus couldn’t
be destroyed to plan the rest of the city, so it does not fit the layout. Fuyang, however, does have a
very distinct structure. Like most prefectural cities in China, it is sort of a higher-level formation,
actually made up of several cities, so it is actually a relatively sparse arrangement of many dense
clusters. Most of them are grid-like, to a certain extent, but not as much as other big cities, and
the connection between different clusters results in a large deviation from the PLD of a grid.

In the interest of contextualising these results, we proceed to quantify the degree to which
these cities are large-world networks. Given the shape of their PLDs (generally linear, to a certain
extent) and layouts, as was explained before, the expectation is that they will be large-worlds. To
test this, we will use the Small World Index, following an analogous procedure to the one described
by Z.P. Neal [Neal7]. The SWI was chosen over other common measures, such as the small-world
coeflicient w, because of its more accurate integration of lattice-like elements. It is calculated with
the following formula, with d; and d, being the average distances in comparable (with a similar
number of edges and nodes) lattice and random graphs:

d—-d C-C,

I = .
SWI=4"—4 &=c

(3.1)

SWI close to 1 are small-worlds, with large clustering and small average distances.
The results obtained are presented in the following table (pSWI = —log1o(SWI)):

. Roadmap Random Lattice
Gy ST 0 (<] € [ <> C PSWI
Vladivostok | 28.45 | -1.58 | 7.44 | 2.84 | 21.22 | 0.61 | oo (SWI ~0)
Vegas 484 | -1.48 | 11.84 -4 74.92 -0.71 1.147
NYC 61.85 | -1.56 | 11.82 | -4.34 | 112.9 -0.65 1.210
Paris 474 | -1.3 | 14.08 | -3.69 | 48.19 | -0.78 2.156
Fuyang 64.7 | -1.43 | 10.4 -4 | 77.95 | -0.65 1.488
Barcelona 46.8 | -1.4 14.6 | -3.68 | 49.1 -0.78 1.798
Stockholm | 51.4 | -1.39 | 11.35 | -3.78 | 61.3 | -0.0776 2.017
Chicago 65.6 | -1.75 | 10.63 | -4.05 | 82.3 -0.65 1.735

Table 1: Parameters for each roadmap and their equivalent lattice and random graphs.
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Note that SWI = 1, representing a small-world, corresponds to pSWI =~ 0. Since pSWT
is positive and relatively large for all cities, it can be concluded that none of them resemble a
small-world network (all have SWI = 0). Given the criterion used, it appears that they have
lattice characteristics. Also of note is that the cities whose PLDs are the most linear (more grid-
like structures), Vladivostok and Paris, have the two highest SWI, though Stockholm seems to be
an outlier. In any case, this calculation confirms that most, if not all, city roadmaps cannot be
described by traditional small-world models.

3.1 Gravity model

With the data for the city layouts, we can now move on to testing the chosen models on them. The
gravity model will be reviewed first. As was seen in the ”theoretical models” section, the gravity
model gives path length distributions with large and changing curvature, a relatively sharp peak
and, in general, small-world characteristics. Their most distinct feature is the remarkable similarity
of all results with the model. Almost all have the exact same shape and end around the same value,
L =~ 10. Their global maximum values are also at much lower L values than the city PLDs, which
is to be expected in small-world networks (many distances are relatively short). Given all this,
the gravity model is expected to present some issues when used to represent real cities; chiefly, its
tendency to give very small graph diameters and maximum-probability distances. This is exactly
what we find when computing the PLD of some of the cities shown in the former section. The
first three, Chicago, Thessaloniki and Barcelona, all have distributions with similar curvature and
very close endpoints and maximum values. Aside from the fact that these three cities are not that
alike (with Chicago being much larger than Barcelona), these curves do not look or behave like
those of the real roadmaps. Their curvature is too pronounced and the maximums are all about a
full order of magnitude apart. The same is true for the second batch of cities: even if the original
curvatures were larger than for the first three, the gravity model way overestimates them. The
location of the maximum and the diameter also have the same issues, and in fact Fuyang and Las
Vegas’ maximums do not even reach L = 10.

Comparison of the PLD of several cities under the gravity model . Comparison of the PLD of several cities under the gravity model

—— Chicago — NrC
~— Thessaloniki Fuyang
—— Barcelona

—— Vegas

Figure 3: Gravity model distributions of some citiesFigure 4: Gravity model distributions of some cities
with linear growth. with larger curvature.

However, for all its failures, the gravity model can actually incorporate curvature and the effect
of node connectivity. One of the advantages of this model is that it is quite easy to tune; the
distance decay function can take many different forms (for example, a power law with different
exponents) and some changes can be made to the connectivity term. The main issue is that this
term, since the model gives a non-zero probability for any value of R, can create some long distance
connections that would generally not exist in an actual city.
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One way to tackle this is, then, reducing its importance in the equation: a modified version of
the model can be used in which P grows with the square root of k; - k;. Furthermore, the decay
with distance can be accelerated so that the fitted graph is not a small-world. Some examples are
shown in the following figure:

(a) Barcelona (b) Paris (c) Vladivostok

PLD of Las Vegas under two versions of the gravity model PLD of Stockholm under two versions of the gravity model

—— Real layout
Original gravity model
—— Modified gravity model; R exponent 3.8

—— Real layout
N Original gravity model
—=— Modified gravity model; R exponent 3.5 (linear in k)

10° 10t 10 10° 10t 100
L.ad. L,ad.

(d) Las Vegas (e) Stockholm

Figure 5: Superposition of PLDs for some city maps and their original and modified gravity fits.

It is apparent from the figure that this modification yields much better results when compared
against the base model. It can be concluded, then, that even though the gravity model probability
distribution has a smooth decay and is never zero, making this a fundamentally small-world model,
it can capture some crucial features of city roadmaps, chiefly the difference between more and less
important nodes, and be tweaked to approximate relatively well the real PLD.

3.2 Random Geometric Graph model

As mentioned in the ”theoretical models” section, the Random Geometric Graph is, in principle,
better suited to describe large-world networks like the ones we are analysing. These graphs also
have, of course, parameters to tune; the radius of the connection disk, R, and the connection
probability, p. Since its effect is more or less homogeneous over all the nodes, this probability is
not as important to the shape of the distribution as R. This interaction radius is actually the
parameter that shapes the curve. It very directly controls how similar to a small-world network the
fitted network behaves. Of course, a large radius promotes bonding between nodes that are further
apart, and so direct connections between zones that would usually not be connected. Of note is
that these types of edges are never present in pure lattices, which is why they are the eminent
example of a large-world network.
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We will use as a "measure” for the radius the parameter Ry, which is the disk radius at which
the fitted model has the same number of edges as the actual network. The best fits have been
obtained by doing a sweep over many values of Ry but, since this is for the most part a qualitative
study, no least-squares fitting has been performed.

The results obtained vary widely by city. Evidently, some cities are better suited for this model.

(a) Barcelona

(d) Las Vegas (e) Stockholm (f) Chicago

Figure 6: Superposition of PLDs for some city maps and their RGG fits.

As can be seen clearly in Figure [6] it is those cities with less curvature in their PLD that
are better approximated by the RGG model (here, Paris, Barcelona and Vladivostok). Even in
those that are relatively well represented by the model, it fails to capture any slight curvature they
may have, like in the case of Paris. In cities where the initial growth is nonlinear (Las Vegas and
Stockholm) the model completely fails and it just resembles a 2D grid. The case of Chicago is
quite interesting. Its growth is very clearly linear at first and has some curvature only near the
maximum. The RGG model simulates almost perfectly the slope of the first region (and it is the
slope that matters when comparing a map to a grid, as was seen when reviewing the theory on
grid PLDs), but fails to curve to a concave shape, so that section is not well approximated. What
is remarkable about this result is that a graph that presents two different behaviours at different

scales (grid-like at a local level and a slight deviation at high distances) can be accurately modelled
as an RGG on a certain range, even if it can’t be outside that region.
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3.3 Model comparison

Having seen both models and their performance at simulating cities, a more direct comparison
between both is in order. For this purpose, some cities have been selected by their properties and
the shape of their distributions and compared against the best fit found, presented in the last two
sections.

(a) Barcelona (b) Paris (c) Vladivostok

Comparison of Vegas's real PLD with both graph models Comparison of Stockholm's real PLD with both graph models

—=— Real layout
— RGG

—— Gravity

(d) Las Vegas (e) Stockholm

Figure 7: Superposition of PLDs for selected city maps and both their RGG and gravity fits.

Two general trends can be seen. On one hand, some graphs that are large-world (linear growth)
and are relatively well approximated by both RGG and modified gravity models, even if the RGG,
clearly the performs better in all cases. These would be Paris, Vladivostok and Barcelona. The
cities on other group, which includes Las Vegas and Stockholm, deviate notably from linearity
so as to be represented by a grid-like network. The modified gravity model, which is far more
flexible and can incorporate curvature, is much better suited to fit these cities. Notably, these two
groups coincide almost perfectly with the division marked by their SWI values (Table , save
for Stockholm: there is, then, a direct link between large-worldness and the type of model that
better represents a network. The suitability of grid-like (and non-continuous, non-zero in P; ;, more
generally) seems to decrease quite steeply with small-worldness, while gravity-like models are more
versatile.
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4 Conclusions

With the two models and the original graphs presented and analysed, we can extract several
conclusions. Chiefly, that there is a very clear association between large-worldness, lattice structure
and the suitability of some models to represent certain graphs. This implies that when modelling
infrastructure networks like, for example, power grids, to look for the possibility of cascading
failures, the geometry of the network must be carefully considered alongside its topology for, as
was demonstrated in the article, the former is completely fundamental for the description of spatial
maps. The fine-grained analysis of several roadmaps has provided an intuitive relationship between
certain traits of a city’s layout (such as their coastlines or the ruggedness of the terrain) and the
shape of their PLDs and, more generally, their connectivity.

We would like to emphasise that the methods used in this work to generate model graphs to
fit roadmaps could be extrapolated directly to create the best possible fits, within the possibilities
of the large-world framework, potentially for any type of spatial network. Furthermore, spectral
analysis and modularity techniques can be applied to enhance the study of some more particular
large-world networks, such as larger-scale maps or airport traffic flows.
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A City maps

For reference, we show the roadmap graphs generated from datasets obtained with OpenStreetMap.

(a) Barcelona (b) Paris (c) Vladivostok

(f) Fuyang

(g) Las Vegas (h) Stockholm (i) Thessaloniki

Figure 8: Selected city roadmaps.
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Abstract

This monograph addresses the question: Are ordinal patterns capable of capturing the underlying
distribution of a time series? We develop theoretical and numerical analysis of pattern probability
integrals for various distributions, introduce an optimized algorithm (ORDPAT), study the im-
pact of distributional asymmetry and temporal correlation (Hurst exponent H), and demonstrate
applications to financial indices (NASDAQ, S&P 500, cross-country comparisons).

1 Introduction

Many real-world time series —from physical systems to financial markets— exhibit non-Gaussian fea-
tures such as heavy tails, asymmetries, and long-range correlations. Traditional statistical tools, based
on moments or spectral densities, often struggle to capture such complexity, especially in the presence
of noise or nonlinearity.

Ordinal pattern analysis, introduced by Bandt and Pompe [2002] provides a symbolic framework to
encode time series through the relative order of values in short sliding windows. This approach is robust
to noise, invariant under monotonic transformations, and captures temporal structures in a way that
is both intuitive and computationally efficient. Furthermore, it has been found very useful in various
contexts, as shown in works such as Massimiliano Zanin et al. 2012}, Leyva et al. 2022, Burgos Atencia,
Agarwal, and Culcer 2021, and Amigd and Rosso [2023, where it is applied to characterize complexity,
detect dynamical changes, and analyze non-Gaussian features in time series.

In this work, we focus on analyzing the distribution of increments (i.e., first differences) of a time
series, rather than the raw values themselves. This approach aligns with common practices in fields like
finance or turbulence, where returns or velocity differences are of primary interest. Consequently, to
construct meaningful comparisons, we will typically generate independent and identically distributed
(i.i.d.) random data with a given distribution, and then integrate them to simulate the original process
before applying ordinal pattern analysis. This procedure allows us to disentangle distributional effects
from temporal correlation structure.

To model the underlying distributions, we make use of the family of q-Gaussian distributions, a
generalization of the normal distribution that emerges naturally in the framework of nonextensive
statistical mechanics Tsallis 2009, q-Gaussians are particularly well-suited for modeling heavy-tailed
behavior and have been successfully applied across diverse fields, including finance, biology, and physics
(see e.g., Tsallis[2009). Their flexibility makes them a natural choice for analyzing real-world data that
depart from Gaussian assumptions.

Despite its success in autocorrelation L. Zunino et al. 2008|, the use of ordinal patterns as a tool
to identify or reconstruct underlying distributions remains underexplored. Some studies have made
initial steps in this direction Azami and Escudero [2016], Fadlallah et al. 2013 but a comprehensive
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theoretical and numerical analysis is still lacking. This research seeks to bridge that gap by addressing
the fundamental question: Are ordinal patterns capable of capturing the underlying distribution of a
time series?

To explore this question, we adopt both theoretical and empirical approaches. We derive integral
expressions for pattern probabilities, implement efficient numerical algorithms, and test the framework
on both synthetic and empirical data, including financial time series and physical experiments. For
comparing the different data, it will be used the Permutation Jensen-Shannon distance developed by
Luciano Zunino, Felipe Olivares, Ribeiro, et al. [2022, The effectiveness and versatility of this method-
ology have been demonstrated in diverse contexts, such as Luciano Zunino, Porte, and Soriano [2024]
Luciano Zunino 2024], and F. Olivares, L. Zunino, and M. Zanin [2023], highlighting its applicability to
areas ranging from biomedical signals to landing flow dynamics.

The structure of this monograph is as follows. In Section 2, we provide theoretical insights into
the relation between pattern probabilities and the underlying distribution. Section 3 introduces a
novel computational algorithm and validates it numerically. Section 4 explores the role of asymmetry
in ordinal analysis. Section 5 examines the effect of temporal correlations using fractional Brownian
motion and g-Gaussian processes. Section 6 presents real-world applications, and Section 7 concludes
with a discussion of implications and future directions.

2 Theoretical Insights

2.1 Ordinal Pattern Probability Integrals

Consider a time series {X;}& ;. For an embedding dimension D and delay 7 = 1, each subsequence
Xy = (X¢, X¢41,. .., Xty p—1) gives rise to an ordinal pattern 7 determined by the relative rankings of
its components. For a first impression, Figure [T] shows the six order patterns of length 3.

/AN

(0,1,2) (0,2,1) (1,0,2) (1,2,0) (2,0,1) (2,1,0)

Figure 1: The six order patterns of length 3 (Bandt 2020))

Empirically, the probability of observing a particular ordinal pattern m; in a time series can be
estimated by counting how many times the pattern m; appears, divided by the total number of ordinal
patterns extracted. More precisely, if we denote by Ny, the number of occurrences of pattern 7; in the
series, then the empirical probability P(ﬂ'l) is given by:

. N,
P P
(m)=N_Dx1

where N — D + 1 is the total number of ordinal patterns that can be extracted from the time series
of length N.

From a theoretical perspective, since there are D — 1 successive increments ("jumps") between the
D values, the probability of observing a pattern m can also be expressed as an integral over D — 1
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variables. Assuming the increments are i.i.d. with marginal density f(z), we write:

D-1
P<7TZ) = /S7T (]};[1 f(xk)> dml ~--d.%'D_1

Here, S;, C RP~! denotes the region of values for which the cumulative jumps reconstruct the
specific ordering ;. Note that although we integrate over D — 1 variables, these correspond to jumps
generated by D time series values. Each jump is treated as an independent realization from the dis-
tribution f.

i

To illustrate, let us consider some explicit examples for D = 3:

e Pattern m = (0, 1,2) (monotonically increasing):
P(012) = / f(.%'1>/ f(afg) dl‘z d(L‘l
0 0

e Pattern m = (0,2,1) (a small drop after a rise):

0

P(OQI) = /OOO f(a:l) f(:I}Q) d.%'g dxl

—x1

We can also construct a more complex case, such as pattern (0,2,1,4,3) for D = 5:
00 0 00
PO213) = [ ) [ fa) [ pGa)
0 —x1 —Xo

0
/ f(.%'4) dl’4 dl‘g d.T}Q dxl
—xro—1I3

This integral formulation highlights how different patterns may have distinct probabilities, depend-
ing on the properties of f(x), such as symmetry, skewness, or tail behavior. In the next section, we
explore analytical and numerical evaluations of these probabilities for various distributions.

It is important to highlight that the probabilities P(7) depend solely on the shape of the proba-
bility density function f(z), and not on its scale. In particular, changing the variance (i.e., stretching
or compressing f(x)) does not affect the values of P(m). This invariance arises because the ordinal
patterns are determined by the relative ordering of the values, not by their absolute magnitudes. Or
in order words, we can see also this by a change in variables in the integral.

Consequently, any distribution f(z) that belongs to a location-scale family will yield the same or-
dinal pattern probabilities regardless of its variance. For example, a Laplace distribution with variance
2 or 10 will generate the same values of P(7). This property considerably simplifies both theoretical
analysis and numerical simulation, allowing us to fix the variance without loss of generality.

2.2 Analytic Cases

In this section, we focus solely on symmetric density functions. The first observation is:

Inverse patterns have equal probability. This follows trivially from the symmetry of the density.
If f(x) is symmetric (i.e., f(r) = f(—x)), then any pattern 7 and its inverse 7~! have the same
probability, since the change of variables

Yy =-—-xp, k=1,...,D—1

in the integral for P(7) maps the integration region Sy onto S;-1, and [] f(xx) dzj remains invariant.
Then, for example P(1320) = P(0231) .
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Case D = 3. Recall that for D = 3 we set
r1 = X9 — X, T9 = X3 — Xo,

so each vector (x1,2) € R? corresponds to one of the six patterns.
1. Patterns (0,1,2) and (2,1,0). These are the strictly ascending and descending patterns. For

(0,1,2) we require
X1 < Xo< X3 <= 21 >0, 20 >0.

1
P(012) / / f(z1) f(x2) dry dxy = / f(z dx =7

and by symmetry P(210) = P(012)

Thus

2. Mixed pattern (0,2,1). This pattern imposes

z1 > 0,
X1 < X3< Xy &= (x2<0,
1+ 9 > 0.

Equivalently, the integration domain is
507271 = {(1'1,1’2) x> 0, —I < T92 < 0},

and the probability is

_ (% B F(§)2> _ @ with F(0) = % by symmetry

Summary for D = 3.

P(012) = P(210) % P(021) = P(102) = P(120) = P(201) = —.
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Case D = 4. If we ignore patterns related by symmetry, the following patterns have exact probabil-
ities under any symmetric density:

P(0123) = P(3210) = 3, P(0132) = P(2310) = &,  P(0213) = P(3120) = 24,
P(0312) = P(2130) = &,  P(1023) = P(3201) = 1=,  P(3021) = P(1203) =

We observe that these patterns can be calculated directly using symmetry alone when the integra-
tion limits involve only adjacent jumps. In other words, exact integration is feasible when no limit in
the integral requires combining two or more variables.

Table of results. The following table [I| displays the probabilities of the remaining patterns —
those not covered above — computed either analytically (for uniform and Laplace distributions) or
numerically (for Gaussian and ¢-Gaussian with ¢ = 1.5):

Pattern Uniform Laplace Gaussian ¢ = 1.5 g-Gaussian
(0231), (1320) 1/24 1/32 0.0355 0.0325
(0321), (1230) 1/48 1/32 0.0270 0.0300
(1032), (2301) 1/48 1/32 0.0270 0.0300
(2013), (3102) 1/24 1/32 0.0355 0.0325
(3012), (2103) 1/48 1/32 0.0270 0.0300
(2031), (1302) 1/48 1/96 0.0146 0.0116

Table 1: Pattern probabilities for D = 4 under various symmetric distributions. We find the same
values of the gaussian column at L. Zunino et al. 2008

To validate the theoretical predictions, we performed simulations using symmetric distributions.
The results are shown in Figure

3 Numerical results

3.1 ORDPAT Algorithm

We introduce ORDPAT, a custom algorithm designed to compute the probability distribution of or-
dinal patterns given a time series. It is explicitly written in section [/} ORDPAT efficiently maps each
data window to its corresponding permutation index through a recursive approach that avoids explicit
sorting. This results in significant speed improvements, especially for large datasets.

The algorithm takes as input:

e a vector datos representing the time series,

e the embedding dimension D,

e and an optional delay parameter 7 (defaulting to 1).

For each overlapping window of D values with delay 7, the algorithm computes the corresponding
ordinal pattern and updates a histogram. The recursive subroutine orden maps a vector of D values
to its ordinal pattern index without relying on lexicographic ordering, but instead on a more efficient,
position-based encoding.

In terms of performance, we compare ordpat with an existing implementation known as perm_indices
(Parlitz et al. 2012)), which computes ordinal patterns via lexicographic enumeration and sorting. While
perm_indices is slightly faster for very short series (e.g., under 1000 data points), its performance de-
grades rapidly with series length, as seen in Figure [3| It becomes practically unusable beyond 50,000
points, especially for D > 4.
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Ordinal Pattern Histograms (D = 4)
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Figure 2: Empirical probabilities of ordinal patterns for D = 4 obtained simulation of a symmetric
distribution (e.g., uniform or Laplace) with 10 iterations. The values match the analytically computed

probabilities for representative patterns shown in the table El

In contrast, ordpat scales efficiently with both data length and embedding dimension, remaining
stable and fast even with hundreds of thousands of points.

The following figures illustrate the runtime comparison between both algorithms:

S?eed comparison between functions (mean * std over 10 runs) D=3
10 T

+ ordpat
+ perm_indices

Execution time (s)

10° 10*
Data vector size

(a) Runtime comparison for D = 3

SpeFd comparison between functions (mean * std over 10 runs) D=4
10 T ¢

Execution time (s)

+ ordpat
~—f— perm_indices

102 10° 10*
Data vector size

(b) Runtime comparison for D = 4

Figure 3: Execution time (in seconds) vs. series length for both ordpat and perm_indices with 10
iterations. Note that while perm_indices slightly outperforms for very short series, it quickly becomes

inefficient.

This benchmark confirms that ordpat is a robust and scalable tool for estimating ordinal pattern
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distributions, even when D is large or the time series is long.

3.2 Validation on Synthetic Data

To validate the ability of ordinal patterns to detect properties of the underlying distribution, we begin
by simulating synthetic time series composed of cumulative sums of i.i.d. random variables drawn from
g-Gaussian distributions with varying values of q. A ¢-Gaussian distribution is a generalization of the
normal (Gaussian) distribution (Tsallis 2009), defined by the probability density function:

po(@) = Ay [L— (1 - q)Bga®) /"7, (3.1)

where [z]4 = max(z,0) ensures the support is real-valued, and the constants A, and B, are normal-
ization and scale parameters that depend on q. For ¢ — 1, the ¢-Gaussian converges to the standard
Gaussian distribution. When ¢ > 1, the distribution exhibits heavy tails, and for ¢ < 1, it has compact
support.

To generate i.i.d. samples from the ¢-Gaussian distribution, we use a generalized version of the Box-
Muller transform. Specifically, we draw two independent uniform random variables wui,us ~ U(0,1)
and compute:

x =1/ —2Ing(u1) cos(2mug), (3.2)

where Ing(z) is the g-logarithm defined as Ing(x) = zl:q_l. This method ensures that the resulting

variable x follows a g-Gaussian distribution with zero mean and unit variance, under appropriate choice
of parameters.

We fix the embedding dimension D = 4 and compute the relative frequency of each permutation
pattern using the ORDPAT algorithm.

Ordinal Pattern Histograms of Integrated g-Gaussian (D = 4)

{:'1'4 T T T T
B =-10
0.12r -5 |
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Figure 4: Histogram of permutation frequencies for D = 4 obtained from cumulative g-Gaussian noise
with different values of ¢ with 10 iterations.
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As shown in Figure |4} the change in the tails of the distribution (controlled by the parameter q)
results in a monotonic variation in the frequencies of certain ordinal patterns. In particular, we observe
that patterns such as (3,0,2,1), (1,0,3,2) and (3,0, 1,2) (Figure [5|) tend to increase their probability
with heavier tails (higher ¢). These patterns often involve large jumps between adjacent elements,
suggesting that they are more likely in distributions that permit extreme values.

(3,0,1,2) (1,0, 3, 2) (3,0,1,2)

Figure 5: Patterns that increase their probability with heavier tails (higher ¢)

This supports the hypothesis of Luciano Zunino, Felipe Olivares, Bariviera, et al. 2017 that ordinal
pattern probabilities are sensitive not just to correlation structure, but also to the shape of the marginal
distribution. Furthermore, for those patterns whose probabilities were computed analytically under
the assumption of symmetry, we observe in the plots that their empirical frequencies remain essentially
constant across all g-Gaussian distributions. This confirms that, due to the symmetry of the patterns
and of the underlying distributions, their probabilities are invariant with respect to changes in the
value of ¢.

Entropy and Jensen—Shannon Distance. To further quantify the difference in the distributions
of ordinal patterns, we compute two measures:

e Permutation Entropy (Bandt and Pompe 2002) H(P) = — ) _P(m)log P(m), which measures
the uniformity of the pattern distribution.

e Jensen—Shannon Distance (Luciano Zunino, Felipe Olivares, Ribeiro, et al. [2022) between two
ordinal pattern distributions P and (), defined as:

Q
JSD(P, Q) = \/H<P§> - %lf;P) ~3H(Q)

Figure [6] shows the behavior of the Jensen-Shannon distance when comparing the ordinal pattern
distributions of a ¢-Gaussian with two references: a standard Gaussian distribution (¢ = 1) and a
Student’s t-distribution with matching tail behavior. To interpret the results properly, we introduce a
baseline distance: this is the Jensen—Shannon distance computed between two independently generated
realizations of the same distribution (in this case, two Gaussians with ¢ = 1). This baseline accounts
for the minimal expected distance arising from finite sample effects, since even when comparing two
samples from the exact same distribution, randomness can lead to small discrepancies in pattern fre-
quencies.

Importantly, we observe that the distance between the g-Gaussian and the Student’s t-distribution
reaches the baseline exactly at ¢ = 2, confirming that their distributions are equivalent at this point.
Similarly, the distance between the ¢-Gaussian and the standard Gaussian drops to the baseline at
q = 1, as expected, since both distributions are identical in this case. These results confirm the
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g X 102 JS Distance Comparison: Integrated g-Gaussian (D = 4)
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—P— gq-Gaussian vs Gaussian
—— Gaussian vs Gaussian (baseline)
-Student (= 1) vs g-Gaussian

[
T

Jensen-Shannon Distance
e
T

Figure 6: Jensen—Shannon distance between pattern histograms: comparison of ¢-Gaussian (¢ = 1.5),
Gaussian (¢ = 1), and Student-t distributions with 10 iterations. Note how the distance vanishes when
comparing identical distributions.

reliability of the Jensen—Shannon distance applied to ordinal pattern probabilities as a sensitive and
robust tool for detecting distributional similarities and differences, especially in tail behavior.

3.3 Limitations

Despite the robustness and simplicity of the ordinal pattern framework, it is not without limitations.
One notable drawback is that it can confuse two different distributions even if they exhibit completely
different tail behavior at lower embedding dimensions.

For instance, using the Jensen—Shannon distance between ordinal pattern histograms, we observe
that a ¢-Gaussian distribution with ¢ = 1.66 produces a nearly indistinguishable pattern profile from
that of a Laplace distribution when using embedding dimension D = 4. This implies that, under
certain conditions, the method may fail to differentiate two fundamentally distinct distributions, effec-
tively treating them as statistically equivalent from the ordinal perspective.

However, preliminary results suggest that this degeneracy weakens as the embedding dimension in-
creases. At D =5 and D = 6, differences in the tail structure become more apparent, and the ordinal
pattern distributions begin to diverge. This points to a trade-off between resolution and computational
cost: higher-order patterns can capture more nuanced statistical features, but at the expense of in-
creased complexity and reduced statistical reliability due to factorial growth in the number of patterns.

These findings show that while ordinal pattern analysis is capable of detecting subtle differences be-
tween relatively similar time series, it may fail when the overall statistical structure changes drastically
but happens to preserve similar local ordinal configurations. This highlights the method’s sensitivity
to local ordering rather than global distributional features, and calls for caution when interpreting
results, especially at low embedding dimensions.

4 Asymmetry in Distributions

In this section, we explore how different centering methods affect the detection of asymmetries in
skewed distributions using ordinal patterns. Specifically, we compare three preprocessing approaches
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.10 JS Distance Comparison: Integrated g-Gaussian (D = 4)
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Figure 7: Comparison of ordinal pattern frequencies between ¢-Gaussian (¢ = 1.66) and Laplace
distribution for D = 4 with 10 iterations. The near overlap illustrates a case of indistinguishability.

before computing ordinal probabilities: (i) using the raw data, (ii) subtracting the mean, and (iii)
subtracting the median. Our goal is to determine which method best preserves the asymmetry infor-
mation encoded in the ordinal structure of the data.

To illustrate this, we simulate a time series drawn from an asymmetric distribution composed of
two parts: the left half follows a standard Gaussian distribution, while the right half follows a right-
skewed g-Gaussian with ¢ = 2. The generation process ensures that negative values come exclusively
from the Gaussian component, and positive values from the ¢g-Gaussian, by rejecting samples that fall
outside the desired domain. The relative proportions of each component are adjusted according to the
densities at the origin to balance their contributions.

For each centering method, we present two subfigures: on the left, a sample of the time series
after preprocessing, and on the right, the corresponding histogram of ordinal pattern frequencies for
embedding dimension D = 3. This setup allows for a clear comparison of how each method responds
to symmetry and asymmetry in the data.

Raw data (no centering)

When no centering is applied, the ordinal patterns extracted from the ¢g-Gaussian exhibit a notable
bias toward ascending patterns such as (0, 1,2). This is due to the presence of heavy-tailed extreme
values on the right, which inflate the local orderings and create an artificial sense of upward trend,
even though the underlying distribution may not have a systematic directional behavior.

Mean-centering

Subtracting the mean leads to an opposite distortion. Since the ¢ = 2 distribution has a heavy right
tail, a single extreme value can greatly shift the mean upward. This results in most values being
perceived as relatively small after centering, producing an artificial abundance of descending patterns
like (2,1,0). The ordinal analysis is thus heavily skewed by the instability of the mean in heavy-tailed
distributions.

10
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(a) Raw data: ¢ = 2 Gaussian

(b) Pattern histogram (D=3)

Figure 8: Effect of no centering on ordinal patterns.
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Figure 9: Effect of mean-centering on ordinal patterns.

Median-centering

In contrast, median-centering offers a robust alternative. Since the median is resilient to outliers, it
provides a more stable central reference. When applied to the g = 2 series, the resulting ordinal pattern
histogram reveals genuine asymmetries inherent to the distribution. For example, patterns like (0,2, 1),
which reflect a sharp jump to the right, become more frequent than their mirrored counterparts. This
behavior aligns with the expected influence of a heavy right tail and suggests that median-centering
preserves ordinal structure more faithfully in asymmetric settings.

Conclusion

These results suggest that for skewed distributions, subtracting the median before integrating and com-
puting ordinal patterns provides a more reliable representation of underlying asymmetries than either
raw data or mean-centering. This approach enables a finer detection of subtle directional structures
without being misled by extreme values or artificial centering distortions.

5 Effect of Temporal Correlation (Hurst Exponent)

This section explores how temporal correlations, quantified by the Hurst exponent H, influence ordinal
pattern distributions—particularly in interaction with non-Gaussianity, encoded via the tail parameter
q. While previous sections focused on i.i.d. data, here we move into temporally structured time series,

11
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Figure 10: Effect of median-centering on ordinal patterns.

investigating whether ordinal analysis can capture the combined effects of memory and fat-tailedness.

5.1 Methodology for Generating ¢g-Gaussian and fBm Data

To simulate time series with controlled temporal correlation and marginal distribution, we use a hy-
brid sampling technique from Carpena et al. We begin by generating fractional Brownian motion
(fBm) using the wavelet-based ‘wfbm‘ function or, alternatively, via Cholesky decomposition of the
covariance matrix. This yields a Gaussian process with a desired Hurst exponent H € (0, 1), where
H = 0.5 corresponds to uncorrelated white noise, H > 0.5 to persistent memory, and H < 0.5 to
antipersistence.

To introduce fat tails, we apply a rank-based transformation: first, the Gaussian fBm series is
mapped to the uniform distribution using its empirical cumulative distribution function (CDF); then,
the uniform values are converted into ¢-Gaussian-distributed samples via the inverse CDF of the target
distribution.

This method enables independent control of temporal correlation and marginal shape. It is partic-
ularly well-suited to studying how both H and ¢ jointly affect ordinal patterns.

5.2 Validation of Synthetic Data

We validate our synthetic generator by comparing both marginal and spectral properties of the sim-
ulated data. Each figure below contains two subfigures: the left shows the histogram of the data
(verifying the marginal ¢-Gaussianity), while the right displays the power spectral density estimated
via Welch’s method, confirming the expected spectral slope o = 2H — 1 (Luciano Zunino, Felipe
Olivares, Bariviera, et al. in Figures and

However, we observe in the Figure [14] that for strongly antipersistent data (H = 0.25) combined
with heavy tails (¢ = 2), the transformation introduces distortions. In these cases, the empirical spec-
trum does not fully reflect the intended correlation structure. This limitation suggests a fundamental
incompatibility between strong antipersistence and long-tailed marginals when applying rank-based
transformations.

5.3 Impact on Ordinal Patterns

We restrict our analysis to the region ¢ > 1 and H > 0.5, as these conditions are typically observed in
empirical time series, particularly in financial markets (as we will explore later). Moreover, these are
the parameter regimes where our synthetic data generation method is most robust. To study the joint
influence of ¢ and H on ordinal patterns, we focus on a representative subset of patterns of length

12
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Figure 11: Validation for heavy tails and persistent memory. ¢ = 1.5, H = 0.75
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Figure 12: Validation for compact support and persistent memory. ¢ = 0, H = 0.75
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Figure 13: Validation for compact support and antipersistence. ¢ = 0, H = 0.25

D = 4. These patterns were chosen based on their distinct and illustrative behaviors.

The following figure [15] presents the evolution of the probabilities of these patterns as H increases

while ¢ is held fixed, allowing for a clear visualization of their different dynamics.
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We observe that the strictly increasing pattern 0123 and the strictly decreasing pattern 0321, show-
ing a clear indpendence of ¢, they have the same frequencies. However, in the cases of 0231 and 0321,
although their initial probabilities differ, they respond similarly to variations in H, decreasing with

memory. This reinforces the reliability of ordinal patterns as tools for detecting and characterizing
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temporal structure, as they are also monotonic with respect to correlation.

Additionally, these two monotonic patterns exhibit contrasting behaviors with respect to the tail
parameter ¢: while 0231 decreases in probability as increases (indicating heavier tails), the 0321 pat-

tern increases, highlighting their sensitivity to both temporal and distributional characteristics.
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Finally, to assess whether patterns can uniquely identify a given pair (¢, H), we construct a heatmap
showing the Jensen-Shannon distance between a reference ordinal pattern histogram (obtained from
an integrated time series with known ¢ = 1 and H = 0.5) and others across a grid of values (Figure
. A clear global minimum appears at the correct pair, confirming that ordinal patterns are sensitive
to both fat tails and memory.
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Figure 16: Jensen-Shannon distance between pattern histograms across different ¢, H combinations
with 10 iterations.

These results suggest that ordinal patterns can jointly encode both tail heaviness and temporal
correlation—provided the generation process is well-behaved—and offer a promising tool for analyzing
complex time series structures.

6 Applications

The practical relevance of ordinal analysis becomes particularly evident when applied to real-world
data. Among the most insightful examples are financial time series, which are known to exhibit
heavy-tailed distributions and varying degrees of temporal correlation. Under the Efficient Market
Hypothesis, asset returns should behave as uncorrelated Gaussian noise, closely resembling a fractional
Brownian motion with Hurst exponent H = 0.5. Deviations from this benchmark may reveal underlying
structures in the data that can be detected through ordinal patterns.

6.1 Financial Time Series

We begin by analyzing the daily returns of the NASDAQ and S&P 500 indices from 1980 to 2025.
Following the methodology of Gopikrishnan et al. and Nayak, Singh, and Senapati we focus
on logarithmic returns instead of raw prices, as they better capture the stochastic dynamics of financial
systems. Given a time series of prices P;, the logarithmic return at time ¢ is defined as:

P,
ry = log P, — log P;_1 = log t (6.1)
Py

To isolate distributional effects from temporal correlations, we first randomize (shuffle) the return
sequences and then we integrate the returns. This allows us to analyze the shape of the return distri-
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bution independently of memory effects.

We then compare the empirical ordinal pattern histograms against those generated from ¢-Gaussian
distributions with no time correlations (Figure . The best match for both indices occurs around
q =~ 1.5, consistent with the value reported for NASDAQ in Nayak, Singh, and Senapati Simi-
larly, Gopikrishnan et al.[1999 reports a power-law exponent av = 3 for S&P 500 returns, corresponding
to ¢ = 5/3, which aligns well with our estimate.

JS Distance Comparison for SP500 and NASDAQ (D = 4)

—4P— SP500 vs g-Gaussian
01 | —F— NASDAQ vs g-Gaussian 1
—_— Baseline

Jensen-Shannon Distance

003+

0.02 ' ; :

Figure 17: Best-fit ¢-Gaussian match for shuffled returns of NASDAQ and S&P 500 with 10 iterations.
Both indices exhibit ¢ ~ 1.5, confirming heavy-tailed behavior.

6.2 Time-Scale Robustness

To test whether this distributional structure persists across time resolutions, we repeat the analysis
using return data at different frequencies (Figure . In all cases, the resulting ordinal pattern distri-
butions continue to match those of a ¢ = 1.5 ¢-Gaussian.

This robustness across scales suggests that the underlying statistical behavior of financial markets
remains relatively stable and consistent with the presence of heavy tails, regardless of temporal aggre-
gation. However, we observe that the length of the time series plays a crucial role in the analysis, as
it is difficult to draw reliable conclusions from shorter datasets, such as those with only 30 minutes or
60 days of data.

6.3 Correlation Structure in Financial Markets

In addition to distributional analysis, we examine temporal dependence through the Hurst exponent.
From now on, we will not shuffle the return sequences to preserve the effects from temporal correlations.
By computing Jensen-Shannon distances between empirical pattern histograms and those generated
from synthetic datasets with known (¢, H), we construct heatmaps that identify the most likely pa-

rameter pair (Figure [19).
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Figure 19: Jensen—Shannon distance heatmaps for S&P 500 and NASDAQ returns with 10 iterations.

We observe that both markets exhibit minima at ¢ > 1, with S&P 500 reaching the lowest distance
near ¢ ~ 1.5, and NASDAQ slightly below that value. Furthermore, we find a temporal correlation
above H > 0.5, especially pronounced in the NASDAQ case.

Interestingly, the minimal distances reached here are higher than those found when comparing only
the g-distributions. Although this may seem counterintuitive—since adding an extra degree of freedom
(H) should, in principle, improve the fit—this is explained by the fact that we no longer shuffle the
return sequences. As a result, the empirical data may deviate more from idealized synthetic processes
due to real-world noise and spurius non-linearities.

Our estimates are consistent with previous studies Bandt [2020, which report weak persistence
(H =~ 0.5) in major developed markets. These findings demonstrate that ordinal patterns are sensitive
not only to distributional shapes but also to underlying temporal correlations.

6.4 Cross-Country Market Comparison

We now extend our analysis to global markets using data provided in Luciano Zunino, Felipe Olivares,
Bariviera, et al. 2017, which includes stock indices from countries with varying levels of economic de-
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velopment. We again estimate effective ¢ and H values from the ordinal pattern distributions (Figure
. We note before that the distribution are symmetric.

g and H values minimizing distance by country type

0.75 .
® @&
0.7 1
5‘.’-.:’
i ® 233
0.65 ® &
:',; o -
£ . @ 9 N
£ ba o o
o --\.\\}
B oss| 0g® £ .
0 055 .' Q' 8 i
8 & f*‘} @ &
05 @ 20 @0
. ® pd
0.45 & = e el
® pf
D4 i i i i i i i i
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
Minimum g

Figure 20: Estimated ¢ and H values across countries with 10 iterations. Developed markets (red)
cluster near (¢ = 1, H = 0.5), while emerging (green) and developing markets (blue) exhibit heavier
tails and stronger correlations.

Our results replicate the conclusions of Luciano Zunino, Felipe Olivares, Bariviera, et al. 2017,
which found that developed markets (pd) tend to exhibit near-Gaussian behavior with low correlation
(¢ = 1, H =~ 0.5), while developing (pf) and emerging markets (pe) show higher persistence and more
pronounced non-Gaussianity (¢ > 1, H > 0.5). These observations provide strong evidence for the
utility of ordinal patterns in characterizing economic maturity and market structure.

7 Conclusions

In this work, we have explored the capacity of ordinal patterns to encode meaningful information about
both the underlying distribution and temporal structure of time series. We first established, through
analytical integrals, that the probabilities of ordinal patterns are intrinsically linked to the shape of the
probability distribution. This connection was further supported by numerical simulations for various
synthetic distributions, including Gaussian, uniform, Laplace, and ¢-Gaussian models.

To handle the computational demands of estimating pattern probabilities efficiently, we introduced
the ORDPAT algorithm, which significantly reduces runtime while preserving accuracy. This allowed
us to examine the subtle ways in which ordinal patterns respond to tail heaviness and asymmetry in the
underlying data. In particular, we showed that in asymmetric distributions, centering the data using
the median rather than the mean leads to clearer and more robust pattern profiles — a methodological
improvement with potential for broader use in real-world settings.

We then extended our analysis to incorporate temporal correlation via the Hurst exponent H, simu-
lating long-ranged correlated data with prescribed g-Gaussian marginals. Ordinal patterns were shown
to respond nonlinearly to changes in both ¢ and H, with persistent processes amplifying monotonic
patterns. We validated these theoretical insights against real financial data from the S&P 500 and
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NASDAQ over multiple temporal scales, consistently identifying ¢ ~ 1.5, in agreement with previous
literature. Cross-country comparisons further revealed that developed markets cluster near Gaussian
behavior, while developing markets show heavier tails and stronger correlations.

These results not only demonstrate the dual sensitivity of ordinal patterns to both distributional
and dynamical features, but also highlight their scale-robustness and computational efficiency — mak-
ing them a powerful tool for time series analysis in complex systems.

Future Directions. Building on these findings, several promising avenues for future research emerge.
First, the joint estimation of ¢ and H via ordinal patterns can be extended beyond finance to biomedical
signals, such as EEG or heart rate variability, where detecting long-range dependence and non-Gaussian
fluctuations is essential. Second, the proposed median-centering technique can be further generalized
to non-stationary or skewed data, offering better interpretability in fields such as ecology or climate
science.

Moreover, it would be interesting to explore how ordinal patterns behave under nonlinear temporal
correlations, which go beyond traditional linear dependencies and could arise in chaotic or feedback-
driven systems. Finally, expanding the ordinal framework to multivariate and networked time series
opens up new possibilities for studying complex interactions across variables and scales.

In sum, ordinal analysis, grounded in a simple symbolic representation, proves to be a remarkably
versatile tool to unveil the subtle geometry of time series data.
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ORDPAT Algorithm Implementation

Below is the MATLAB implementation of the ordpat algorithm used for computing ordinal pattern
probabilities:

function v = ordpat(datos, D, tau)
% ORDPAT calculates the empirical probability of ordinal patterns
% from a time series ’datos’ with embedding dimension D and delay tau.
% Output ’v’ is a vector of size D! containing the relative frequencies.

if nargin < 3
tau = 1; 7% default delay
end
if nargin < 2
error (’At least two arguments required: datos and D’);

end
v = zeros(1l, factorial(D)); % initialize pattern count vector
n = length(datos);

19



i (FISC %o Proceedings of the SURFQIFISC (2025)

for i=1:n- (D - 1) * tau
C =datos(i : tau : i + (D - 1) * tau); Y% extract window
s = orden(C) + 1; ¥ compute pattern index (MATLAB is 1-based)

v(s) = v(s) + 1; 7 increment corresponding count
end

v =v / sum(v); % normalize to obtain probabilities
end

function s = orden(datos)
% Recursive function to map a vector to its permutation index.
D = length(datos);

if D ==
s = 0;
else
[7, idxMin] = min(datos); % find minimum value position
datos(idxMin) = []; % remove the minimum
s = orden(datos) + (idxMin - 1) * factorial(D - 1);
end
end
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Abstract

Magnetic Topological Insulators (MTIs) are a novel class of materials exhibiting dissipationless
edge states within an insulating bulk. This work investigates the emergence and control of these
edge states across different topological phases by electrostatic gating. Numerical simulations reveal
distinct behaviors in each phase, including finite-size effects such as edge-state interaction, phase
coexistence, and band anticrossing. These results offer insights into controlling topological features
in MTIs for potential device applications.

1 Introduction

Over the last century, one of the major achievements of quantum physics has been the description of
materials through band structures and Fermi surfaces in momentum space [I]. The electronic band
theory of solids relies on the translational symmetry of crystals, allowing the electronic structure
to be described in terms of the crystal momentum k, defined within the Brillouin Zone [2]. This
framework successfully distinguishes conductors (metals) from non-conductors (insulators) based
on the presence or absence of electronic band gaps.

In conductors, electrons can be easily excited within a partially filled conduction band, while
insulators feature a band gap between filled valence bands and empty conduction bands. Semicon-
ductors share a similar structure but with a smaller energy gap £, allowing thermal or external
excitation of electrons across the gap [].

A richer classification of electronic phases emerged with the inclusion of magnetism and super-
conductivity. The discovery of the Integer Quantum Hall (QH) effect in 1980 [5] was a breakpoint
about the difference between metals and insulators. This phenomenon was first observed in two-
dimensional electron gases confined in semiconductor quantum wells under strong magnetic fields.
Electrons in the bulk undergo cyclotron motion due to the Lorentz force, while at the edges,
skipping orbits form due to boundary confinement [7]. These result in unidirectional propagating
edge states, known as chiral edge states, which allow for ballistic, dissipationless transport without
backscattering.

Remarkably, these edge states are topologically protected and survive even in the presence of
weak disorder [9]. Consequently, a two-dimensional system under strong magnetic field behaves as
an insulator in the bulk but conducts along its edges through gapless states.

Later, it was discovered that such behavior can also arise without external magnetic fields,
through spin-orbit coupling, especially in heavy elements like mercury and bismuth [I0, [12]. This
led to the prediction of the Quantum Spin Hall (QSH) effect in graphene in 2005 [I1], and its
experimental confirmation in HgTe quantum wells in 2007 [I3]. In the QSH effect, each edge
supports two counter-propagating chiral states with opposite spins. Spin-up electrons travel in one
direction, while spin-down electrons move in the opposite, forming time-reversal symmetric copies
of QH states.

These QSH edge states are protected by time-reversal symmetry and are not subject to backscat-
tering as long as this symmetry is preserved [14]. Thus, QSH systems represent a new class of
topological insulators where the spin degree of freedom plays a crucial role.

Another state of interest is the Quantum Anomalous Hall (QAH) effect, which mimics the
QH effect but without an external magnetic field. First realized in 2013 by doping materials like
BisTes or SheTes with magnetic atoms (e.g., Cr or Fe) [17], the QAH effect results from internal
magnetization. While this approach may degrade material quality, more recent advances have
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Figure 1: Difference between topological and trivial phase. The transition from the trivial to the topological
phase (or vice versa) is realized when an inversion between the conduction and valence bands takes place.

demonstrated the QAH effect in MnBisTey thin films [I8]. These thin-film systems are especially
interesting since their electronic behavior can be modeled effectively in two dimensions.

The materials exhibiting such behavior are known as Magnetic Topological Insulators (MTIs) [19].
These are insulating in the bulk but host topologically protected conducting states on their sur-
face or edges. The QH state can be seen as the simplest topological phase. In this thesis, special
attention is given to MTTs that realize the QAH effect via magnetic doping.

One of the most exciting aspects of topological insulators is that their existence in 2D and 3D was
theoretically predicted in 2005 and 2007, respectively [I1, 20], prior to experimental observation.
Today, TIs represent a central topic in condensed matter physics, as recognized by the 2016 Nobel
Prize in Physics for the study of topological phases in theoretical physics [21].

2 Theoretical model

2.1 Topology in Condensed Matter Physics

In condensed matter physics, topology refers to the study of properties of a physical system that
remain invariant under continuous deformations of its parameters, such as stretching or bending,
without closing the energy gap. Unlike conventional phases of matter, which are classified by
local order parameters and spontaneous symmetry breaking (as described by Landau’s theory),
topological phases are characterized by global invariants that are robust against local perturbations

[14).

A paradigmatic example is the integer quantum Hall effect, where the Hall conductance is
quantized in integer multiples of e?/h. This quantization arises from a topological invariant known
as the Chern number, which counts the winding of the Berry curvature over the Brillouin zone.
Similar ideas extend to topological insulators, which possess insulating bulk states and conducting
surface or edge states protected by symmetries, such as time-reversal symmetry.

Mathematically, topology in condensed matter systems is often related to the mapping between
the momentum-space manifold (e.g., the Brillouin zone) and a parameter space defined by the
Hamiltonian. The robustness of topological invariants against disorder and perturbations makes
these systems promising for applications in low-power electronics, spintronics, and topological quan-
tum computation. The difference between topological and trivial phase is due to the inversion of
the bulk energy bands, as can be seen in figure (I} For a detailed introduction to the field, see Hasan
and Kane (2010) [14].

2.2 Modelization of the system

The model is based on an effective Hamiltonian that aims to describe the propagation of electrons
and holes through the material. To this end, a thin 3D film is modelled as two 2D layers with a
coupling term between them included in the Hamiltonian. Additionally, the model incorporates a
term accounting for the interaction due to the intrinsic magnetization of the material, as well as
the effect of an applied electrostatic potential. Therefore, the Hamiltonian of the system is,

H= [mo +mq (p2 + pz)] Az + @ [peoy — DyoL| A + Ao, + Va(y) . (2.1)
The parameters used in the Hamiltonian are defined as follows:

e 0, ) : Pauli matrices on spin and layer subespaces.
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Figure 2: Proposed system. In green, two electrodes. In black, the material.

e mg, m; : Parameters for interlayer coupling. mj 1 is an effective mass.

Dz, Py : Momentum operators along the x and y directions, respectively.

e « : Spin-orbit coupling.

Ap : Zeeman parameter (magnetization).

Va(y) : Position-dependent electric potential.

By tuning Ap and Vy(y), the system can be driven through different topological phases. This
model describes magnetically doped topological insulators such as BisSes + Cr and BisTes + Cr.

On the other hand, the proposed system consists of a slab of MTI material with top-bottom
electrodes, allowing control of the electric potential applied to the material in specific regions of
the slab, as can be seen in figure 2]

3 Results and discussion

3.1 Nomenclature and system definitions

In order to avoid confusion in the discussion of the results, we establish here the terminology that
will be used throughout this work:

e Bulk (or Extended Film): Refers to an extended 2D bilayer system along both x and y
directions. This should not be confused with the notion of a three-dimensional bulk.

e Slab: 2D system with a finite width L, and infinite extension along z. We assume vacuum
outside the magnetic topological insulator (MTT) boundaries.

e Extended Film with Uniform Gating: The gating potential is constant, V' = const. The
bulk spectrum E(k,, k,) is obtained analytically.

e Slab with Uniform Gating: The gating potential is constant, V' = const. The spectrum
is computed numerically. Finite-size effects arise due to the finite width L,.

e Slab with Non-uniform Gating: The gating potential depends on y, i.e., Vy4(y). In this
case the explicit functional form of V;(y) must be specified.

e Extended Film with Non-uniform Gating: This case is not modeled directly. Instead,
it can be studied by considering a sufficiently wide slab with non-uniform gating (large L,),
which effectively reproduces the extended limit.

3.2 Main objectives of the work
The present study focuses on three complementary goals:

1. Confined states in extended films with non-uniform gating. Although such systems
are not modeled directly, they can be effectively studied by considering wide slabs with non-
uniform gating. In the limit of large L, these slabs reproduce the behavior of the extended
film.

2. Confirmation of topological band theory. By analyzing slabs under uniform gating, we
confirm the expectations from band topology theory. In this case, the numerical slab spectrum
provides evidence that complements the analytical bulk calculations.
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3. Interaction between edge states in slabs of finite L,. We aim to characterize anticross-
ing effects and slope deformations.

In addition, schematic sketches of all the above geometries are included in figure [3| to provide a
clear visualization of the systems and the role of the gating potential.

Extended Film (Bulk)

no edges, infinite in x and y

L, =

Slab

vacuum L, finite width L,, infinite in 2 vacuum

L, =

Slab with Uniform Gating

vacuum L, V = const vacuum

L,=

Slab with Non-Uniform Gating

vacuum L, vacuum

L, =

Figure 3: Schematic representations of the different systems studied in this work. From top to bottom:
Extended Film (Bulk), Slab, Slab with Uniform Gating (V' = const), and Slab with Non-Uniform Gating
(Va(y)). The width L, is finite for slabs, while L, is considered infinite. Vacuum regions are assumed outside
the MTT boundaries. The blue gradient illustrates the y-dependent potential in the non-uniform slab.

3.3 Phase Diagram for the bulk

In this section, we analytically solve the equation det(H) = 0 for the bulk in order to obtain
the conditions that determine the phase boundaries for both mg = 17 meV and mg = —17 meV,
following the approach presented by Jing Wang and Shou-Cheng Zhang in their work on FElectrically
Tunable Magnetism in Magnetic Topological Insulators [24]. Then, for a constant Vyi(y) = V
electrostatic potential the two conditions are,

1. m3+V? =A%,
2. m(k) =0, AL + a?k? = V2.

A detailed derivation of the conditions can be seen in Appendix [A]

3.3.1 Case mg>0

For mg > 0, we take my = 17 meV as a characteristic value, for which we identify two distinct
phases in the phase diagram: the Quantum Anomalous Hall (QAH) phase and the Normal Insulator
A (NI A) phase, as can be seen in figure

In the QAH phase, the system exhibits a quantized Hall conductance o, = +e?/h in the
absence of an external magnetic field. This behavior originates from a non-zero Chern number in
the band structure, which leads to the formation of chiral edge states at the sample boundaries
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[22, 23]. In the band structure, these edge states manifest as characteristic “crossings” (or “X-
shapes”) that connect the conduction and valence bands across the bulk energy gap. The QAH
effect is robust against weak disorder and perturbations that do not close the gap or alter the
topological invariant.

In contrast, the NI A phase corresponds to a topologically trivial insulating state with a van-
ishing Chern number. In this phase, the bulk remains gapped and no protected edge states are
present, which means that the band structure does not exhibit the “X-shaped” crossings charac-
teristic of topological phases. Consequently, the system behaves as a conventional band insulator
with no quantized Hall response.

The transition between the QAH and NI A phases occurs when the bulk gap closes and reopens
with a change in the topological invariant, which can be tuned through model parameters such as
Ap or V in our system, while A2m; = 0.15 - 1072 meV pm?, ha = 0.2 meVyum.

Diagrama de Fases para mp = 17 Diagrama de Fases para mo= —17

— mi+Vi=A} — m+Vi=4}

175 1751 — mk) =0, 83 +a?k?=V?
@ Transicion QSH a NI A en V=67.33 meV

1251 QAH 125 QAH

100

Ag (meV)

100 4

Ag (MeV)

751 751

501 NI'A 50 ]
25 25 ] NI B
QSH
0 0 2‘5 5'0 7'5 160 12‘5 l.r;O 17‘5 200 ¢ 0 2‘5 56 7‘5 160 12I5 15‘0 l"f5 200
V (meV) V (meV)
(a) mo = 417 meV. Phase diagram of a homogeneous (b) mo = —17 meV. Phase diagram of a homogeneous
extended film without edges. extended film without edges.

Figure 4: Phase diagrams of homogeneous extended films (no edges) for two opposite values of mg: (a)
mo = +17 meV and (b) mg = —17 meV.

3.3.2 Case myg<0

For my < 0, we take my = —17 meV as a characteristic value, leading to the phase diagram from
ﬁgurerevealing four distinct phases. We take also im; = 0.15-1072 meV um?, ha = 0.2 meVum,
as in the previous case. Asin the mg = 17 meV case, we identify a Quantum Anomalous Hall (QAH)
phase in the same region of parameter space, characterized by a non-zero Chern number, chiral
edge states, and the “X-shaped” band crossings typical of topological phases [22] 23].

In addition, an intermediate phase denoted as Normal Insulator B (NI B) emerges. Despite
being topologically trivial (Chern number C' = 0), the NI B phase displays edge-like states within
the gap whose dispersion (slope) varies continuously with the applied electric potential V', as we
will show later. These states are not protected by a topological invariant and can therefore be
removed or significantly modified by perturbations that break the relevant symmetries.

Upon further increasing the electric potential, the system undergoes a transition from NI B to
the NI A phase, a fully gapped trivial insulator with no in-gap edge states and no Hall response.
This transition is driven by the disappearance of the residual edge-like states as the band gap
evolves.

In the special case of vanishing Zeeman term (Ag = 0 meV), only two phases appear. At low
potential, the system is in a Quantum Spin Hall (QSH) phase [10, 11], which shares similarities
with the NI B phase in its band structure (presence of gap-crossing states) but is protected by
time-reversal symmetry. This symmetry ensures the robustness of the helical edge states against
non-magnetic disorder. As the potential exceeds V = 67.33 meV, the QSH phase transitions into
the trivial NI A phase via a gap-closing and reopening process that changes the topological invariant
from ZQ =1to ZQ =0.

3.4 Slab with uniform gating

In this section, we apply a uniform electrostatic potential across the slab of width L,. For large
L, this corresponds to the homogeneous system, following the phase diagrams shown in and
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Figure 5: Slab (in black) with uniform gating using electrodes (in green).

A sketch of the system can be seen in figure 5] To analyze the phase behavior of the system, we
consider three distinct cases.

We first consider the case mg > 0 with Ap > myg, in order to analyze the transition from
the QAH to the NI A phase. Specifically, for mg = 17 meV, A = 20 meV, and slab width
L, = 0.75 um, we observe a direct phase transition from the QAH phase to the NI A phase as the
uniform electrostatic potential is increased. The QAH phase is characterized by a non-zero Chern
number and the presence of chiral edge states, whereas in the NI A phase the system becomes a
trivial insulator with no in-gap states. This behavior is consistent with the predictions of the phase
diagram in Fig. [fa]

We next analyze the case mg < 0, considering two different values of Ag. First, for Ag = 20
meV, mg = —17 meV, and L, = 0.75 um, the system undergoes a sequence of phase transitions
as the uniform electrostatic potential increases: from the QAH phase to the NI B phase, and
finally to the NI A phase. The NI B phase is characterized by edge-like states forming “X-shaped”
crossings within the gap, whose slope evolves with the applied potential, while the separation
between the bulk states also changes. Upon further increasing the potential, these “X-shaped”
features gradually vanish, and the system enters the NI A phase, where no in-gap edge states are
present. This sequence of transitions is consistent with the phase diagram in Fig. [Ib] and can be
clearly observed in Figs. [6]

Second, for Ap = 0 meV with the same parameters mo = —17 meV and L, = 0.75 pm, we focus
on the transition from the QSH to the NI A phase. As shown in Figs. [7] and [§] the system initially
hosts time-reversal protected helical edge states, which are doubly degenerate and localized in pairs
along the sample boundaries. When the applied potential exceeds the critical value V = 67.33 V,
the Dirac cone in the band structure disappears and the system becomes a trivial insulator (NI A
phase). This behavior is in full agreement with the phase diagram.
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Figure 6: Evolution of the band structure for increasing values of the uniform applied potential V. Case
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Figure 7: Energy gap closing for k£ = 0 due to the increase of V' and evolution of the band structure for
increasing values of the uniform applied potential V. Case mg = —17 meV, A = 0 meV.
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(a) State 1 for V =0 meV (b) State 1 for V = 50 meV (c) State 1 for V = 100 meV

Figure 8: Distributions of probability density along y for selected states. Case mg = —17 meV, A =0 meV.

3.5 Dependence of the Dirac Cone Slope on the Applied Potential in
the NI B Phase for slab with uniform gating

In this section, we aim to study the relationship between the slope of the Dirac cone and the
bulk energy bands. Since the Dirac cone corresponding to the edge states is formed from the bulk
energy bands that close and give rise to the characteristic cross-shaped form in the two-dimensional
projections, the slope of the cone will be related to the shape of the bulk energy bands. Therefore,
we expect to see that if the shape of these bands changes upon applying an electrostatic potential,
the slope will consequently change as well. The same applies both in the case of the slab with
uniform gating and in the case of the slab with non-uniform gating.
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Specifically, in the Normal Insulator B (NI B) and Quantun Spin Hall phases, we have seen
a change in the slope of Dirac cones when we change the applied electrostatic potential, while in
the Quantum Anomalous Hall (QAH) this change is very slow or not appreciable. This has sense
since NI B and QSH are essentially the same phase because the only difference is the time reversal
symmetry, since the QAH is very different from them. So the slope of the Dirac cones in NI B
should be directly related to the energy separation between the bulk valence and conduction bands.
This separation is sensitive to the application of an external electrostatic potential, which modifies
the dispersion relations by altering the effective band gap.

Our analysis shows that, as the electrostatic potential V' approaches the critical value V,—marking

the transition between the NI B and Normal Insulator A (NI A) phases—the slope of the Dirac cone
changes in a non-linear fashion. This behavior can be quantitatively described through the analyt-
ical expression derived in Appendix [B] which is obtained by projecting the Hamiltonian spectrum
along k, = 0 and evaluating the smallest positive eigenenergy. The resulting slope depends explic-
itly on V, A, mg, m1, and «, revealing a clear tunability of the band structure via electrostatic
gating.

In figure [9] it can be observed the evolution of the band structure for increasing values of the
applied electrostatic potential, what leads to the change of the slope in the Dirac cone when edge
states are formed.

-500

= _s00 500 <

0

K

V =70 meV V =90 meV

Figure 9: Evolution of the band structure for increasing values of the applied potential V' in the NI B phase.
Here we represent the band energies (eigenvalues) of the Hamiltonian for the slab with uniform gating (mo = —17
meV, my = 0.15- 1072 meV, a = 0.2, Ag = 20 meV, V € [0,100] meV).

Using the substitutions k, = 0, k, — k, Ap = 20 meV, Aa = 0.2 meV pm, h*m; = 0.15-1073
meV pm? and mg = —17 meV in the analytical expression derived in Appendix the slope reduces
to the following compact form for this case,

m(V) = 0.00297044\/4933.33 + V2 —2/4533.33V2 4+ 400 (1.26218 x 1029 + V2).

Figure [10] illustrates this dependence of the Dirac cone slope on the applied electrostatic potential.
The plotted curve in the interval V' € [0,200] (vertical axis limited to [0,1]) shows a non-linear
behaviour with a minimum near V =~ 70.24 for these parameters. Physically, this minimum cor-
responds to the point where the positive-band energy approaches zero at the critical momentum
and the effective slope of the linearised dispersion vanishes; for larger V' the slope increases again.
This behaviour exemplifies how electrostatic gating provides a direct handle on the band dispersion
in the NI B phase through its influence on the valence—conduction band separation. The detailed
derivation and intermediate algebraic steps are provided in Appendix
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Figure 10: Parameterised Dirac cone slope m (V') as a function of the applied electrostatic potential V for the

chosen parameters M, = 20, mg = —17 meV, A?m; = 0.15-1072 meV pm? and Ao = 0.2 meV pm. The vertical
axis is restricted to the range [0, 1] for clarity.

3.6 Non uniform gating: symmetric potential barriers along y

The aim of this section is to characterize the behavior of the system when a non-uniform electrostatic
potential is applied. This potential, Vy(y), is introduced symmetrically at a certain distance from
the center of the box, creating three distinct regions with different phase behaviors, while also
attempting to induce confinement of the edge states through electrostatic gating. Specifically, we
obtain a central region of length L, where no electrostatic potential is applied, flanked by two
outer regions that are separated from the central one by the potential barriers. Therefore, V;(y) is
a function that takes the value zero in the central region and increases until reaching its maximum
in the lateral regions.
We adopt a compact notation for the different phases observed in the phase diagrams:

e A: Normal Insulator A (NI A)

e B: Normal Insulator B (NI B)

e S: Quantum Spin Hall (QSH)

e H: Quantum Anomalous Hall (QAH)
o +: Case mg =17 meV

e -: Case mg = —17 meV

For example, ASA- denotes a configuration where the central region is in phase S, while both
sides are in phase A along y due to the effect of the potential barriers, and — indicates the case
mo = —17 meV. Similarly, 4+ corresponds to mo = 17 meV, as can be seen in figure [I1]

A 5 [ A |

Figure 11: Example schematic for notation ASA: each box represents a spatial region along y, with letters
indicating the phase in the left, middle, and right segments, respectively. The signs + specify the value of my.

We will maintain 22m; = 0.15-1072 meV um? and ha = 0.2 meV um for the rest of the section.

3.6.1 Abrupt potential barriers (smoothing parameter 0)

In this section we analyze the case of abrupt potential barriers. The potential displays a sharp
discontinuity between the central and lateral regions and reaches its maximum value abruptly at
the boundaries. This modification of the potential profile changes the coexistence regions and
therefore leads to qualitatively different edge-state phenomenology compared with the smooth-
barrier case that we will see later. Below we describe the main features found for positive and
negative mg and for several central-region lengths L,, referring to the corresponding band-structure
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Figure 13: Gap closure at k = 0 as A4 increases (i.e. Ay, = Ay, while Ay, = 0).

>
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Figure 12: Potential profile for the abrupt case.

and probability-density panels. To shorten repeated expressions and avoid subscript errors we define
for the non-uniform potential Vy(y),

AAEAAIZAA2, AA3:O,

where Ay = Ay, = Ay, refers to the maximum values of the potential while Ay, = 0 meV
refers to the central region of length L,. The form of the abrupt potential profile can be seen
in figure Throughout the text and in figure captions we write e.g. ‘A4 = 25 meV* to mean
LAAI = AA2 =25 meV, AAs =0

For mg > 0 we focus on the coexistence between the H and A phases. For the parameters
Ap =20 meV, my = +17 meV and L, = 0.75 pm, the system evolves from the HHH+ phase (case
A4 =0 meV) into the AHA+ phase (case A4 = 50,100 meV) as the barrier height is increased. In
the AHA+ regime both the slope of the “H” branches and the separation between bulk bands vary
only slowly with the barrier height, reflecting the limited impact of the electrostatic profile on the
bulk spectrum. This behavior is illustrated in Figs. [[3] and

E vs Ap, = D, (caso k=0)

6 s s

| b+ AHA+

E (meV)

0 25 50 7 100 125 150 175 200
Da (MeV)

(a) Energy gap closing at k = 0 as A4 increases

Ap = 20 meV, abrupt potential barriers.

E(k) vs k E(k) vs k Elk) vs k

Case mg = +17 meV,

E(K) (mev)

v)

E(K) (mey
E(K) (mev)

Figure 14: Evolution of the band structure for increasing Ay (with Ay, = 0). Case my = +17 meV,

K (um=) K (um=) K (um=)

(a) Ag =0 meV (b) As =50 meV (c) Aa =100 meV

Ap = 20 meV, abrupt potential barriers.

We now turn to mg < 0. We first discuss the family of results obtained for A = 20 meV and
m, = —17 meV, comparing them with the smooth-barrier case and exploring the effect of reducing

10
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the central-region length L, (stronger hybridization between central and lateral regions is expected
for smaller L,).

For Ap = 20 meV, mg = —17 meV and L, = 0.75 um the system starts in the HHH- phase
(A4 = 0 meV). Increasing the barrier height drives a transition to BHB- (A4 = 25,50 meV), where
we identify eight states localized at the slab—vacuum boundaries (such as the two first states from
figure [16)) and four states localized at the potential barriers (such as the three other states from
figure . In this sequence the slope of the “B” branches varies with the potential due to the change
of the Dirac cone as we explained before, while the “H” branches remain essentially unchanged.
Further increase of the barrier height leads to an AHA- phase (A4 = 100,500 meV) with four states
localized at the barriers (corresponding to H-type states). These features are displayed in Figs.

[I6 and 07

E vs A, = Ma, (caso k= 0)
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Figure 15: Energy gap closing at k = 0 as A 4 increases (with A4, = 0). Case mg = —17 meV, Ag = 20 meV,
abrupt potential barriers, L, = 0.75 pm.
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Figure 16: Evolution of the band structure for increasing Ay (with Ay, = 0). Case my = —17 meV,

Ap =20 meV, abrupt potential barriers, L, = 0.75 pm.
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Figure 17: Probability-density distributions along y for selected states under the non-uniform potential (A 4,
with Ay, = 0). Case mg = —17 meV, Ap = 20 meV, abrupt potential barriers, L, = 0.75 pm.

Reducing the central-box length to L, = 0.60 um enhances interaction effects between states.
Starting again from HHH- (A4 = 0 meV) and increasing the barrier height we reach BHB- (A4 =
25,50 meV), with eight states pinned at the box edges. Of the remaining four states, two are
localized at the potential barriers while two occupy intermediate positions; this intermediate local-
ization is likely a consequence of hybridization between box-edge and barrier-edge states (notably
visible at A4 = 25 meV). At A4 = 50 meV clear anticrossings occur: the spectrum displays eight
box-edge states and four states localized between barriers and box edges. With further increase of
the barrier height the system evolves into the AHA- phase (A4 = 100 meV). See Figs. and
20
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Figure 18: Energy gap closing at k = 0 as A 4 increases (with A4, = 0). Case mg = —17 meV, Ag = 20 meV,
abrupt potential barriers, L, = 0.60 pm.
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Figure 19: Evolution of the band structure for increasing Ay (with Ay, = 0). Case my = —17 meV,
Ap = 20 meV, abrupt potential barriers, L, = 0.60 pm.
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Figure 20: Probability-density distributions along y for selected states under the non-uniform potential (A 4,
with Ag, = 0). Case mo = —17 meV, Ag = 20 meV, abrupt potential barriers, L, = 0.60 pm.

For L, = 0.56 pm hybridization and anticrossing effects become even more pronounced. From
the initial HHH- configuration (A4 = 0 meV) the system transitions to BHB- already at Ay =
25 meV, with a clear anticrossing pattern: the spectrum can be decomposed into four box-edge
states, four barrier-edge states and four hybridized (intermediate) states (such as the first state
from ﬁgure. The same qualitative configuration persists at A 4 = 50 meV. At sufficiently large
barrier height (for instance A4 = 100 meV) the system reaches the AHA- phase. Corresponding
band structures and representative state localizations are shown in Figs. and

E vs Da, = Aa, (caso k= 0)

- _— —
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Figure 21: Gap closure at k = 0 as Ay4 increases (with Ag, = 0). Case mg = —17 meV, Ap = 20 meV,
abrupt potential barriers, L, = 0.56 pm.

13



Pt AFISC % Proceedings of the SURFQIFISC (2025)

E(k) vs k E(k) vs k

Elk) (meV)
Elk) (meV)

0 ¢
k (um=1) K (um=1)

(a) Aa =0 meV (b) Ag =25 meV

E(k) vs k E(k) vs k

E(k) (meV)
E(k) (meV)

o °
k (um=2) k (um=2)

(¢) Ax =50 meV (d) Ag =100 meV
Figure 22: Evolution of the band structure for increasing Ay (with Ay, = 0). Case my = —17 meV,

Ap = 20 meV, abrupt potential barriers, L, = 0.56 pm.
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Figure 23: Probability-density distributions along y for selected states under the non-uniform potential (A 4,
with Ay, = 0). Case mg = —17 meV, Ap = 20 meV, abrupt potential barriers, L, = 0.56 pm.

For L, = 0.52 um we again observe the same sequence: from HHH- to BHB- already at moderate
barrier height. At As = 25 meV there are four states at the box edge; at A4 = 50 meV one of
the “B” branches displays a very small slope and the bulk bands develop noticeable curvature. We
also detect four intermediate (hybridized) states between box and barrier edges in addition to four
box-edge states. At Ay = 100 meV the system enters the AHA- regime. See Figs. 24] 25 and [26] for
details.

E vs A, = Dy, (caso k=0)

E (meV)

o 25 50 75 100 125 150 175 200
D4 (meV)

Figure 24: Energy-gap behaviour at £k = 0 as A4 increases (with Ay, = 0). Case mg = —17 meV, Ap =
20 meV, abrupt potential barriers, L, = 0.52 pm.
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Figure 25: Evolution of the band structure for increasing Ay (with Ay, = 0). Case my = —17 meV,
Ap = 20 meV, abrupt potential barriers, L, = 0.52 pm.
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Figure 26: Probability-density distributions along y for selected states under the non-uniform potential (A 4,
with Ay, = 0). Case mg = —17 meV, Ap = 20 meV, abrupt potential barriers, L, = 0.52 pm.

Finally, we consider the quantum-spin-Hall (QSH) region obtained for Ap = 0 meV and
mo < 0. In our implementation we introduced a parameter RIC that switches the Rashba-like
term «[pyoy — pyoz] A, on (RIC=1.0) or off (RIC=0.0). Keeping RIC=1.0 reproduces the same
Hamiltonian used above, while RIC=0.0 may remove more components than intended and thus
produce an anomalous phenomenology.

When Ap =0 meV, mg = —17 meV, L, = 0.75 pym and RIC=0.0 the phenomenology appears
unusual (possibly because some spin—orbit terms were effectively suppressed); representative band
and state panels are shown in Figs. and
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Figure 27: Energy gap closing at k = 0 as A4 increases (with A4, = 0). Case mg = —17 meV, Ap =0 meV,
abrupt potential barriers, L, = 0.75 pym, RIC=0.0.
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Figure 28: Evolution of the band structure for increasing Ay (with Ay, = 0). Case my = —17 meV,
Ap = 0 meV, abrupt potential barriers, L, = 0.75 pm, RIC=0.0.
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Figure 29: Probability-density distributions along y for selected states under the non-uniform potential (A 4,
with Ag, = 0). Case mo = —17 meV, Ag = 0 meV, abrupt potential barriers, L, = 0.75 pm, RIC=0.0.

When Ag = 0 meV, mg = —17meV, L, = 0.75 um and RIC=1.0 the system shows the expected
QSH-like phenomenology. The system initially resides in a phase we label SSS- (A4 = 0 meV);
states appear in pairs localized at the box boundaries (eight states in total). As the barrier height
increases (for example at Ay = 25 meV) the slope of the “S” branches decreases and the spectrum
develops paired states peaking between barriers and box edges as well as paired states with two
peaks. At Ay = 50 meV the “S”-branch slope is further reduced and bulk-band separations
change noticeably. When the barrier height exceeds the critical potential V., ~ 67.33 meV, the
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system undergoes a transition to an ASA- configuration; at Ay =

100 meV the ASA- phase is

characterized by eight paired states at the barrier edges associated to the central S region. These
features are illustrated in Figs. and

Figure 30: Energy gap closing at k = 0 as A4 increases (with Ay, =

E vs Ap, = Mg, (caso k= 0)
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Figure 31: Evolution of the band structure for increasing Ay (with Ay,
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Ap = 0 meV, abrupt potential barriers, L, = 0.75 pm, RIC=1.0.

17

0).

Case my

0). Case mp = —17 meV, Ag = 0 meV,

—17 meV,



EXCELENCIA
MARIA

DE MAEZTU

» 20232027

O v

csic

IFISC

Proceedings of the SURFQIFISC (2025)

||? vs y (caso k =10, estado 8)

||? vs y (caso k =10, estado 9)

00
¥ (um)

(a) State 8, Ay = 25 meV

||? vs y (caso k =10, estado 25)

00
¥ (um)

(b) State 9, Ay = 25 meV

|@|? vs y (caso k =10, estado 1)

lvl?

lvl?

oo
¥ (um)

(c) State 25, Ay = 25 meV

L

(d) State 1, Aa =100 meV

o4 o1 00

¥ (um)

Figure 32: Probability-density distributions along y for selected states under the non-uniform potential (A 4,
with Ay, =0). Case mg = —17 meV, Ap = 0 meV, abrupt potential barriers, L, = 0.75 meV, RIC=1.0.

We also explored the effect of increasing the box length to L, = 1.5 pm with RIC=1.0 in order
to mitigate finite-size effects and better characterize transitions between QSH and NI A phases.
For this larger box we performed sweeps in Ap at fixed Ay = 25 meV and observed that a small
sweep of Ap between 0 and 1 meV does not produce a clear transition at £ = 0. A larger sweep in
Ap (0 to 30 meV) was used to track band closures at k = 0 for the SSS- to ASA- transition. With
Ap = 0 meV we observe eight paired edge states at the box boundaries; states above these (starting
around state 9) are bulk-like and confined by the barriers, and they appear in pairs. When Ap is
increased to 0.1 meV (close to the B boundary) these bulk-confined states cease to appear in pairs
and become single; the same behavior is observed for Ag = 1 meV. The gap and band-structure
sweeps and selected state profiles are presented in Figs. and

E vs A (caso k=0)

E (meV)

00 02 04 06

Ag (meV)

08 10

(a) Energy gap behaviour for K = 0 as Ap varies be-
tween 0 and 1 (no clear closing observed)

E vs Ag (caso k=0)

E (meV)

0 5 10 20

15
Ag (meV)

(b) Energy gap closing for k = 0 as Ap varies between
0 and 30 (closure relevant for SSS-—ASA-)

Figure 33: Energy-gap evolution at k = 0 as Ap varies. Case mg = —17 meV, abrupt potential barriers,

Ly, =1.5 ym, RIC=1.0.
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Figure 34: Band-structure evolution for fixed Ay = 25 meV (with A4, = 0) as Ap increases. Case mg =
—17 meV, abrupt potential barriers, L, = 1.5 pm, RIC=1.0.
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Figure 35: Probability-density distributions along y for selected states under different values of Ag. Case
mo = —17 meV, variable A4 = 25, abrupt potential barriers, L, = 1.5 ym, RIC=1.0.

3.6.2 Smoothing parameter 0.0125 ym

In this subsection we study the formation of edge states when the applied potential barriers are
smooth (smoothing parameter = 0.0125 pum). In this configuration the potential reaches its maxi-
mum (which we denote as before A 4) at the lateral boundaries and decays smoothly toward zero
(Aa, = 0) in the central region, which produces coexistence regions between central and lateral
domains. In figure [40] can be seen the shape of the smooth potential. The principal difference with
the abrupt-barrier case appears in the edge-state spectrum: smooth barriers may support in-gap
edge states inside the coexistence region, while abrupt barriers typically do not.

We first consider mg > 0 with Ap > mg to analyze how different barrier heights in the central
and lateral regions favor the coexistence of distinct phases. For Ag = 20 meV, mg = +17 meV
and L, = 0.75 ym, the system evolves from the HHH+ phase (A4 = 0 meV) into the AHA+ phase
(A4 = 50,100 meV) as the smooth potential increases. At the transition point the slope of the
“H” branches and the bulk bands change; once inside the AHA+ regime the bulk spectrum becomes
essentially insensitive to further increases of the potential height. This behaviour is shown in

Fig. [36]
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Figure 36: Evolution of the bulk band structure as a function of the non-uniform electrostatic potential
expressed as Ay (with Ay, = 0). Parameters: mg = +17 meV, Ap = 20 meV, smooth potential barriers.

Next we consider mg > 0 with Ap extremely small to probe coexistence within the A family.
For Ap = 0.001 meV, mg = +17 meV and L, = 0.75 um the system remains in the AAA+ phase
irrespective of the barrier height; representative band structures for Ay = 0 meV and Ay =
100 meV are shown in Fig.
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: S
K (um=1) K (um-1)

(a) Aa =0 meV (b) As =100 meV

Figure 37: Bulk band structure for Agp = 0.001 meV, mg = +17 meV and smooth potential barriers. The
system remains in the AAA+ phase for both (a) A4 = 0 meV and (b) Ay = 100 meV.

We now turn to mo < 0 with Agp = 20 meV and L, = 0.75 um to study the sequence of
transitions produced by the smooth potential and the coexistence of A, H and B phases. As Ay4
increases the system moves from HHH- (A4 = 0 meV) to BHB- (A4 = 50 meV): the “H” branches
retain an approximately constant slope while the “B” branches gradually change with the potential.
In the BHB- regime (for example at A4 = 50 meV) we observe eight states associated with phase
B localized near the slab boundaries and four states associated with phase H localized near the
potential barriers. Further increase of A4 drives the system into an AHA- configuration (A4 = 200
meV) where anticrossings appear; barrier-localized states in this regime are influenced by finite-size
hybridization, as evidenced by band anticrossings and also the influence of the smooth potential.
The gap closing and selected band/state panels are shown in Figs. and
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Figure 38: Energy-gap closing at k = 0 as A 4 increases (with A4, = 0). Case mg = —17 meV, Ap = 20 meV,
smooth potential barriers.
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Figure 39: Evolution of the band structure for increasing A4 (with Ay, = 0). Case my = —17 meV,
Ap = 20 meV, smooth potential barriers.
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Figure 40: Probability-density distributions along y for selected states under smooth potential barriers. Case
mo = —17 meV, Ag = 20 meV.

4 Conclusions

The present study suggests that electrostatic gates can be effectively employed to induce con-
finement in the system, providing a versatile and tunable mechanism to manipulate its electronic
properties. By carefully adjusting the electrostatic potential, we can drive phase transitions be-
tween the Normal Insulator B (NI B), Normal Insulator A (NI A), Quantum Anomalous Hall
(QAH), and Quantum Spin Hall (QSH) phases, thus enabling precise control over the system’s
topological behavior.

In particular, for the NI B phase, the slope of the Dirac cones exhibits a systematic dependence
on the applied electrostatic potential both in the case of slab with uniform gating as in non uniform
gating, offering an additional pathway to engineer the band structure and its dispersion relations,
while in the other phases this behavior is not so significant. In non uniform gating configurations,
distinct topological phases can coexist within the same device. Owing to finite-size effects, these
phases may interact, giving rise to phenomena such as anticrossing or hybridization between edge
states when the characteristic dimensions are reduced. The use of abrupt or smooth potential barri-
ers has different effects on these phenomena. These findings highlight the potential of electrostatic
engineering as a robust approach for tailoring both bulk and edge properties in topological systems.

On the other hand, it has been observed that in the cases of the NI B and QSH phases, the
edge states remain confined to the potential boundaries, whereas the edge states corresponding to
QAH tend to move towards the boundaries of the box, which seems to indicate that they are not
affected by the application of the potential.

Suggestions for future researches: a) role of asymmetric potential gatings, b) edge gating and
superconductivity (chiral Majorana modes). Ultimately, these advances may pave the way toward
novel device architectures that harness the interplay of confinement, topology, and superconduc-
tivity for next-generation quantum technologies.
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Appendix

A Analytical determination of phase boundaries
We consider the effective Hamiltonian
H = [mo+mi(k2 + k)| A + a(keoy — kyoo)X: + Apo. + VA, (A1)

where from now on the electrostatic potential is assumed uniform, Vy(y) = V. To determine the
phase boundaries we solve the condition

det H (k) = 0, (A.2)

following the approach of Wang and Zhang [24].

A.1 Block structure and reduction to a 2 x 2 problem

Working in the A, basis (A, = diag(1l,—1), A\, off-diagonal), the Hamiltonian can be written in
2 x 2 block form (each block acts on spin space):

(D) + Apo, m(k) Iy
H(k) = ( mk)ly  —D(K) 4 Apo ) (A-3)
where we defined
m(k) =my —|— mle, ]f2 = ki —+ ]{i;, (A4)
and
D)=V + a(kyoy — kyoy). (A.5)

For this block matrix, with the off-diagonal blocks proportional to the 2 x 2 identity, the determinant
condition reduces to
det[(D + Apo.)(—D + Apa.) — m(k)2|]2] = 0. (A.6)

A.2 Explicit scalar equation

Using Pauli matrix identities, o,0; = 6;;1 + i€;1,0%, and (kg0 — kyaz)2 = k21, the determinant
condition becomes a scalar equation for k:

2
(A2B — (k) - V2 - a2k2) — 40?K2(V2 — AZ) =0, (A7)

For given parameters (mg, m1, o, Ap, V), real non-negative solutions k? > 0 of Eq. (A.7) indicate
bulk gap closings and hence phase boundaries.

A.3 TI'-point (k= 0) boundaries
Setting £ = 0 in Eq. (A.7)) yields

(AL —m2 -V =0 — |AL=m2+V?| (A.8)

This closed-form relation links the Zeeman term Ap, the uniform potential V', and the mass
parameter myg. It describes topological transitions at the Brillouin-zone center.

A.4 Finite-k band closings
Because m(k) = mg + m1k?, Eq. (A.7) becomes a quartic equation in z = k%
[A% — (mo +miz)? = V? — a2x]2 —4c”z(V? = AR) =0. (A.9)

Real, non-negative roots x > 0 correspond to finite-momentum gap closings (ring- or off-T" transi-
tions), giving additional phase boundaries beyond the I'-point condition.
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A.5 Application to my =17 and my = —17

e The I'-point condition A% = m2 + V2 provides a quick estimate of the first transition.
e If AZ < V2 or the quartic has positive z solutions, the gap closing occurs at finite k.

e For mg = 17 and my = —17, Eq. (A.7)) applies in both cases; differences arise from how the
quartic roots satisfy the condition as V and Ap vary.

A.6 Remarks

1. Eq. (A.7) is the working analytic condition for phase boundaries in the uniform potential case.

2. Phase diagrams are usually obtained by: (i) evaluating the I'-point condition analytically,
and (ii) solving the quartic in # = k% numerically to find finite-k closings.

3. This methodology follows Wang and Zhang [24] for related models of tunable magnetism in
magnetic topological insulators.

B Detailed Derivation of the Dirac Cone Slope Dependence

We start from the eigenvalues of the Hamiltonian, given by:

B = { = \J(mo + (k2 + k)yma)? + M2 + V2 + (k2 + k2)a?

—2/M2 [(mo + (K2 + k2)ma)? + V2] + (k2 + k2)V202,

\/(mo + (k2 + k2)m1)? + M2+ V2 + (k2 + k2)o?

—2/M2 [(mo + (K2 + k2)ma)? + V2] + (k2 + k2)V 202,

- \/(mo + (k2 + k2)m1)? + M2 + V2 + (k2 + k2)o?

+ 2\/M3 [(mo + (k2 4 k2)m1)? + V2] + (k2 + k2)V2a?,

\/(mo + (k2 + k2)m1)? + M2 4+ V2 + (k2 4 k2)a?

24/ M2 [(mo + (k2 + k2)ma)? + V2] + (k2 + K2)V 202},

The critical potential V, separating the NI B and NI A phases is obtained from the boundary
condition:

Vo=, /M2 - 002 (B.2)

Fixing k, = 0, the momentum %, at the transition satisfies:

[V2 = M2

We define the smallest positive eigenenergy along k, = 0 as:

E,(ky) = \/(mo +k2my)2 + M2 + V2 4 k2a2 — 24/ M2 [(mo + k2m,)2 + V2] + k2V2a2.  (B.4)
The slope m of the Dirac cone is then defined as:
E
m = M. (B.5)
ks

Substituting k, from the critical momentum condition and simplifying, we obtain the explicit
dependence of the slope on the applied potential:

\/2V2—2\/V4+M2 g - MMV [ g oMy )

—M2+V?
o2

This analytical expression quantitatively captures the non-linear variation of the Dirac cone
slope with the electrostatic potential, explicitly showing its dependence on the system parameters
M., mgo, m1, and a.

m(V) (B.6)
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Abstract

It has been observed that the vegetation of an ecosystem exhibits intermediate heterogeneous
states between the homogeneous occupation of a meadow and its complete depopulation. These
patterns naturally arise as a result of the influence of environmental conditions on the plants and
the interactions of the individuals with their adjacent neighbours. Identifying these inhomogeneities
and the conditions under which they occur is key to assessing vegetation health, enabling us to
identify risk factors for the ecosystem. Spatial heterogeneities have been observed both in drylands
and underseas, with this work focusing on Posidonia oceanica in the Mediterranean Sea. The aim
of this study is to build upon the work developed by Moreno-Spiegelberg et al. and analyse the
influence of long-range spatial interactions in a previously studied model that did not account for
the diffusion mechanism.

1 Introduction

1.1 Spatiotemporal dynamics in plant population

When the conditions in an ecosystem are extremely favourable for the growth of a particular plant
species, it will spread across the entire area until it homogeneously covers the surface. However, if
these conditions are affected by new stress factors that compromise the health of the vegetation, the
meadow does not necessarily evolve directly toward a complete depopulation. Instead, it is common
to observe intermediate states of heterogeneous density that can enhance ecosystem resilience [IJ.

Environmental conditions such as temperature, nutrient availability, or soil composition, among
others, can generate spatial heterogeneity, but these effects will not exhibit a typical length scale nor
represent a mechanism of resilience. On the contrary, spatial interactions, such as those mediated
by diffusion mechanisms, lead to observable inhomogeneous structures with a typical length scale
and higher tolerance to environmental stressors.

Spatial self-organization enables complex systems to exhibit multistability of coexistence states.
Therefore, the formation of patterns can aid ecosystems in avoiding tipping points, thereby enhanc-
ing resilience. Perturbations can be confined to a particular state of the system, preventing the
disturbance from propagating throughout the system. Spatial patterns damp the effects of external
changes, reducing catastrophic transitions and promoting more gradual responses [2]. Although
these patterns have been extensively studied in terrestrial ecosystems, such as spiral vegetation
patterns in Chilean high-altitude wetlands [3] or fairy circles in the grassy deserts of Namibia [4]
and Australia [5], recent studies have expanded the research to marine environments, as is the case
of Posidonia oceanica.

P. oceanica is the dominant endemic seagrass in the Mediterranean Sea, being a crucial hot spot
of biodiversity [6]. Furthermore, it stabilizes the sediment, protects the coastline from erosion, and
captures large amounts of CO,, releasing O in the process, which is vital for marine biodiversity
[6]. Nevertheless, the anthropogenic pressure on the Mediterranean coastal zone has resulted in a
rise of stressors, which have harmed the vegetation’s health and gradually reduced the population
of P. oceanica over the years [6]. Therefore, monitoring the behaviour of this species is crucial
to safeguard the Mediterranean ecosystem. Previous studies have developed models explaining
various phenomena observed in P. oceanica, such as the formation of fairy circles [7], the toxic
effect of sulfide [§], and excitability mechanisms that enhance local vegetation resilience [I]. The
aim of this work is to extend the model developed by Moreno-Spiegelberg et al. [I] by introducing a
diffusive term to quantify long-range spatial interactions. In addition to reproducing the behaviours
already analysed in the previous model, such as bistability and temporal oscillations, this study
will investigate the conditions under which static Turing patterns can emerge.
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Figure 1: Vegetation patterns of P. oceanica and C. nodosa in a seagrass meadow in Pollenga bay
(Mallorca Island, Western Mediterranean). Side-scan image from LIFE Posidonia [7].

1.2 Theory of bifurcations

Complex systems can exhibit multiple distinct behaviours, displaying one or another depending on
the state of the system, which is determined by the values of the system parameters. That is why
the concept of bifurcation is key. A bifurcation is defined as a sudden and abrupt change (though
not mathematically discontinuous) in the behaviour of a system [9]. To determine the total number
of possible behaviours exhibited by the model, as well as their nature, it is necessary to carry out a
thorough analysis to identify all the bifurcations present in the system. When the entire dynamics
of a system are governed by only one parameter, the bifurcation is characterized by a specific value
called the critical point. Otherwise, if the system depends on several parameters, as is the case in
this work, each bifurcation of the model is characterized by a certain relation between the different
parameters.

In order to understand the types of bifurcations, the concept of fixed point must be introduced.
Let f(x,y,t) be a function that describes the temporal evolution of a field defined over a given
surface. A fixed point (z*,y*,t*) of f(z,y,t) is defined by the condition f(z*,y*,t*) = 0. The
location of the fixed points is a fundamental aspect of a dynamic system because nonlinear systems
are usually studied by analysing small perturbations around these points. The fixed points are
mainly classified as stable or unstable according to whether flow lines of the phase diagram converge
or diverge at the fixed point, respectively. The nature of a fixed point can be known by the
eigenvalues of the resulting Jacobian after the linearization around small perturbations.

a) X b) X stable c) X

unstable ~ . _
i stable

stable unstable stable

stable
stable ~

unstable *

Figure 2: Bifurcations diagrams for the three principal families, in solid line the stable fixed points
and in dashed line the unstable fixed points. a) Saddle-node bifurcation. b) Transcritical bifurcation.
¢) Supercritical pitchfork bifurcation. Picture adapted from [10].

The three main families of bifurcations are the saddle-node, the pitchfork, and the transcritical
bifurcation [10]. However, this work also involves Hopf and Turing bifurcations. The saddle-node
bifurcation is the basic mechanism by which fixed points are created and destroyed in pairs [10].
The pitchfork bifurcation, common in systems that have symmetry, is defined by both the change
of stability of a fixed point and the creation of two new symmetric fixed points [I0]. It can be
supercritical (if the new fixed points are stable) or subcritical (unstable). On the other hand,
if a limit cycle, a closed and periodic orbit in the phase diagram [9], emerges from the stable
equilibrium point, the system undergoes a supercritical Hopf bifurcation. At this point, the system
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begins to oscillate periodically with time. Mathematically, Hopf bifurcation is a consequence of the
change of sign from negative to positive of the real part of a complex eigenvalue of the system [10].
The transcritical bifurcation is characterized by the collision of two fixed points, exchanging their
stabilities [10].

In addition, we will focus on the Turing bifurcation of the model. In reaction-diffusion models,
where the substances spread across the system via a diffusion mechanism, static spatially extended
patterns can appear independently of the previous state as a consequence of the self-regulating
nature of the complex system [I1], [12]. These heterogeneous distributions of the species are called
Turing patterns. The main objective of this work is to determine the conditions under which
these patterns can emerge, obtaining relationships between the parameters of the system that will
characterize the Turing bifurcation.

2 Theoretical model

The theoretical model used to explain the growth and death of a plant located at a certain point of
the meadow combines the effect of the feedback of contiguous vegetation and the toxin accumula-
tion. The interaction among different individuals within the meadow can be negative, for example
if they are competing for resources, or positive, as in cases where the plants cluster together to
withstand external phenomena like intense marine currents. In addition, we take into account the
effect of sulfides on the environment. The presence of this toxic substance is inevitable because
this molecule is a byproduct of the metabolism of the P. oceanica [I]. There is evidence of sul-
fide as a mediator of spatial interactions leading to seagrass self-organization as a result of the
negative allelopathic relation established between different parts of the meadow [I]. The model is
constituted by a system of two partial differential equations that describes the evolution of two
fields: the density of the plant population P(z,y,t) and the concentration of toxins in the sediment

T(x,y,t) [

0P = (~w+aP — P> ~T)P+V?P (2.1a)
70T = P —T + DyV°T (2.1b)

Here, the parameters (w, o, 7, Dr) are defined as follows: w is the net mortality rate. It represents
the balance between growth and mortality in the absence of other plants or toxins and is influenced
by environmental factors. « is the ratio between positive and negative feedback, evaluating the
plant’s growth enhancement in response to increased local density. 7 is the timescale for toxin
accumulation and decay, reflecting the relative speed at which toxins are produced by plants and
removed from the environment as compared to the plant growth timescale. Lastly, Dy is the
ratio between the diffusion coefficient of the toxin and the diffusion coefficient of the plant. These
coefficients can be related to experimental data reversing the previous normalization detailed in
the SI Appendiz of reference [I]. On the other hand, V2 is the Laplacian operator that describes
the spatial diffusion of both plant density and toxin concentration in sediment.
Eqgs. can be compacted with the following vector form

o (0)-o(0)

J_(—w+aP—P2—|—V2 -P )

characterized by the Jacobian

1/7 (—1+ DyV2)/7 (23)

3 Linear stability analysis

3.1 Homogeneous steady states

In this section, we derive the homogeneous steady states of the model described by Eqgs.
Hence, we impose that temporal and spatial derivatives of Eqs. are zero. Solving the resulting
conditions, we reach three fixed points (P*): the trivial bare state Py = 0 and the populated states
P, given by

(a—1)°

(a=1) —w (3.1)

Pe="— 4
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Feedback parameter (a)

It should be noted that, as the density of plant population must be a real value, Eqs. are only
2

valid under the condition (a—41) > w, marking a saddle-node bifurcation as we will describe in

the following sections. In addition, it is important to mention that for homogeneous steady states,

both fields exhibit the same behaviour

P* =T (3.2)

As we can expect, for the stable fixed point P} (see Fig. ) the plant population is high where
the mortality is negative and positive feedback is elevated. Also, it can be seen that, when the
mortality is positive or nearly zero, a minimum vegetation density to cross a threshold is needed
for the plant growth. The bifurcation diagram (see Fig. ) shows how the saddle-node bifurcation
marks the limit of a region of bistability, where the solutions P, and P, coexist as stable fixed
points. Thus, the system can evolve into either of the two depending on the initial state. However,
it should be pointed out that, although the bifurcation diagram Fig. [3p is useful because it allows
us to easily understand the bistable nature of the system, it is a simplified version because it is
plotted imposing 7 = 0, modelling a situation with direct negative feedback. Therefore, it does
not take into account other behaviours, such as temporal oscillations or spatial patterns, which can
affect the stability of the homogeneous solutions.
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Figure 3: a) Heat map of the intensity of the stable fixed point P; in the phase diagram in the
(w,a) plane. The intensity of the plant density is painted in the scale from white (bare) to dark
green (populated) and the red line represents the saddle-node bifurcation. b) Bifurcation diagram
of Egs. Only solutions of the system without space (temporal system) are shown for o = 1.6
and 7 = 0, corresponding to the case of a system with direct negative feedback. Solid (dashed) lines
represent stable (unstable) solutions. Labelled dots indicate bifurcation points for saddle-node (SIN)
and transcritical (Trans) bifurcations, delimiting the region of bistability, where both P, and Py
coexist as stable solutions. The arrows indicate the flow lines of the diagram, showing toward which
fixed point the system would evolve from a given state.

3.2 Linearization and temporal evolution

In order to understand the dynamics of the systems, we analyse the behaviour of the fields via
linearization around the steady states. That is, we study small perturbations (P,,T},) with the
form X, e~ =7+ ay) around the fixed points (P*,T*). Hence, if we introduce the expressions
P(t) = P*+ P,(t) and T(t) = T* + T,(¢) in Eq. and then neglecting higher-order perturbing
terms O(Pg, T]D2 ,PpyTp,...), the Jacobian that describes the evolution of the perturbations around
the bare solution Sy is

2
_(—w—q 0
T80 = ( 1/7 —(1+q2DT)/T> (33)
where ¢% = ¢2 + qg. For the nontrivial steady states S, the Jacobian is
Jo. = (aPy - P%) —¢° —Py (3.4)
5+ 17 ~(1+¢*Dr)/7 '
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3.3 Local bifurcation analysis

3.3.1 Eigenvalues of the system

In order to study the stability of the homogeneous steady states, we must diagonalize the Jacobians
and evaluate the resulting eigenvalues. We focus the study on the populated P+ solution; thus, the
eigenvalues of the Jacobian described by the Eq. satisfy the condition:

A2 -\ [(—q2 + aPy — 2Pi) -1+ q2DT)/7'] — [(1 + qQDT)/7'~ (—q2 + aPy — QPi) — Pi/T] =0

(3.5)

The expression can be simplified by defining the functions
¢=—¢*+aPy — 2P} (3.6a)
(=-(1+¢Dp)/7 (3.6b)

so Eq. 3.5] is rewritten as
N AE+Q+ (€ C+P/T)=0 (3.7)
Solving the quadratic equation, the eigenvalues are
+ + ()?

po= L SO e p (33)

3.3.2 Bifurcations

Analysing the dispersion relation, we found the appearance conditions for several bifurcations. As
we mentioned before, the plant density must be a real value, so a saddle-node bifurcation appears
when
(a—1)°
4
The bifurcation is of the type saddle-node because, at this point, the solutions P, and P_ become
equal due to the root term vanishes and both fixed points are annihilated, as P+ do not exist for
further values of mortality w.
On the other hand, a Hopf bifurcation is found by imposing Re(Ay) = 0 (with Im(A1) # 0).
If we look at the quadratic expression of Eq. with form A2 + BA + C = 0, the condition is
equivalent to impose B = 0. That is

WSN = (3.9)

£+¢=0 (3.10)

Introducing the definitions of the functions and organizing the terms, the condition of the Hopf
Bifurcation for the mode ¢ is

(=¢* +aPy —2P}) — (1+¢*Dr)/T7=0 (3.11)
which is only valid for P solution. For the case ¢ = 0, the condition is simplified as
aPy —2P} —77' =0 (3.12)

bringing back the results of previous works [IJ.
Lastly, the Turing bifurcation is defined by a certain value ¢. characterized by the conditions

% \ = 0 and A(¢g.) = 0 (see Fig. . In terms of the quadratic expression of Eq. these
conditions are equivalent to %‘ = 0. Applying this relation, ¢, is defined by
qc
2 2 1
q: = (aP+ —2P7 — ) (3.13)
Dr

In order to write the expression as a function of «, we introduce the Eq. in the quadratic
expression, reaching the condition of C'(g.) = 0. Ordering the terms, this condition is written as

1
0 =2Ps 5o (—1 + \/4PiDT> (3.14)

It should be noted that, as g. must be real, ¢g> > 0 must also be satisfied. Thus, if we combine
Eq. and Eq. under this condition, the Turing patterns only appear if the following condition

also occurs 1
Dp > — 3.15
T>p ( )
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Figure 4: Eigenvalues of the Jacobian Jg, calculated with the dispersion relation Eq. for a con-
stituent point of the Turing bifurcation. The red dot marks the g..

This expression implies that there must be a minimum value of the coefficient Dy for the
pattern to form, but as the population P+ increases, this minimum value becomes less restrictive.
For regions with small values of P, the diffusion coefficient of the toxin must be much larger than

the one for plant density, due to D7 being normalized as Dy = %

3.3.3 Codimension-n bifurcations

The point where Hopf and saddle-node bifurcations collide in the (w, ) plane is called the Takens-
Bogdanov codimension-2 bifurcation. It is determined by imposing both conditions, or equivalently,
by substituting Eq. into Eq. which yields the expression
5 -4
7 = 11¢Dy (3.16)
for the mode ¢ of perturbation. Simplifying for the mode ¢ = 0, the point is at the values (w, ) =
(72,2771 +1). Furthermore, a Takens-Bogdanov-Turing codimension-3 bifurcation is found if we
introduce Eq. into Eq. This point shows up at (w,a, D7) = (772,277 +1,7).

In what follows, except for the last section of results, we use a value of 7 = 6.25 (see Fig. a),
which corresponds to the dynamics observed in real meadows [I]. For illustrative purposes, we use
parameter values that simplify the analysis. Therefore, a value of Dy = 50 is used, although it is
possibly slightly overestimated.

For the last section, focused on the dynamics near the Takens-Bogdanov-Turing codimension-
3 bifurcation, we use a value of 7 = 20 (see Fig. b) in order to increase the space between the
different bifurcations and achieve distinguishable regions, despite the value being far from a realistic
physical condition.

4 Results and discussion

4.1 Numerical methods and initial conditions

For all the spatiotemporal simulations performed, the calculations were run using the pseudo-
spectral method described by Montagne et al. [I3]. The simulations were carried out using two
different types of initial conditions: the homogeneous stable solution P, and a Gaussian function.
Using P, as the initial condition, we examined the stability of this solution under certain system
conditions, verifying whether it remains stable, with the system persisting in the same state, or
becomes unstable, thereby exhibiting new behaviours. From an ecological perspective, this initial
condition can be understood as a populated meadow whose environment has moved to the state
described by the new system parameters. Consequently, the vegetation will evolve to adapt to this
new state, this last stage being what is observed in the simulation.

On the other hand, the Gaussian function generates a sharp population spike that is highly
concentrated at the centre of the simulated surface. This can be interpreted as bare soil where
a small patch of P. oceanica has been planted with the aim of repopulating a specific region.
In this way, we can analyse how such a cultivation would evolve, providing insight into which
regions would be more favourable for this hypothetical repopulation. Regardless of the initial
conditions, a background noise of Pyy;se = 0.001 was introduced to more accurately reproduce the
real environment and observe how unstable states evolve.
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Figure 5: Phase diagrams in the (w, «) plane for: a) 7 = 6.25 and b) 7 = 20. Saddle-node bifurcation
(blue line), Hopf bifurcation (green line) and several Turing bifurcations are represented. Painted in
light blue the zone limited by the saddle-node, where there is no solution for the plant density. The
dotted line represents the bifurcation for the P_ in the case of the Hopf, and the negative solution in
the case of the saddle-node. In addition, the points simulated are represented in two groups different
groups, with which the discussion of results will be organized. Lastly, the Takens-Bogdanov-Turing
codimension-3 bifurcation is represented with a yellow star.

4.2 Effect of rising mortality under constant feedback

In this section, we carried out a set of simulations over a range of mortality values, considering w as
the main control parameter while keeping the remaining parameters fixed at values of (o, Dr,7) =
(1.6,50,6.25). The points selected for this analysis correspond to the so-called group A, which can
be observed in the phase diagram Fig. [fla.

For point Al defined by w = —0.1 (see Fig. @, it was observed that the homogeneous steady
solution is stable and the system converges to Py regardless of the initial condition. This final state
is a result of the dispersion relation and the value of the eigenvalues, whose real part is negative for
all modes of perturbation ¢ (Re{A+(q)} <0 Vg), hence the disturbances are suppressed with time
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and the system remains in the fixed point. The simulation with the Gaussian functions exhibits a
short transient stage where the initial spike grows and eventually extends over the entire surface

(see Fig. [7).
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Figure 6: Results of the simulations performed at the point Al (w,«, Dp) = (—0.1,1.6,50) with
T = 6.25. a) Eigenvalues of the Jacobian Jg, calculated with the dispersion relation Eq. b) and
c¢) Spatiotemporal evolution of the pattern at half height (y = 128) for homogeneous steady solution
P, and Gaussian function as initial conditions, respectively.
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Figure 7: Transient state of the initial spike generated with the Gaussian function propagating across
the surface before covering the entire area.

For point A2 defined by w = —0.04 (see Fig. , the system initially adopts a homogeneous
density in space, which slowly starts exhibiting the characteristic periodic temporal oscillations of a
system that has undergone a Hopf bifurcation. This behaviour is expected looking at the dispersion
relation, where we can see that all the active modes (Re{A+(q)} > 0) are complex eigenvalues,
causing the imaginary part to generate the temporal oscillations. However, after a certain time,
the oscillations are damped and a negative hexagon pattern begins to form (see Fig. @a), creating
depopulated gaps. Although the final state of the Gaussian simulation is not exactly the same
pattern, the system was slowly evolving toward the final state observed with the homogeneous
initial condition. The formation of this pattern may be due to the subcritical nature of the Turing
bifurcation.
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Point A3, defined by w = 0 (see Fig. , is the first one to exhibit different final states according
to their initial condition. When Py is used as initial condition, the behaviour is similar to the
point A2, omitting the temporal oscillations and emerging directly the same negative hexagon
pattern shown by A2 (see Fig. Elb) The only difference between the two patterns is the size
of the gaps, which are wider for A3 than for A2, probably a result of its higher mortality. The
straightforward formation of these patterns reinforces the idea that the modes responsible for the
Turing patterns (Re{A+(q)} > 0 and Im{\4(¢)} = 0) govern the system’s dynamics, since in A3
no spatial oscillations are observed despite being predicted by the dispersion relation. On the other
hand, the simulation performed with the Gaussian function quickly converges to the bare state,
which is a stable fixed point at this mortality. The spike of population is not resilient enough and
the plant density tends toward zero indefinitely. Although this is not the behaviour predicted by
the dispersion relation, it should be recalled that the model was derived under the assumption of
small perturbations around the fixed point, which is Py = 0.6 for A3. Therefore, the predictions
may fail if the initial condition differs significantly from this state, as is the case here.
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Figure 8: Results of the simulations performed at the point A2 (w,a,Dr) = (—0.04,1.6,50) with
7 = 6.25. a) Eigenvalues of the Jacobian Jg, calculated with the dispersion relation Eq. b) and
c¢) Spatiotemporal evolution of the pattern at half height (y = 128) for homogeneous steady solution
P, and Gaussian function as initial conditions, respectively.
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Figure 9: Spatial patterns of the final state exhibited by the spatiotemporal simulations of the group A
points. a) and b) Negative hexagon patterns for points A2 (w = —0.04) and A3 (w = 0), respectively.
c¢) Complex Turing pattern of point A4 (w = 0.07).
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Figure 10: Results of the simulations performed at the point A3 (w,a, Dr) = (0,1.6,50) with 7 =
6.25. a) Eigenvalues of the Jacobian Jg, calculated with the dispersion relation Eq. b) and c)
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and Gaussian function as initial conditions, respectively.
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c¢) Spatiotemporal evolution of the pattern at half height (y = 128) for homogeneous steady solution
P, and Gaussian function as initial conditions, respectively.
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Lastly, point A4 (w = 0.07) can be interpreted as an extreme case of point A3. Once again, the
simulation with the Gaussian initial condition converges to the bare state (see Fig. . On the
other hand, when P, is used as the initial condition, the direct formation of the Turing pattern
is observed, without oscillations. Although the resulting pattern appears very different from those
observed previously (see Fig. @c), it is likely that the new structures are an evolution of the negative
hexagonal pattern. Since mortality is higher than in cases A2 and A3, the gaps are expected to
widen further. Being slightly irregular, they expand more in some directions than in others, which
may cause two gaps to grow sufficiently in a given direction to collide and generate the irregular
stripes between vegetated and bare regions observed in the final pattern.

4.3 Analysis of the Hopf-Turing transition zone

In this section, we analyse four points near the intersection of the Hopf and Turing bifurcations.
The points selected for this analysis correspond to the so-called group B, which can be observed in
the phase diagram Fig. [la.

In the case of point Bl (see Fig. , characterized by the parameters (w,a) = (—0.08,1.35),
we observe that the behaviour differs slightly depending on the initial condition. The dispersion
relation indicates that soft temporal oscillations should occur, a phenomenon observed in both
cases. However, only the simulation with the Gaussian function exhibits the same spatial pattern
previously observed in the points of group A, since in the case of Py as the initial condition the
oscillations occur with a spatially homogeneous population. It should be noted that, unlike the
cases simulated in group A, here the negative hexagonal pattern also oscillates in a moderate way.
This phenomenon may indicate that the Turing pattern modes are not strong enough to displace
the other system dynamics. Furthermore, the different final states according to the initial condition
may indicate again that the Turing bifurcation is subcritical. The perturbation generated by the
noise in the first case is insufficient to drive the system toward pattern formation, a situation that
does occur with the Gaussian function, a state far from the equilibrium.
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Figure 12: Results of the simulations performed at the point Bl (w, «, Dy) = (—0.08,1.35,50) with
T = 6.25. a) Eigenvalues of the Jacobian Jg, calculated with the dispersion relation Eq. b) and
c) Spatiotemporal evolution of the pattern at half height (y = 128) for homogeneous steady solution
P, and Gaussian function as initial conditions, respectively.

Both simulations at point B2 (see Fig. , defined by (w,a) = (—0.065,1.25), exhibit the
negative hexagon pattern as the final state. In this case, the Turing pattern dominates the system,
and no significant temporal oscillations are observed in either simulation. As expected, since it has
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no active unstable modes, point B3 (see Fig. , defined by (w,«) = (—0.09,1.15), is similar to
point Al and it converges to the homogeneous stable solution regardless of the initial condition.
Finally, point B4 (see Fig. [16]), defined by (w, o) = (—0.065, 1.1), is the only one of the simulated
points in this study that exhibits active Turing pattern modes without being within the oscillatory
regime delimited by the Hopf bifurcation. Since the conditions are slightly more adverse than for
point B2, due to the lower feedback, both simulations of this point exhibit an intermediate state
between the negative hexagon pattern and the one that emerged in simulation A4 (see Fig. ,
providing further evidence that the latter is a natural and continuous evolution of the former.

Spatial Coordinate y
Plant Density P
o
w
&
Plant Density P

o 50 100 150 200 250 100 150

Spatial Coordinate x Spatial Coordinate x

Figure 13: Spatial Turing patterns of the final state exhibited by the spatiotemporal simulations of
the point B4 for different initial condition. a) Homogeneous steady solution P;. b) Gaussian function.
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T = 6.25. a) Eigenvalues of the Jacobian Jg, calculated with the dispersion relation Eq. b) and
¢) Spatiotemporal evolution of the pattern at half height (y = 128) for homogeneous steady solution
P, and Gaussian function as initial conditions, respectively.
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Figure 15: Results of the simulations performed at the point B3 (w,«, Dr) = (—0.09,1.15,50) with
7 = 6.25. a) Eigenvalues of the Jacobian Jg, calculated with the dispersion relation Eq. b) and
¢) Spatiotemporal evolution of the pattern at half height (y = 128) for homogeneous steady solution
P, and Gaussian function as initial conditions, respectively.
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Figure 16: Results of the simulations performed at the point B4 (w,«, Dr) = (—0.065,1.1,50) with
T = 6.25. a) Eigenvalues of the Jacobian Jg, calculated with the dispersion relation Eq. b) and
c¢) Spatiotemporal evolution of the pattern at half height (y = 128) for homogeneous steady solution
P, and Gaussian function as initial conditions, respectively.
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4.4 Dynamics around Takens-Bogdanov-Turing codimension-3 bifurca-
tion

In this section, we briefly study the dynamics of three points near the Takens-Bogdanov-Turing
codimension-3 bifurcation for the case 7 = 20. The simulations carried out for this section are
performed with the homogeneous steady state as the initial condition. The points selected for this
analysis correspond to the so-called group C, which can be observed in the phase diagram Fig. [5]b.
The simulations carried out for this section are performed with the homogeneous steady state as
the initial condition.

First, it should be noted that, under the condition Dy = 7 = 20, the imaginary part of
the eigenvalues is constant and independent of perturbation mode (Im{Ai(q)} = cte). This is
manifested in the dispersion relations (see Fig. [L7). The point C3 (w, @) = (—0.01,0.85), as it has
no active modes, remains in the populated stable solution Py over time, as was observed for cases
A1 or B3. Hence, the dynamics at this point are not addressed in detail.
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Figure 17: Dispersion relation for the points of group C simulated. a) Point C1 defined by (w,a) =
(—0.005,1.25). b) Point C2 defined by (w,a) = (—0.005,1.075). c) Point C3 defined by (w,a) =
(—0.01,0.85).

On the other hand, the spatiotemporal evolutions for points C1 (w,a) = (—0.005, 1.25) and C2
(w, ) = (—0.01,0.85) are presented in Fig. Both plots exhibit oscillations. However, the fact
that they are not completely horizontal indicates that these are not oscillations of a homogeneous
population, as was observed in previous sections. In this case, the oscillations correspond to the
formation and annihilation of vegetation pulses. The pulses of vegetation emerge as a result of the
excitable nature of the system. The population remains at low density levels until, at a certain
point, the system is excited and a pulse is generated. This pulse propagates across the space until
it collides with another pulse, resulting in mutual annihilation. The conditions of C1 generate a
pair of two isolated travelling waves that propagate until they collide, maintaining the system in
a relatively symmetric state (see Fig.[19]a). On the other hand, under C2 parameters, the system
acquires a high level of complexity, not only due to the number of pulses but also because of their
shapes. However, it is worth noting that, in all cases, the origin of the pulses remains fixed at the
same location. Hence, the symmetric pattern observed in the spatiotemporal diagrams of Fig.
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Figure 18: Spatiotemporal evolution of the pattern at half height (y = 128) for: a) Point C1 defined
by (w,a) = (—0.005,1.25) and b) Point C2 defined by (w, «) = (—0.005,1.075).
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Figure 19: Temporal evolution of the pulses emerged in the numerical simulation for: a) Point C1
defined by (w,a) = (—0.005,1.25) and b) Point C2 defined by (w, a) = (—0.005, 1.075).

5 Conclusions

First, the theoretical results, which consist of introducing the diffusion mechanism into the math-
ematical model that describes the evolution of a P. oceanica meadow, have shown that Turing
patterns may emerge given appropriate conditions. The expression that delimits the Turing bifur-
cation was derived analytically in terms of the parameters of the system, along with the relations
that define Takens-Bogdanov-Turing codimension-3 bifurcation.

Spatiotemporal simulations have allowed us to observe the trends previously predicted by the
model’s phase diagram. The predominant Turing pattern is a negative hexagon pattern featuring
spaced gaps. In addition, more complex structures have been developed as an evolution of the
negative hexagon pattern under more stressful conditions, manifesting as elongated structures with
non-trivial geometries.

The appearance of patterns in regions where only spatial oscillations would be expected may
indicate that the Turing bifurcation is subcritical. However, further work, including a stability
analysis, would be necessary to verify this hypothesis.

Finally, the dynamics near the Takens-Bogdanov-Turing codimension-3 bifurcation reveal that
the system exhibits an excitable behaviour due to the formation of pulses of vegetation.
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Abstract

Reservoir computing (RC) is a machine learning framework that harnesses the high-dimensional
dynamics of nonlinear systems for efficient time-series processing and prediction. While conven-
tional RC relies on large recurrent networks with many neurons, equivalent functionality can be
achieved with a single nonlinear node subject to delayed feedback. In this work, we investigate the
impact of introducing variability in the feedback, implemented both through temporal modulation
of the nonlinear term in the node dynamics and by direct modulation of the feedback signal, using
values drawn from uniform and Gaussian distributions. We find that such nonlinear modulation
enhances reservoir performance by enriching the effective internal connectivity, with Gaussian sam-
pling consistently outperforming uniform sampling. These results could provide new insights and
practical guidelines for the design of delay-based reservoir computing systems.

1 Introduction

Machine learning techniques have recently had a profound impact on data-driven research, high-
technology industries, and a wide range of scientific and non-scientific domains. Among these
approaches, deep neural networks (DNNs) have become one of the most widely adopted models,
achieving remarkable success across multiple tasks. However, DNNs are computationally demand-
ing, requiring a large number of operations to be performed within a short time window. By
contrast, the human brain is capable of solving complex tasks almost instantaneously with mini-
mal energy cost. This contrast has motivated the development of energy-efficient machine learning
models inspired by neural computation in biological systems [1].

In biological systems, assemblies of recurrently coupled and mutually interacting neurons exhibit
rich temporal dynamics that enable the efficient encoding of temporal relations [2|. Similarly, re-
current neural networks (RNNs) are capable of learning to mimic target systems with, in principle,
arbitrary accuracy [3]. Nevertheless, training RNNs is notoriously difficult due to problems such
as vanishing gradients [1] and bifurcations in the network dynamics, which can hinder convergence
during training [4].

To address these challenges in RNNs, alternative models, such as Echo State Networks (ESNs)
and Liquid State Machines (LSMs), have been introduced. In ESNs; only the connections between
the recurrent network and the output layer are adapted during training, while the internal reservoir
connections and the input-to-reservoir connections remain fixed and are initialized randomly [3].
This mechanism resembles the model of sensorimotor sequence learning proposed by [5], where the
prefrontal cortex is represented as a recurrent network with fixed internal connections, and neural
plasticity is used to associate recurrent activity states with appropriate responses in the output
layer, analogous to the caudate or striatum in biological systems [5].

The concept of reservoir computing (RC) provides a unifying framework that includes both Echo
State Networks and Liquid State Machines, offering an efficient architecture for processing tem-
poral information. Traditional reservoir computing has a typical architecture constituted around
three distinct components: an input layer, which injects the input data into the system; a recur-
rent reservoir matrix, which connects the nodes of the reservoir with fixed random weights; and
an output layer, where the readout is computed (See section and Fig. [1)). The core princi-
ple is to transform the input signal through a nonlinear, high-dimensional dynamical system—the
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reservoir—whose states are then projected onto the output via a simple linear readout layer. This
design enables highly efficient training, since only the linear output weights need to be optimized,
typically using inexpensive methods such as linear or ridge regression. Importantly, the nonlinear
dynamics of the reservoir expand the representational capacity of the system, allowing the linear
readout to solve classification or regression tasks that would otherwise be intractable for purely
linear models when confronted with nonlinear input data [6].

More generally, reservoir computing can be defined as any system that satisfies a set of key
properties. First, it should exhibit reproducibility, meaning that similar inputs should lead to sim-
ilar outputs, allowing the model to generalize from the training data. Second, it should display
pointwise separability, i.e., the ability to distinguish between different kinds of inputs [4]. Third,
the system should produce the same output sequence for a given input sequence regardless of the
reservoir’s initial conditions. This requires the presence of fading memory, where recent inputs are
prioritized while the influence of distant past inputs decays. This property is commonly referred
to as the Echo State Property [7]. It is quantified by conditional Lyapunov exponents A, which
measure the rate at which two reservoir trajectories with different initial states but driven by the
same input converge to one another [§]. Notably, reservoir performance is often maximized when
the system operates near the so-called “edge of chaos,” i.e, when A ~ 0.

Therefore, any system that exhibits these properties can, in principle, be used as a reservoir.
This generality has motivated the development of a wide range of in-materia implementations of
reservoir computing, which exploit the intrinsic temporal dynamics of physical systems to provide
advantages over software-based realizations, particularly in terms of low power consumption and
high processing speed. Examples include electronic, optoelectronic, photonic, spintronic, mechani-
cal, biological, and even quantum systems [1].

Despite their promise, such physical reservoirs often face challenges in terms of scalability, par-
ticularly when attempting to increase the number of physical nodes. To overcome this limitation,
it has been shown that reservoir computing can be efficiently implemented using a single nonlinear
neuron—or, more generally, a single nonlinear dynamical element—subject to delayed feedback.
This approach is attractive because it requires only two components: a nonlinear node and a delay
loop. Single-node reservoir computing has been implemented in optics and optoelectronics, where a
semiconductor laser is subject to external optical feedback, creating the delayed dynamics required
for single-node reservoir computing [9].

Time-delay reservoirs can be regarded as conventional reservoirs implemented through time
multiplexing, where each virtual neuron corresponds to the state of the reservoir within a spe-
cific time interval. The input signal is sequentially fed into the nonlinear node, with each input
value temporally masked before being injected into the reservoir [10] (see Section . In this
formulation, the feedback term plays a key role in defining the effective interconnections between
virtual neurons. Modulating this feedback term is therefore analogous to modifying the connection
weights between neurons in a standard recurrent network. Typically, the feedback strength is kept
constant, implying that all virtual neuron interconnections share the same weight. In this work,
we investigate the impact of introducing a temporal modulation of the feedback, thereby inducing
variability in the effective connection weights between neurons.
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Figure 1: Traditional Reservoir Computing architecture.

2 Theoretical model

2.1 Echo State Network Model

The Echo State Network (ESN) is a widely used reservoir architecture based on recurrent neural
networks and serves as a theoretical foundation for time-delayed reservoir computing. Let n € Z+
denote the time step, and let r;(n) represent the state of the i-th node at time n in a reservoir of
dimension D. The reservoir state evolves according to

D
B> Wijri(n—1 HZWm (2.1)
j=1
D
0j(n) =Y Wiri(n), (2.2)
i=1
where ¢ is a nonlinear activation function, W;; are the recurrent connection weights between reser-
voir nodes, W;J“ are the input weights, and u(n) = [ui(n),...,un(n)]" is the N-dimensional
input vector at time n. The reservoir state is r(n) = [ri(n),...,7p(n)]T, and the output is
o(n) = [o1(n),...,op(n)]", computed using the readout weights W3"*. The matrices W;; and

T/Vi]n are randomly initialized from a uniform distribution over [—a, a] where a is fixed according to
the spectral radius of the reservoir matrix, while the readout weights VV"“t are optimized via linear
regression, minimizing the following loss function

L= ZHY n)||* + o W2 (2.3)
using the Moore—Penrose pseudoinverse |7} [11].

2.2 Single non-linear node reservoir computing

As stated in Section [I} one of the main advantages of reservoir computing is its suitability for
implementation in analog physical systems, which avoids the need to interconnect large numbers
of discrete neurons. In optoelectronics, for instance, a reservoir can be realized using a single
nonlinear node with delayed feedback. The evolution of this nonlinear node with delay can be
written in general as:
i(t) = f(z(t), z(t —7) +vJ (1)), (2.4)

where f(x) is a nonlinear function, 7 is the delay time, J(¢) is the masked input, and v is a
modulation factor [10].

In this work, we focus on modeling an optoelectronic device governed by Ikeda dynamics. In
this case, the reservoir evolution is described by

#(t) = —z(t) + nsin(z(t — ) +7J(1)), (2.5)

where 7 is a nonlinear modulation factor. Notice that 7 indirectly controls the strength of the
feedback. The parameters 7 and y are chosen such that the reservoir exhibits the desired dynamical
regime, as discussed in Section |1} and are optimized for the target task. The optimal configuration
is determined by scanning the parameter space.
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Figure 2: Time multiplexing scheme of a time delay reservoir.

2.2.1 Time multiplexing

A nonlinear node governed by Eq. (2.4) can reproduce the behavior of an Echo State Network
(ESN) reservoir through time multiplexing (Fig. [2). Instead of using D distinct spatial nodes, we
define D virtual nodes as

ri(n)=xz(), nT+i0<t<nT+(i+1)0,0<i<D (2.6)

where x(t) is the state of the non-linear single-node, 6 is the duration of a virtual node and T' = D@
is the total duration of the reservoir state at time step n. We consider that the nonlinear node is
driven by either a continuous N-dimensional input u(t) or a discrete N-dimensional input u(n). For
each discrete time step n, the input u(n) is held constant over an interval of duration 7', defining
the piecewise constant function I(t) = u(n), nT <t < (n+ 1)T. This function I(¢) is modulated
by a masking function M(t), where

M;t) =W, nT+i0 <t<nT+(i+1)0,  M;(t)=M{t+T) (2.7)
Introducing the masked input J(t) = Zjvzl M;(t)I;(t) in Eq. (2.4) is analogous to introducing the
term E;\Ll W u;j(n) in Eq. (2.1). On the other hand, the recurrent connections between neurons

given by Z]D:l W;;rj(n—1) in Eq. (2.1 are implemented in a single nonlinear node reservoir through
both the delayed feedback term x (¢t —7) and the intrinsic dynamics of the system. The contribution
of the delayed feedback can be understood as follows. Define o = T_HT andt=nT+t, 0<t<T.
Then

zt—71)=2((n—1DT+t—ab) =2((n—2)T+1t— (a— D)B).

Using the definition of virtual nodes in Eq. (2.6)), the feedback term can be expressed as contribu-
tions from previous virtual nodes [10]:

Tica(n—1), a<i<D,

TDri—a(n—2), 0<i<a,

The effective connections between neurons due to the system’s inherent dynamics can be understood
as the dependence of the current state on previous states, caused by the finite response time of the
physical system. For the Ikeda dynamics of Eq. (2.5)), this dependence can be approximated as

ri(n) = Qiri(n—1) + > Aijn sin(rj(n — 1) + W u(n)) (2.9)
j=1
where Q; = 7% and A;; = (1 — e=?)e=(=9)% [10]. Notice that this contribution becomes less
significant for large values of 6.
Finally, the output is computed in an analogous way to ESN with equation Eq. (2.2):
D
0j(n) = Z Wz ((n —1)T + i6) (2.10)

i=1
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The output weights are determined as in the ESN case, with a simple linear regression or a ridge
regression.

2.2.2 Multiple Feedbacks

To increase the connectivity between the virtual nodes of the reservoir through feedback, additional
delay lines can be introduced, leading to the following dynamics:

z(t) = —z(t) +sin(Brz(t — 1) + Pox(t — T2) +J (1)), (2.11)

where 61 and (- are the modulation factors associated with the two feedback delays 71 and 5. If the
ratio 22 is rational, i.e. :f € Q, the system exhibits a resonance at some time ¢, corresponding to a
peI‘IOdlC overlap between the two delays. This resonance has been reported to degrade performance
in tasks such as NARMA-10 [12|. To avoid such resonances, the relation between delays is chosen
to be irrational, for instance by setting 75 ~ /2 77.

2.3 Feedback modulation

In the Echo State Network reservoir, the recurrent connections W;; in Eq. differ for each pair
of nodes. In analogy, in this work we substitute the constant feedback strength parameters— in
Eq. and Sy (k € {1,2}) in Eq. (2.1I)—with time-dependent modulation functions, n(t) and
Bk (t), defined as

3
—~
~+
~
Il

Wi i nT +i0 <t< nT—i—(i+1)9, (212)

)

Br(t) =Wij,, nT+i0 <t<nT+(i+1)6, (2.13)

with periodicity n(t) = n(t + T) and Bi(t) = Bi(t + T). According to Eq. (2.6), the index j is
determined by j =i —«a, a<i< Dand j=D+i—a, 0<i<a. Asin the ESN case,
the reservoir weights W;; are generated randomly. Thus, the equations Eq. and Eq.
become respectively:

z(t) = —x(t) + n(t) sin(z(t — 1) + vJ (1)) (2.14)
&(t) = —x(t) +sin(fr(t)x(t — m1) + B2(t)z(t — 11) +vJ (1)) (2.15)

The main objective of this work is to investigate the impact of such temporal modulation on
reservoir performance. As pointed out by [7], in ESN the randomness of the connection weights
Wi; of equation Eq. varies the response of each node to the input signal and therefore enhances
the degree of linear independence of each RC state r(n). Thus, it is expected that the temporal
modulation in n(t) and B(t) respectively in equation Eq. and Eq. increase the linear
independence of the RC states.

3 Results and discussion

3.1 Tasks

To investigate the impact of temporal modulation on the parameters n(t) and S (t) in Egs.
and , we generate the connection weights W;; from different probability distributions. Specif-
ically, W;; is drawn from either a normal distribution, N (ng, o) and N (8o, o) respectively, or a
uniform distribution, U(ny — A, no + A) and U(By — A, o + A) respectively, with varying values
of o and A. The parameters 7y and Sy correspond to the optimal values that minimize the root-
mean-square error (RMSE) in the one—step—ahead prediction task described in Sec. when 7
and (i are kept constant, i.e, the reservoir follows equations Eq. and Eq. respectively.
For each choice of 0 and A, we evaluate the reservoir performance on the tasks outlined in the
subsequent sections with 15 different experiments.

All simulations are performed with a reservoir of D = 250 neurons. Equations Eq. and
Eq. are integrated using Euler’s method with an integration step At = 0.1. The neuron
width is set to # = 7.0At¢, which provides a balance between connections due to inherent dynamics
and those due to feedback. The reservoir is trained to minimize the loss function Eq. with
« = 0, as this value has been found to optimize performance. In the one delay 7 = T where T' = D6
while in the two delay system 7 =T and 7o = T 4+ 170At, therefore T—2 ~ V2.
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Figure 3: Left: Next step prediction scheme. z(t) stands for real time series values and Z(¢) stands for
predicted time series values. Right: Autonomous dynamics reconstruction.

3.1.1 One step ahead Prediction

Once the reservoir has been trained with the first Ny;,i, points of a given time series, its performance
is first evaluated by predicting the next Niee; points using a one-step-ahead prediction scheme.
Specifically, at each time step n, the true value of the time series y(n — 1) is used to compute the
D reservoir states r;(n — 1), defined in Eq. , by evolving the reservoir according to Eq. (2.14))
or Eq. (2.15)). The predicted output o(n) is then obtained from the readout equation (Eq. (2.10})
Fig. 3

After computing o(n) for all m = Nipain + 1, ..., Nirain + Niest, the root mean squared error
(RMSE) is evaluated as

Niest
1
RMSE = || = > lo(n + Nisain) = ¥( + Nivain) 2 (3.1)
test n—1

For comparison across different datasets and tasks, we also compute the normalized root mean
squared error (NRMSE), defined as

RMSE

Oy

NRMSE =

(3.2)
where oy is the standard deviation of the target time series y(n) in the test set.

3.1.2 Autonomous Reconstruction

The second task used to evaluate the performance of the reservoir is the autonomous prediction of a
time series u(t), i.e., the output of the reservoir o(n — 1) is fed back as the input for the prediction
of o(n), Fig. Explicitly, for a single delay, the evolution of the reservoir during autonomous
reconstruction can be written as:

N D
(t) = —2(t) +n(t) sin (x(t—T)+szj(t)ZW°”t ((n— 1)T+10)) nT <t < (n+1)T (3.3)

j=1 i=1

The reservoir output computed via Eq. provides the predicted value of u(t) for ¢ > 0.
However, due to the chaotic amplification of errors, the prediction eventually breaks down [13]. We
define the time 7, as the time at the moment when the RMSE of the last K autonomous predictions
6(i) (i=n— (K —1),...,n—1,n) reaches a threshold e:

Z| on—i)—yn—9|2>e (3.4)

Additionally, we compute the RMSE for all predictions up to n(7.):

RMSE = Z 16(7) — y(4)]|2. (3.5)

To normalize results across different systems, we express 7. = ne At Ay, where At is the time
step of the original time series u(t) and A; is the largest Lyapunov exponent. This follows from
[du” || ~ et*]|gu’].
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To compute the Lyapunov exponents for a system defined by z = F(z), we evolve an initial
perturbation du(0) = 1 according to < du(t) = DF du(t) where DF is the Jacobian of F. The
variational equation is integrated for a time T, after which du(t) is orthonormalized using the
Gram—Schmidt procedure. This process is repeated N times. The Lyapunov exponents are then
computed as

N
1
= (Tk)|.
% = 7 2l

For sufficiently large N, the values A; converge to the true Lyapunov exponents [14].
For the Mackey—Glass system, the delayed differential equation is converted into an ordinary dif-
ferential equation using the Galerkin approximation, as described in [15].

3.2 Narma-10 system

The NARMA-10 time series is the first forecasting benchmark employed to evaluate the effect of
feedback time modulation in delay-based reservoirs. The system is defined by the recursive map:

9

Ykt1 = 0.3y +0.05y > yr—i + L5ugug_o +0.1, (3.6)
=0

where wuy, is sampled from a uniform distribution 24(0,0.5). A total of N = 6000 points were
generated and partitioned into training (Nipain = 4000), validation (Nyalidation = 1000), and test
(Ntest = 1000) sets.

NARMA-10 is widely used as a benchmark in reservoir computing because it combines strong
nonlinearity with long-range temporal dependencies, making accurate prediction particularly chal-
lenging and an indicator of the nonlinear memory of the reservoir [16]. Its dependence on both past
outputs and delayed inputs requires the reservoir to simultaneously capture nonlinear dynamics and
maintain memory over multiple time steps.

Hyperparameter optimization The reservoir hyperparameters v, 19, and 8y were tuned
by exploring the parameter space to minimize the root-mean-square error (RMSE) in the one-step-
ahead prediction on the validation set. Figure [] reports the RMSE values obtained across the
explored parameter ranges. The optimal parameters selected were (n9,7y) = (0.50,1.35) for the

single-delay reservoir (Eq.(2.14))) and (8o, y) = (0.70,1.01) for the two-delay reservoir (Eq.(2.15)).

Figure 4: One-step-ahead prediction RMSE of NARMA-10 time series across the parameter spaces
of time-delayed reservoirs. Left: RMSE in the (n,v) parameter space for the single-delay reservoir

(Eq. (2.14)). Right: RMSE in the (8,7) parameter space for the two-delay reservoir (Eq. (2.15])).

Results Figure 5| presents the one-step-ahead prediction RNMSE for the single-delay and two-
delay reservoirs when 7)(t) and S (t) are drawn from either normal or uniform distributions. Increas-
ing the standard deviation of the temporal modulation of 7(t) consistently reduced the expected
RNMSE, indicating improved reservoir performance regardless of the distribution.

In the single-delay reservoir, the expected RNMSE decreased by (4.6 &+ 3.2)% when 7(t) was
drawn from a normal distribution with ¢ = 0.5, and by (2.7 £ 4.3)% when drawn from a uni-
form distribution, relative to the RNMSE at the optimal static value. Consistent with previous
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findings [12], the two-delay reservoir achieved lower RNMSE values overall compared to the single-
delay reservoir. In contrast, temporal modulation of () in the two-delay reservoir did not yield a
systematic reduction in the expected RNMSE. However, the substantial variability observed across
trials indicates that, in certain cases, 8(t) modulation improved performance. For example, in
the single-delay reservoir, the minimum RNMSE achieved was 8.76 - 10~2 for 7(t) drawn from a
normal distribution, 8.64-10~2 for a uniform distribution, 8.85-10~2 for 3(¢) drawn from a normal
distribution, and 8.86 - 10=2 for 5(¢) drawn from a uniform distribution.

A plausible explanation for the differing impact of feedback time modulation between single-
delay and two-delay reservoirs lies in the geometry of their respective parameter spaces. As shown in
Fig. [] the error surface of the single-delay reservoir is relatively flat around the chosen optimum,
indicating that small perturbations of the parameters have a limited effect on performance. In
contrast, the optimum for the two-delay reservoir lies in a sharper region of the parameter space,
where small changes can more easily degrade performance. This difference in landscape geometry
may underlie the stronger sensitivity of the two-delay reservoir to temporal modulation. A more
rigorous analysis, would be required to substantiate this hypothesis.

le—-4
9.501

# One-delay reservoir
8.00 i Two-delays reservoir

0.0 0.1 0.2 0.3 0.4
g

Figure 5: Normalized root mean square error (NRMSE) for the one-step-ahead prediction of the
NARMA-10 time series under different values of 0 and A. Left: n(t) and §(¢) are drawn independently
from Gaussian distributions, N (ng,o) and N (B, o), respectively. Right: n(t) and S(t) are drawn
independently from uniform distributions, U(ny — A, no + A) and U(Bo — A, By + A), respectively.

3.3 Mackey-Glass-17 system

The second time series analyzed to assess the impact of feedback modulation in time-delayed
reservoir computing is generated by the Mackey—Glass chaotic system, governed by the delayed
differential equation
a,z(t —7
2(t) = 7( )
1+ 2z2n(t—71)

where a = 0.2, b = 0.1, n = 10, and 7 = 17. The Mackey—Glass equation (Eq. ) was originally
introduced by Mackey and Glass in the context of modeling white blood cell production, providing
an early example of how delayed feedback can lead to complex, nonlinear dynamics in physiological
control systems [17]. A well-known property of this system is that the information dimension of
the attractor increases with the delay 7, reflecting the emergence of higher-dimensional dynamics.
Under the chosen parameters, the system evolves in a mildly chaotic regime [18]. The larger
lyapunov exponent computed following the method described in [15] is A; ~ 0.0059. The time
series is generated by integrating Eq. for N = 6000 points with a time step dt = 1 using
Runge-Kutta 4. The first 18 initial points 7 < t < 0 are set to a fixed value z(t) = zo with zop = 0.5.
The series is then normalized as
2(t) — (=(1))

2(t) = o)

To increase the robustness of the trained reservoir, noise is added to the temporal series. Specifi-
cally, white noise is added as follows Z.(t) = 2(t) + ae(t) where ¢ is sampled from a standard normal
distribution and « is set to 1.0 - 107%. Finally, the temporal series is then divided into a training
set with Niain = 4000 points, a validation set with Nyalidation = 1000 points, and a test set with

~bz(t), (3.7)

(3.8)
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Niest = 1000 points.

Hyperparameter optimization As described in Sec. the hyperparameters v, 79, and
Bo are determined through exploration of the parameter space. Specifically, 1y and 8y are chosen
to minimize the RMSE in the one-step-ahead prediction on the validation set while also ensuring
reproduction of the Mackey-Glass chaotic dynamics for at least approximately one Lyapunov time
71 ~ 1/A;. Figure |§| shows the RMSE across the explored parameter spaces. The selected points
are (no,vy) = (0.850,0.714) for Eq. and (Bo,7y) = (0.51,1.25) for Eq. . Notice that in
Figure [6] there are regions of the parameter space where the RMSE is significantly larger. These
regions can be related to cases where the reservoir dynamics do not converge to a fixed point, where
the performance of the reservoir decreases |10 |7].

Figure 6: One-step-ahead prediction RMSE of Mackey-Glass time-series across the parameter spaces
of time-delayed reservoirs. Left: RMSE in the (n,v) parameter space for the single-delay reservoir
(Eq. (2.14))). Right: RMSE in the (8, ) parameter space for the two-delay reservoir (Eq. (2.15))).

Results The overall results of the one-step-ahead prediction and autonomous reconstruction
tasks for the single-delay reservoir (Eq. (2.14) with n(t) ~ N (no, o) and n(t) ~ U(no — A, o + A)
are presented in Figures [7] and [l In both cases, for the single delayed reservoir, increasing the
variability of n(t)—and hence the variability in neuron interconnections—improves performance in
the one-step-ahead prediction task as well as in autonomous reconstruction.

For the Gaussian modulation (Fig. , the single-delay reservoir shows a monotonic decrease
in the expected RNMSE of one-step-ahead prediction as the standard deviation ¢ increases, with
the largest improvement of (1.59 + 0.22)% reached at o = 0.5. In contrast, the two-delay reser-
voir—which already achieves a lower optimal RNMSE than the single-delay case—only shows im-
provement for o = 0.10, with a smaller gain of (0.75 & 0.18)%. The middle and right panels
further indicate that, in the single-delay reservoir, increasing o reduces the RNMSE of autonomous
prediction (before divergence) and extends the divergence time 7., pointing to enhanced accuracy
and robustness. On average, 7. increases by (41 &+ 51)%, while the expected RNMSE for o = 0.3
decreases by (19.8 &+ 7.9)% compared to the optimal static case. By contrast, for the two-delay
reservoir, Gaussian modulation of the feedback coefficients £, does not yield a clear performance
improvement. The expected RNMSE for one-step-ahead prediction decreases only at o = 0.1, after
which it remains essentially at the level of the optimal point. For autonomous prediction, the
RNMSE before divergence increases slightly up to ¢ = 0.2, and then decreases, outperforming the
optimal point. Finally, although the divergence time of the optimal point remains larger than the
expected divergence time for all o, the expected divergence time still shows an increasing trend for
the first three o values with o > 0.0.

For the uniform modulation (Fig. , the left panel shows that in the single-delay reservoir,
the RMSE in one-step-ahead prediction decreases with A, but only for A < 2. In the two-delay
reservoir, a similar improvement is observed, though limited to A < 0.3. The performance gain
at A =0.1is (0.75 £ 0.76)% for the single-delay case and (1.11 £ 0.18)% for the two-delay case.
The middle and right panels reveal a consistent trend: in the single-delay reservoir, both the
RMSE of autonomous prediction decreases and the divergence time 7, increases with A, but only
up to A = 0.3, beyond which performance deteriorates. At this point, the expected number of
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steps before divergence increases by (38 = 51)%, while the RNMSE before divergence decreases by
(15+£11)%. In the two-delay reservoir, a reduction in expected RMSE is also observed for A > 0.2,
corresponding to a (3.2 £ 7.0)% decrease at A = 0.5. Although all divergence times remain below
those of the optimal point, an increase in 7. is nonetheless observed as A grows.

The existence of these thresholds, beyond which performance declines, can be explained by the
broader distribution of 7(t) or B(t), which increases the likelihood of deviating from the optimal
operating region or entering a chaotic regime, thereby degrading reservoir performance.

Figure 7: Results for the single-delay reservoir and two-delays reservoir governed respectively by
Eq. and by Eq. , with n(t,0) sampled from a normal distribution N (0.85,0). Left:
Average RNMSE of the one-step-ahead prediction (Eq. ) over 15 experiments for each value of
o. Center: Average RNMSE of the autonomous prediction over the same 15 experiments. Right:
Average divergence time 7. obtained from 15 autonomous reconstruction experiments for each . The
threshold is set to ¢ = 0.015 and K = 10

Figure 8: Results for the single-delay reservoir and two-delays reservoir governed respectively by
Eq. and by Eq. , with 7(t, o) sampled from a uniform distribution #(0.85 — A, 0.85 + A).
Left: Average RMSE of the one-step-ahead prediction (Eq. ) over 15 experiments for each value
of A. Center: Average RMSE of the autonomous prediction over the same 15 experiments. Right:
Average divergence time 7. obtained from 15 autonomous reconstruction experiments for each A. The
threshold is set to ¢ = 0.015 and K = 10.

The plots above illustrate the average effect of introducing a random time modulation in 7(t);
however, the large deviations indicated by the error bars in Figures [7] and [§] together with the
results in Figures and reveal that different realizations of 7(¢) do not affect the reservoir
dynamics uniformly. In several cases, the autonomous reconstructions remain stable for up to 5
Lyapunov times and accurately reproduce the Mackey—Glass attractor (Figs . Moreover,
some realizations, such as the best ones obtained foro = 0.5 for the single delay reservoir (Fig,
exhibit no divergence over the entire 1000-step test set, achieving prediction horizons beyond 5
Lyapunov times, i.e., 7. > 5. These results indicate that introducing variability in n(¢) and 5(¢)

10
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can improve the robustness of the reservoir; however, the effect strongly depends on the type of
variability considered. In particular, certain realizations of n(t) and S(t) yield reservoirs that are
both more precise in short-term predictions and more robust in sustaining long-term autonomous
reconstructions of the underlying attractor dynamics.

Moreover, Figures (11| and |8l and Figures show that not only is the expected performance
of the reservoir with 7(t) and B(t) generated with a uniform distribution worse than that with
n(t) and B(t) generated with a gaussian distribution, but the best experiment obtained for each
value of A in uniform distributions is also worse than the Gaussian one. This suggests that despite
introducing variability in the weights improve the performance, the majority of the weights should
be close to the optimal value.

Figure 9: Autonomous prediction of the Mackey—Glass-17 system using the single-delay reservoir and
two-delays reservoir governed by Eq. (first row) and Eq. (second row), with n(t; o) drawn
from a normal distribution N (0.85,0) . Each panel corresponds to the autonomous reconstruction
obtained for a specific value of ¢. The panels are ordered from left to right. The first on the left
corresponds with ¢ = 0 and the next ones with ¢ increasing from ¢ = 0.3 to ¢ = 0.5 in steps of 0.1.

Figure 10: Atractor reconstruction from autonomous prediction of the Mackey—Glass-17 system using
the single-delay reservoir and two-delays reservoir governed by Eq. (first row) and Eq.
(second row), with 7(t; o) drawn from a normal distribution N(0.85,c). Each panel corresponds to
the Mackey—Glass attractor for the best autonomous reconstruction obtained for a specific value of o.
The panels are ordered from left to right. The first on the left corresponds with ¢ = 0 and the next
ones with ¢ increasing from ¢ = 0.3 to ¢ = 0.5 in steps of 0.1.

11
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Figure 11: Autonomous prediction of the Mackey—Glass-17 system using the single-delay reservoir
and two-delays reservoir governed by Eq. (first row) and Eq. (second row), with n(t; A)
drawn from a uniform distribution ¢/(0.85 — A,0.85 + A). Each panel corresponds to the autonomous
reconstruction obtained for a specific value of A. The first on the left corresponds with A = 0 and
the next ones with A increasing from ¢ = 0.3 to ¢ = 0.5 in steps of 0.1.

Figure 12: Atractor reconstruction from autonomous prediction of the Mackey—Glass-17 system using
the single-delay reservoir and two-delays reservoir governed by Eq. (first row) and Eq.
(second row), with n(t; A) drawn from a uniform distribution ¢/(0.85 — A,0.85 + A). Each panel
corresponds to the Mackey—Glass attractor for the best autonomous reconstruction obtained for a
specific value of A. The first on the left corresponds with A = 0 and the next ones with A increasing
from A = 0.3 to A = 0.5 in steps of 0.1.

To investigate the origin of the differing autonomous prediction performances observed when 7(t)
is drawn from a Gaussian distribution—in single-delay reservoirs, where the performance improve-
ment due to variability is more pronounced—we analyzed the distribution of n(t) values assigned to
virtual neurons across multiple experiments (Fig. Although the results are not entirely conclu-
sive, the analysis indicates that the best-performing reservoirs tend to contain a smaller fraction of
neurons with extreme parameter values, i.e., n(t) < ng—o or n(t) > no+o. This trend is illustrated
in Fig (first row), where lower RMSE values are generally associated with experiments in which
the proportion of neurons outside the central interval (ny — 0,19 + ¢) is minimized. Furthermore,
Fig. (second row) shows the output layer weights plotted against 7 for all neurons in the worst-
performing experiments with ¢ = 0.4 and ¢ = 0.5. The results reveal that neurons with extreme
1 values typically acquire vanishing output weights, suggesting that they contribute negligibly to
the computation of the desired output.

This behavior may be partly explained by the role of n(¢) in modulating the nonlinear term in
Eq. . For n = 0 the system exhibits a fixed point; as 7 increases, the system remains at a fixed
point until it transitions through periodic dynamics and, eventually, into deterministic chaos [7}
19]. Thus, when 7(t) attains large values at certain times, the resulting modulation can destabilize
the system.

Moreover, because n(t) multiplies the nonlinear term in Eq.(2.14), it simultaneously regulates

12
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both the recurrent feedback connections—via the nonlinear function’s argument—and the effec-
tive inter-neuron couplings, since in Eq. the term 7;A;; can be interpreted as an effective
connection weight. Consequently, the distribution of 7(t) directly shapes the reservoir’s internal
connectivity structure [10]. In echo state networks, it is well established that the spectral radius
of the recurrent weight matrix must satisfy p(Wyes) < 1 to preserve the Echo State Property [6}
8|, while increasing the spectral radius pushes the reservoir toward a chaotic regime, raising the
conditional Lyapunov exponent and enhancing memory capacity [7]. By analogy, large n values
may effectively increase the spectral radius, risking destabilization, whereas very small values may
suppress recurrent contributions and weaken memory. Reservoirs with fewer extreme 7(t) values,
therefore, may strike a more favorable balance, maintaining stability while preserving sufficient
memory capacity to achieve accurate autonomous predictions.

Figure 13: n(t) values drawn from a Gaussian distribution and assigned to each virtual neuron across
15 experiments for ¢ = 0.4 Left: and ¢ = 0.5. Right: Experiments are ordered according to their
one-step prediction RMSE, with index 0 corresponding to the best performance (lowest RMSE) and
index 14 to the worst performance (highest RMSE).

Figure 14: First Row: Root mean square error (RMSE) of one-step-ahead predictions for single-delay
reservoir experiments, where 7(t) is drawn from a normal distribution. The RMSE is plotted against
the fraction of virtual neurons with 1 values outside the central range (0.85 — ¢,0.85 + o), for two
cases: 0 = 0.4 (left) and ¢ = 0.5 (right). Second Row: Output layer weights as a function of 7 for
neurons in the reservoir. Left: worst-performing experiment (highest RNMSE) with o = 0.4. Right:
worst-performing experiment (highest RNMSE) with o = 0.5.
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3.4 Lorenz-63 system

The third time series used to evaluate feedback time-modulation is the Lorenz system, defined by
the set of differential equations:

i=o(z—y), (3.9)
y=alp—2)—v, (3.10)
z=uxy— Bz, (3.11)

where the parameters o, p, and [ govern the system’s dynamics. In this work, the canonical
Lorenz-63 parameters are employed: o = 10, p = 28, and 8 = 8/3 [16]. With this parameter set,
the largest Lyapunov exponent is A1 = 0.906, confirming that the system exhibits strongly chaotic
behavior.

To generate the time series, Eq. was integrated using a fourth-order Runge-Kutta scheme
with a time step of dt = 0.002 for N = 60,000 points. To reduce redundancy and match the treat-
ment of previous benchmarks, only every tenth value was retained, yielding an effective sequence
of N = 6,000 data points. The initial conditions were set to g = 0.9, yo = 1.0, and zy = 1.1.
As in the Mackey—Glass case, the input was normalized according to Eq. , and white noise
with amplitude o = 1- 1077 was added. Finally, the dataset was divided into training, test, and
validation subsets, with Nipain = 4,000, Niest = 1,000, and Nyalidation = 1,000 points, respectively.

Simulations are performed with a reservoir of D = 350 neurons. Only one delay reservoir has
been tested since it has shown more significant effects with the introduction of feedback in time
modulation. Other reservoir parameters are kept as described in Section [3.1

Hyperparameter optimization The v,79 optimization has been done as in the Mackey-
Glass system through exploration of the RMSE for one-step prediction in parameter space and
checking that it can reproduce autonomously the dynamics of the attractor for approximately a
one lyapunov time. Figure [I5] shows the RMSE across the explored parameter space. The point
that minimizes the RMSE of one-step ahead prediction has been found at (v,7n) = (1.1,0.36).

Figure 15: One-step ahead prediction of Lorenz time series in the parameter space (7, n) of one-delay
Teservoir.

Results The overall results for the Lorenz time series obtained with the one-delay reservoir
(Eq.(2:14)) are presented in Figured16]and [17 for the cases n(t) ~ N (0.36,0) and n(t) ~ U(0.36 —
A,0.36 + A), respectively. In both cases, the RNMSE of the one-step-ahead prediction decreases
for 0 < 0.2 and A < 0.2, indicating improved reservoir performance. For the Gaussian case, the
expected improvement at o = 0.2 is (28 £+ 11)% with respect to the optimal point, while for the
uniform case the corresponding improvement at A = 0.2 is (25 £20)%. Regarding divergence time,
the Gaussian distribution shows a trend similar to that observed in the two-delay Mackey—Glass
reservoir: although the expected divergence time decreases compared to the optimal point, it
nevertheless increases with o up to o = 0.3, and in some realizations surpasses the performance of
the optimal case. In contrast, for the uniform distribution, the expected divergence time decreases
with A.
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Figure 16: Results for the single delay reservoir (Eq. with 7(¢; o) sampled from a normal distri-
bution N'(0.36,0). Left: Average RNMSE of one-step ahead prediction (Eq. over 15 experiments
for each value of o. Right: Average divergence time 7. obtained from 15 autonomous reconstruction
experiments for each o with ¢ = 0.01 and K = 10.

Figure 17: Results for the single delay reservoir (Eq. (2.14))) with 7(¢;0) sampled from a normal
distribution #/(0.36 — A, 0.36+A). Left: Average RNMSE of one-step ahead prediction (Eq. (3.1))) over
15 experiments for each value of 0. Right: Average divergence time 7. obtained from 15 autonomous
reconstruction experiments for each ¢ with e = 0.01 and K = 10.

As in the Mackey—Glass case, there are particular instances where temporal feedback modula-
tion through 7(¢) produces reservoirs that surpass the performance of the optimal point, as shown
in Fig[l§ and Fig[l9] In the best cases, the reservoir was able to follow the Lorenz dynamics
for up to ~ 3A7! ~ 3.3 time units, but not beyond. Reservoirs with 7(t) drawn from a normal
distribution generally exhibited higher stability than those with 7(t) drawn from a uniform distri-
bution. However, full reconstruction of the Lorenz dynamics and attractor was not achieved beyond
this timescale. As noted in [8, [13], improving reconstruction performance likely requires explicitly
embedding the symmetries of Eq. into the reservoir.

Figure 18: Autonomous prediction of the Lorenz-63 system using the single delay reservoir (Eq. (2.14))
with n(¢;0) drawn from a normal distribution N (0.36, 0. The first plot on the left corresponds with
o = 0 and the next ones with ¢ increasing in steps of 0.1.
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Figure 19: Autonomous prediction of the Lorenz-63 system using the single delay reservoir (Eq. (2.14))
with 7(t; o) drawn from a uniform distribution ¢(0.36, ). The first plot on the left corresponds with
o = 0 and the next ones with ¢ increasing in steps of 0.1.

4 Conclusions

In this work, we have investigated the effect of temporally modulated feedback in a single-node
time-delayed reservoir across several benchmark tasks. We found that introducing variability in
the feedback modulation through the nonlinear term in a single-delay reservoir consistently im-
proved the accuracy of one-step-ahead predictions for NARMA-10, Mackey—Glass, and Lorenz-63
when 7)(t) was sampled from either a uniform or a normal distribution. In all three cases, the
maximal improvement in prediction due to the introduction of variability is observed when 7(t) is
drawn from a normal distribution. By contrast, direct modulation of the feedback coefficients in
a two-delay reservoir yielded no improvement for NARMA-10 and only a reduction in RNMSE for
Mackey—Glass at specific values of the modulation strength S(t).

For autonomous dynamics reconstruction, nonlinear feedback modulation proved particularly
beneficial in the Mackey—Glass system, where it enhanced both prediction accuracy and divergence
time. In the best-performing experiments, temporal modulation enabled the reservoir to reproduce
the system dynamics for up to five Lyapunov times, substantially surpassing the performance of the
optimal modulation-fixed reservoir. Consistent with the results for the next-step prediction task,
the largest improvements—both in terms of experiment averages and individual realizations—were
obtained when 7(t) was sampled from a normal distribution. In the Lorenz system, an increment
in average divergence time was also observed exclusively when 7(t) followed a Gaussian distribu-
tion. It should be studied how the introduction of symmetry consideration in the reservoir affects
these results. By contrast, direct modulation of the feedback coefficients in a two-delay reservoir
showed no systematic improvement: while certain experiments outperformed the optimal case in
Mackey—Glass, no consistent gains with respect to the optimal case were observed on average.

Taken together, these results indicate that performance gains are most pronounced when vari-
ability in the feedback is introduced within a controlled range, avoiding extreme values of 7(t) that
destabilize the reservoir.

Further research should investigate the effects of temporal feedback modulation for different
values of 6, which define the effective feedback connectivity between virtual neurons, as well as for
varying numbers of virtual neurons. In addition, the influence of temporal modulation in multiple-
delay reservoirs should be systematically analyzed in the context of the Lorenz system. More
broadly, future work is required to identify the specific characteristics of n(t) that are responsible
for enhancing reservoir performance, and to clarify the mechanisms by which temporal modulation
alters the reservoir dynamics.
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Abstract

Neurons, the fundamental building blocks of the brain, exhibit diverse morphologies that crit-
ically shape their dynamics and function. Alterations of neuronal structure, such as those arising
from aging or neurological disorders, raise the key neurophysics question of how morphology influ-
ences information processing. In this work, we address this problem using a biologically plausible
computational model of a pyramidal neuron, implemented with compartmentalized dendrites. By
systematically applying dendritic pruning, we analyze how changes in morphology affect three core
functional parameters: energy consumption, firing rate and dynamic range. These results provide
mechanistic insights into the role of dendritic complexity in neural coding and offer a framework
for interpreting the functional consequences of morphological alterations in health and disease.

1 Introduction

Neurons are the fundamental processing units of the brain. They receive information from thou-
sands of synaptic contacts, integrate these inputs through their complex dendritic trees, and gen-
erate action potentials or spikes that travel along the axon to communicate with other neurons. A
spike represents the basic unit of neuronal output, and can be defined as a rapid depolarization of
the membrane potential, encoding the neuron’s decision to respond to its inputs. This output is
typically measured as the firing activity at the soma and across dendritic compartments, linking
dendritic integration to neuronal communication.

Despite their central role, the function and behaviour of dendritic trees is not yet fully uderstood.
Traditional neuron models often simplify dendrites as passive conductive cables or reduce them to
point neurons, thereby underestimating their contribution to computation. However, accumulating
evidence has revealed that dendrites exhibit active properties, including local dendritic spikes and
nonlinear integration, which strongly influence somatic profiling profiles [1]. While previous studies
have examined dendritic function using simplified models [2} 3| |4], none have systematically inves-
tigated how dendritic pruning affects neuronal dynamics in a multicompartmental model operating
in continuous time, a framework that more closely reflects biological conditions.

In this work, we address this gap by simulating a multicompartmental pyramidal neuron model
from Figure [I|implemented using the Dendrify [5] library on top of the Brian2 [6] simulator. The
model explicitly represents multiple dendritic branches, each capable of receiving synaptic input
and eliciting subthreshold responses or dendritic spikes. To assess how dendritic complexity shapes
neuronal function, we systematically prune by reducing the number of dendritic branches, thereby
generating simplified morphologies of the same neuron. Computational modeling offers precise con-
trol over these manipulations, enabling direct monitoring of how structural changes alter function,
even in highly complex dendritic trees [1]. An example of the spiking rate output across the dif-
ferent dendritic compartments and soma can be seen in Figure [2] illustrating the compartmental
behaviour under varying Poisson input frequencies.

We focus on three fundamental parameters: the firing rate, dynamic range and energy con-
sumption. Studying these parameters in relation to dendritic morphology provides insight into
the trade-offs between efficiency and computational power in neurons. By comparing models with
different degrees of pruning, we examine how structure supports function, and how simplification
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Figure 1: Schematic of the pyramidal multicompartmental neuronal model with the compartments
and implemented connections.
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Figure 2: Spiking rate of the different compartments and the soma for varying input with the standard
deviation from 10 trials.

degrades specific aspects of neuronal dynamics.

The main objective of this project was therefore to analyze how different dendritic morphologies
affect neural dynamics and function in a continuous timescale, using computational simulations of a
biophysical compartmental neural model based on Dendrify and Brian2. To illustrate the modeling
approach, Figure [3| shows the compartmental structure of the model and the pruning strategies
applied. It was seen that pruning reduces dendritic complexity, resulting in a trade-off: the decrease
of metabolic cost at the expense of a lower dynamic range.
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Figure 3: Pruning steps implemented for the different pruning techniques used.

2 Theoretical Model

The simulations were conducted using a 9-compartmental pyramidal model designed to emulate the
behaviour of excitatory neurons from the CA1 area of the hippocampus, with 1 soma and 8 dendritic
branches. The initial experimentally validated model was obtained from , however for this study,
Poisson inputs with different frequencies were fed to all of its compartments (Equation, where
(6t = 1ms) is an arbitrary time step, as defined in .

pr = 1 — exp(—hdt) (2.1)

The equations from the model are described from Eq. to Eq. obtained from [5].The
neuron model and equations were implemented using the Dendrify library on top of the Brian2 sim-
ulator (and forward Euler integration), which enabled explicit represenntation of dendritic branches
with active ionic conductances. each of the 9 compartments of the model (1 soma and 8 dendrites),
had biophysically motivated parameters (membrane capacitance, leak conductance, and reversal po-
tentials), derived from experimental pyramidal cell data. Whilst the soma captured spike-frequency
adaptation, dendritic compartments allowed the generation of local dendritic spikes. The compart-
ments were coupled through axial currents to ensure realistic electrotonic interactions between soma
and dendrites.

The somatic compartment modeled was an integrate and fire (I&F) model Eq. , that had
conductance-based adaptation Eq. .

avy,

i Nh g VB - (V- B0+ YT Y T, (22
i€Cs jess
d
TA%:§A|V/Z_VA|_QA (2.3)

After a spike generation, a first reset drove the voltage to a high value (biological spike am-
plitude), whilst the conductance of the adaptation current incrementally increased by a constant
amount (spike-triggered adaptation). Then, after a short decay, the voltage was reset. This is

described in Eq. (2.4), (2.5)

VWSL — ‘/spike

if V2 > Vi, then < ga < ga+0 (2.4)
tspike —t
if t = tspike + 0.5 ms then V) < Vigser (2.5)

In the case of the dendritic compartments, instead of the adaptation current from the soma, a
sodium current for initiation and potassium current for repolarization, governed by Eq. (2.6) and
Eq. (2.7)) respectively, controlled the dynamics of the dendritic spikes.

For the sodium current to be activated, two conditions had to be met: a voltage threshold had
to be crossed for fna to be 1, and the time had to be outside of the refractory period of the sodium
current.
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On the other hand, the potassium current is generated once a delayed time has passed from the
activation of the sodium current.

g;l(dr — gg{dr + g?(dr
if {t >t +tSH, then o 1 (2.7)
deT 0

As the soma and dendrites are connected, in this multicompartemntal neural model each of the
compartments receives a current (”axial current”) from connected compartments (Ck), defined by

Equation2.§|
In=>"1* (2.8)

ieCk
It is of importance to note that the specific-axial-current is defined by the coupling conductance,
and is dependent on the morphological properties assigned to each compartment.

The synaptic currents flowing to each compartment were AMPA and NMDA, being the math-
ematical description Equation and syn the type of synapse (AMPA or NMDA).

7 t - t re t - t re
ssyn(t) = H(t — tpre) <eXp ( deciy ) — exp (7—mspe>> (29)
Tsyn syn

While for the AMPA current, the voltage dependence was neglected, the NMDA currents
(voltage-dependent due to a magnesium blockade, captures nonlinear dendritic integration) fol-
lowed Equation [2.10

1
1+ [R2] - exp (—a(V, = 7))

Finally, the total synaptic current of a compartment (i), is obtained from the summation of all
incoming currents (Equation [2.11]) from its presynaptic connections, which can be of different or
the same type of synapses, and can be received simultaneously.

o(Vi) = (2.10)

L) = Garpa(Vi = BEanvpa) fanpa Y siypa(t)

JE€Shmpa
+gvapa(Vm — Exmpa)fnapa Z sNupa(t)
JESILVI\lDA
+35apa(Vi, — Ecapa)o(Vih) faapa Z s¢apat) (2.11)

The dendritic spikes properties and geometry of the compartments was maintained throughout
the simulations, as well as the synaptic properties, which were all defined to be ca3 for both
AMPA and NMDA synapses. All simulations had a simulated time of 1200ms, with the first 200ms
discarded to avoid transient initialization effects. A timestep of 0.1ms was used, and each condition
was repeated for 10 independent Poisson realizations to obtain average responses and variability.

3 Results and discussion

3.1 Firing Rates

The firing rate was calculated as the number of spikes per unit time at soma and dendrites, giving
information of the excitability and integration efficiency. This parameter was obtained for the soma
and dendritic compartments for each of the proposed neural models. Figure [4| shows the firing rate
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Row A shows the models corre-

sponding to the pruning steps of distal pruning, row B shows the models corresponding to the pruning
steps of edges pruning, and row C shows the models corresponding to the pruning steps of different

pruning.
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of each compartment based on the input frequency. The multicompartmental model reveals dis-
tinct firing profiles in this figure for dendritic compartments and the soma under increasing input
frequencies. In the intact model (first model, ”M0”), the dendritic compartments display heteroge-
neous response curves, with the medial and distal branches saturating before the proximal, oblique
and basal branches. Furthermore, the soma shows a more gradual sigmoidal increase, reflecting
integration of distributed dendritic activity.

As dendritic pruning is applied (second and third columns), most dendritic compartments have
similar, highly saturated response profiles, while the somatic response shows lower slope and re-
duced maximum frequency, suggesting that pruning diminishes the efficiency of somatic integration
when it involves the removal of the basal dendritic compartments

Furthermore, Figure [5] showing the comparison between somatic firing rate functions across
the three pruning strategies, highlights that pruning also reduces the capacity of the neuron to
differentiate input regimes of small frequencies. Thus the neuron is less sensitive to small frequencies
with less dendritic compartments.

200 Response Function - Edges Pruning Response Function - Distance Pruning 200 Response Function - Different Pruning
Original (16.66 dB) 200- Original (16.66 dB)
—— First_prunning (13.89 dB) —— First_Prunning (15.59 dB)
150- —— Second_prunning (11.04 dB) 150 - 150- —— Second_prunning (12.99 dB)
~ ~ ~N
< 100- < 100- < 100-
(%] wv w
L L L
50- j 50- Original (16.34 dB) 50-
—— First_prunning (16.60 dB)
—— Second_prunning (16.33 dB)
102 10° 104 102 103 104 102 10° 104
r (Hz) r (Hz) r (Hz)

Figure 5: Somatic response functions under different pruning strategies.

3.2 Dynamic Range

The dynamic range, defined as the input frequencie values over which the neuron can distinguish
changes in input intensity, was used as a measure of coding capacity. This parameter was calculated
by obtaining the input frequency range that corresponded to the 10 % and 90% total somatic firing
rate. A visual representation of an example of the response curve and limits for the dynamic range
have been represented in Figure [6] The example shows a saturation band where the compartment
cannot further distinguish input frequencies, as there is no change in the somatic firing rate, and
the dynamic range, with the input frequencies that can be distinguished based on the somatic firing
rate produced.

Dynamic Range A = 10.52 dB

i
2004 Response Function !
~ === f1o {
z --- foo |
|
2 150 |
© 1
o 1
o i
£ 100
i 1
Y] i
5 5 i |
g :
0 |
0 //
H

102 103 104

Input Frequency (Hz)

Figure 6: Example of the response function obtained for each of the models and compartments for a 1-
compartmental neuron, showing the somatic firing rate for each input frequency value on a logarithmic
scale.

After obtaining the response function and dynamic range for each of the multi-compartmental
models, the dynamic range was seen to diminish throughout pruning steps, thus indicating that
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dendritic compartments increase the dynamic range of the neuron, shown in Figure(7], which agrees
with the predictions from and , which found that bifurcations played a major role in the
increase of the dynamic range in neurons. This figure also shows that whilst the decrease in the
dynamic range from the first pruning step is present in both pruning techniques, it is more noticeable
in the edges technique. When observing the morphology, one of the possible hypothesis that would
arise is that there are indeed less dendrites in the model with less dynamic range, thus being this
characteristic the one to define the property and decrease, however, whilst the second step of edges
pruning is greater than the third step of distance pruning, the model has two dendrites whilst the
latter has three.
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u

i
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w

Pruning technique
12- —e— Edges Prunning

—e— Distance Prunning
11- —e— Distance Prunning With Basal Input

Dynamic Range (dB)

orig‘inal 1st step‘pruning 2nd steh pruning
Pruning Step

Figure 7: Dynamic range comparison between pruning steps within different pruning strategies.

Moreover, when representing the bar plots with the dynamic ranges of different compartments, it
was seen that the dendritic dynamic ranges were also affected by the pruning, as seen in Figure 8]
where the absence of dendritic compartments such as the oblique compartment, increased the
dynamic range of the proximal dendritic compartment, seen in the third pruning step of the pruning
of the edges. However, not all of the dendritic compartments are shown to change throughout
pruning steps, an example being the oblique compartment, which does not vary throughout any
pruning step of all three pruning techniques.
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Figure 8: Compartmental dynamic range between different compartments, pruning steps and strate-
gies.
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3.3 Energy Consumption

Defined as the estimation from the ratio of dendritic spikes to somatic spikes, the parameter of
energy consumption represents the metabolic cost of generating spikes relative to the effective
output. A comparison of the energy consumption throughout different pruning steps has been
represented in Figure [0] This figure suggests that the somatic firing rate does not only depend on
the average dendritic firing rate, as even though this value becomes stagnant at somatic frequencies
of 100Hz, the somatic firing rate keeps increasing. Moreover, when observing Figure |8 there
may be a change in the morphology on the somatic response function once the dendritic response
function saturates, suggesting a change in one of the factors that determines the somatic firing rate
(the dendritic spike rate).

§ Edges Pruning Distance Pruning (basal input) DifferentPrunning
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@

£ 200- 200- 200-
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5 Original Original Original
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o

z 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Somatic Firing rate (Hz) Somatic Firing Rate (Hz) Somatic Firing Rate (Hz)

Figure 9: Energy consumption throughout pruning steps and pruning strategies.

When only observing the somatic firing rate range where there are variations on the average
dendritic firing rate in Figure the results suggest that, depending on the compartment that is
being pruned, the energy consumption will be higher or lower (Figure ) The energy consump-
tion shows to be higher when the basal compartment is removed, than when the medial or distal
compartments are pruned for most of the somatic firing range where the dendritic firing rate varies.
This is more clearly shown in Figure that obtains the area under the curve before the dendritic
spiking rate stagnation.
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200- 200- 200-
150- 150- 150
100- 100- 100-
50- 50- 50-

Original
—— First_prunning
—— Second_prunning 0-
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Figure 10: Zoomed graph of energy consumption throughout pruning steps and pruning strategies for
somatic firing rate range of 0-100Hz.

Moreover, even though when pruning the neuron the energy consumption decreases, seen in the
subplots of the first two pruning techniques for Figures [9] and for the first two pruning steps,
an abnormality is seen in the third pruning step of the distance pruning strategy. The energy con-
sumption seems to increase at lower somatic firing rates, and decrease at higher somatic firing rates.

Interestingly, whilst in both the second pruning step of the edges pruning technique and the
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Figure 11: Area under the curve for the energy consumption throughout pruning steps and strategies
for somatic firing rate range of 0-100Hz.

second pruning step of the distance pruning technique the only change between steps is the removal
or the medial compartment, the change in the morphology of the energy consumption curve is
different.

4 Conclusions

In this study, we investigated how dendritic morphology influences neural computation by system-
atically pruning branches of a multicompartmental pyramidal neuron model. By analyzing firing
rates, dynamic range and energy consumption, we demonstrated that dendritic complexity plays a
critical role in shaping neuronal dynamics and coding capacity. Specifically, pruning lowered the
somatic dynamic range, altered the trade-off between integration efficiency and metabolic cost. Our
results suggest that the presence of multiple dendritic compartments not only enhances sensitivity
to weak inputs, but also broadens the range over which input intensities can be distinguished,
thereby increasing the computational power of the neuron. At the same time, this comes at the
expense of higher energetic demands, highlighting an evolutionary balance between efficiency and
capacity. Moreover the results presented from the multi-compartmental model agree with the find-
ings from simplified models such as [4]

Altogether, these findings support the view that dendritic structure is not a redundant anatom-
ical detail, but a key determinant of neuronal function. Computational simplification via pruning
revealed how morphology constrains both the efficiency and richness of neuronal computations. Fu-
rute work could extend this approach by incorporating different inputs, plasticity mechanisms and
larger-scale network models such as , to better understand how dendritic architecture contributes
to collective dynamics and information processing in cortical circuits.
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Abstract

The aim of the study is to explore the effects of space and advection in the spatiotemporal popu-
lation dynamics of rivers. Treating the river as a 2D rectangular domain with periodic boundary
condition we can observe the behavior of a two species system with interspecific competition related
to space, diffusion and advection. Most of the work will focus on the Gray Scott model exploring
pattern formation, Hops bifurcation and the role of advection in the stability of the steady states.
For the Predator-Prey, we show that diffusion and advection don’t have any role in the 2D exten-
sion, except for a phase shift. Instead we illustrate in the 2D Grey Scott that diffusion is crucial for
the formation of spatial patterns and advection shifts the stability regions allowing the population
to persists in areas where otherwise it would have gone extinct.

1 Introduction

Rivers are complex and dynamic systems, exhibiting significant variability in temperature, mor-
phology, chemical and biological composition. The ecosystem dependency of so many parameters
indicates that multiple studies are needed to fully comprehend these phenomena and their devia-
tion from a normal behavior. Nowadays extreme events like severe drought and eutrophication are
effecting the river species population worldwide causing the extinction of most of them [1] [3].

A classical approach would be using a 0D model between two interacting species in order to de-
termine the effects from competition and the struggle for food. If we want to consider some space
elements there exist two typical ways on how to model a segment of the river in the transfer zone.
The cross sectional profile is used to describe the different behavior of the species varying the zone
in deepness using a 1D model: from a bottom static benthic to a surface where the risk of washout
is larger[4].

Instead we have adopted a top view (planform) approach that permits to focus on the interspecific
interactions enlightening the role of a 2D space in the distribution and survival chance of the two
species. The river domain will be a rectangle of sides {L,,L,} with periodic boundary condition
with the intention of eliminating spurious effects associated with external boundary variations,
focusing on the bulk of the river. The flowing of the river g, will be represented by a constant
advection parallel to the x axis.

The first model is the Predator-Prey proposed by Vito Volterra between the two world wars in
1926 which tried to describe the behavior of preys like anchovies and sardines and predators like
sharks and rays in the Mediterranean sea. It’s a classical and well known conservative model which
can’t reproduce most of the dissipative behavior occurring in nature, but permitted to analyze the
cycling temporal pattern and the counterintuitive effects of massive fishing.

The second is the Grey Scott which is a remarkable example of reaction diffusion model producing
a big amount of different spatial patterns: dots, stripes, spirals, gliders, solitons and mazes. The
instability analysis provides hints in order to find and classify the patterns, but most of the work
is possible via computational methods.
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2 Theoretical model

2.1 The 0D Predator-Prey model

It’s a coupled ordinary differential equation system in which there are two terms that make preys
grow and the predators die exponentially r and m and two terms of interspecific competition ¢ and
b. The 0D model is presented below:

dt

4P = —mP +bNP

AN _ N
{ N —cNP 21

where N is the number of prey and P the number of predator with r,c,m,b > 0 and r,¢c,m,b € R.
With the following change of variables it is possible to reduce the free parameters of the model

from 4 to 2 obtaining:
b
r==N
{ o (2.2)

(-0 -

Now it is possible to calculate the nullclines obtaining 4 different stationary points: (0,0), (0, 1),
(1,0), (1,1). The nature of these points is mostly clear if we see the stability matrix that corresponds
to the Jacobian matrix of the terms to the right.

A_(T(l—y) ro ) 2.4

my m(z —1)

That valued in the four steady states produce:

A=A = 6 O) (2.5a)

(
Ay =A = (S 8) (2.5b)
(

q*=(1,0)
q*=(0,1)
0 r
A=A ) = (m O> (2.5d)

Calculating the trace and the determinant of each steady state we can determine the nature of the
equilibria points:

tr(A1))=r—m>0 ¥Yr>m>0 (2.6a)
det(A;) = —mr <0 Vm,r (2.6b)

The point (0,0) is saddle because the trace is positive and the determinant is always negative.

tr(Ag) =r>0 Vr (2.6¢)
det(A3) =0 VYm,r (2.6d)

The point (1,0) cannot be easily determined because the determinant is null.

tr(As) =—-m <0 VYm (2.6e)
det(A3) =0 Vm,r (2.61)

The point (0,1) cannot be easily determined because the determinant is null.

tr(A4) =0 VYm,r (2.6g)
det(As) = —rm <0 Vm,r (2.6h)

The point (1,1) is a stable center because the trace is zero and the determinant is negative. We
expect circular orbits near this point. The phase diagram for the 0D model is the following;:
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Figure 1: Phase diagram of the Predator Prey model.
legend. It is possible to see circular orbits near the stable point.

The nature of the points is specified in the

Integrating numerically with an Explicit Euler method it is possible to reconstruct the periodic

orbits for an arbitrary initial point (zg, yo):

Predator Prey model 0D (x0,y0) = (0.85,0.85)

Time evolution

Prey
— predator

Phase diagram

13

Phase diagram

12

11

Predator

Population

0.9

0.8

300000 400000 500000 080 0. !
Prey

Time (u.a.)

0 100000 200000

Figure 2: Time evolution of the predators and the preys for the initial point (zg,y0) = (0.85,0.85)
and representation of the orbit in the phase diagram.

2.2 The 0D Grey Scott model

The Gray Scott is a autocatalytic model that brings to the formation of spatial patterns mostly
used for describing pattern formation in chemical compounds or in cluster of living organisms [5].

The chemical origin resides in the following reactions:

U+2V — 3V
U—10

(2.7)

Which can lead to another coupled differential equation system with the presence of cubic non

linear terms:

B — 2 + F(1—u) = f(u,v)
et .
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The only two parameters of the model are: F' > 0, feeding constant supplement of u and K > 0,
killing the product v with F, K € R. We will associate with u the preys and with v the predator
with continuity respect to the first model used.

Repeating the process we calculate the nullclines imposing in (f,9) = (0,0). Three steady
points are obtained:

(u*,v*) = (1,0) (2.9)

(u'ﬂv‘)z(i(l—i— 1_4(F—’};K)2>’2(F1—T—K) (1— 1—4(F+FK)2>> (2.10)

_ 1 4(F+ K)? F 4(F + K)?
(u ,v+)—<2<1 1-— 2 ),2(F+K) <1+ 1F>> (2.11)

Where the point [2.9] exists VF, K > 0 and the other two and exist if and only if are
satisfied the following conditions:

0<F<1i
2.12
{0<K<‘/F2‘2F (2.12)

Computing the stability matrix and substituting the steady points to determine their nature:

b= <_Uj}; "o —_(211~ﬁv+ K)) (2.13)
. a*=(1,0) N <_0F —(F0+ K)> (2.14a)
Bo ot o) = <_(U;—§ 5 F 2u+U__21ﬁé:+ K)) (2.14b)
Bs o =(u— o) N ((1():23 2 r 2u71;121f(}}:++ K)) (2.14c)

Calculating the trace and the determinant:

tr(By) = —(2F — K) <0 VF,K >0 (2.15a)
det(By) = F(F+ K) >0 VF,K >0 (2.15b)

Concluding that the trivial point is always stable in each region.

tr(By) = —(v7)* 4+ 2utv™ — (2F + K) (2.15¢)
det(By) = —((v" )* + F)2uTv™ — (F 4+ K)) +2ut(v™)? (2.15d)
tr(Bs) = —(v")* +2u"v" — (2F + K) (2.15¢)
det(B3) = —((v")* + F)2u vt — (F+ K)) +2u™ (v")? (2.15f)

Solving for F,K we obtain the following condition:

F>%(—\/k—4k%—2k+\/%) (2.16)

The point (u,v™) is always a saddle point and the point (u~,vT) is stable if and only if the
inequality is satisfied. The intersection between the previous condition and equation [2.12] exist
and is called a Bogdanov-Taken point of codimension two. Codimension is the difference between
the dimension of the parameter space and the dimension of the corresponding bifurcation boundary.
The classification is made using the definitions of Elements of Applied Bifurcation Theory [0] as
reference.

The following picture summarize what was said about the parameter space.
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Figure 3: Parameter space of the 0D Gray Scott model. The saddle node and the Hopf bifurcation
are visible. It’s possible to notice also the Bogdanov-Taken point

Three examples of phase diagrams are shown below with a set of parameters respectively from the
I, IT and III zone.

Stream Grey Scott equation

®  Stable point Stream Grey Scott equation
X saddle point

® Unstable ® stable point

% saddle point

\ ® Unstable

(a) Phase diagram I: F=0.2, K=0.06 (b) Phase diagram II: F=0.0155, K=0.04

Stream Grey Scott equation

® stable point
x  Saddle point
® Unstable

== e e

(c) Phase diagram III: F=0.0857, K=0.03

Figure 4: Phase diagrams. The trivial point always exists instead the other two are visible only in the
phase diagram II e III. The nature of the third point changes from II (stable) to III (unstable)
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The point (u~,vT) in the type IT phase diagram is a stable focus as it’s possible to see in the

trajectory example 5] but thanks to Hopf bifurcation it forms in type III phase diagram a limit
cycle as in figures [6a] and [6b}

Grey Scott model 0D (x0,y0) = (0.3,0.25)
Time evolution
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Figure 5: Time evolution in the phase diagram II and example of trajectory: F=0.0857, K=0.03. The
stable focus is shown.

Grey Scott model 0D (x0,y0) = (0.3,0.25)

Time evolution
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(a) The limit cycle is a topological barrier for the outside

Grey Scott model 0D (x0,y0) = (0.15,0.25)
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(b) The limit cycle is a topological barrier for the inside

Figure 6: Time evolution in the phase diagram III and example of trajectory: F=0.0857, K=0.03

3 Results and discussion
3.1 The 2D Predator-Prey model

We introduce a 2D rectangle of sides (L, L,) with periodic boundary condition on both sides

P(z,t) and N(z,t) will now be probability density functions with domain the rectangle. Adding
diffusion and advection we obtain the following formula:
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{% = DNyV2N(3,t) — Gne - VN(Z,t) + rN(,t) — cN (T, t)P(Z, 1) 51)

t
ALY — DpV2P(Z,t) — gps - VP(Z,t) — mP(Z,t) + bN (z,)P(Z, 1)

Where Dy and Dp are the diffusion constants for Preys and Predators, g;, is a constant velocity
directed on the z axis. For all the practical purposes we will consider the difference between the
two velocities g, = Ag. As initial condition is reasonable to choose a constant value with noise
added over the domain:

Figure 7: Initial conditions of the predators and the preys distributions for the initial point (zg,yo) =
(0.85,0.85) with +0.04 of uniform noise.

Similarly to the 0D case, we compute the stability matrix as in the chapter 3 of the book ”Pattern
formation and dynamics in nonequilibrium systems” [2]:

_ —Dn¢* —iqgs + 1 — cP —¢N
= ( bp —Dpq? —iqg. —m +bN (3.2)
—Dng*  —em/b
Ay = Re{A,) - ( ) (3.3)
! (z*,y*)=(r/c,m/b) br/c  —Dpq

Ignoring for the moment advection and focusing on the real part of the (r/c, m/b) point, it’s possible
to calculate the trace and the determinant.

tI‘(Al) = —(DN + Dp)q2 <0 VDN,DP,(] >0 (34&)
det(Ay) = DyDpqg* +mr >0 YDy, Dp,q,m,r >0 (3.4b)

So the point is stable for every value considered. In fact time evolving the system with a fourth
order Runge-Kutta we can obtain the following graphs that directly compare with the 0D case:
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Predator Prey model comparison (x0,y0) = (0.85,0.85)

Time evolution Phase diagram

Prey 0D
—— Predator 0D
Prey 2D ~ ~
--- Predator 2D /

Phase diagram 0D
—  Phase diagram 2D

Predator

Population

0.9

0.8

0 100000 200000 300000 400000 500000 0.8 09 10 11 12 13
Time (u.a.) prey

Figure 8: Time evolution of the mean of the predators and the preys for the initial point (zg,y0) =
(0.85 £ 0.04,0.85 £ 0.04) and representation of the orbit in the phase diagram. Comparison with 0D
and the 2D model. It is possible to notice the difference in frequency, but not in amplitude of the two
systems

A further investigation is conducted trying to verify a correlation between the diffusion constants
and the oscillation frequency. The result is negative.

3.2 The 2D Grey Scott model

Introducing the 2D rectangle with periodic boundary conditions on both sides, we proceed with
some analytical result for diffusive case first and advection case then. Upgrading u(Z,t) and v(Z,t)
to probability density functions, the 2D model is the following :

)2+ F(1 —u(z,t))

QD = D V(1) ~ Gus - V(T 1) — u(Z, )o(z,
{ ¢ — (F + K)v(z,1) (39

t

WD — DV20(E, 1) — Guo - VO(Z, 1) + u(E, )0 (z, 1)

Where D,, and D, are the diffusion constants for Preys and Predators, g, is a constant velocity
directed on the x axis. For all the practical purposes we will consider the difference between the

two velocities g, = Ag.

We calculate the stability matrix, the trace and the determinant for the trivial point.

_ [(—v?* = F — D1¢® — iqQux —2uv
Ba= < v? 2uv — (F + K) — Dag® — iqgus (36)
—F - qu2 0
B; = Re{B,} = ( 2) (3.7)
ez 0 —(F 4+ K) — Dag
tr(By) = —(2F + K) — (Dy + D,)¢*> <0 VD,,D,,F,K,q>0 (3.8a)
det(By) = (F + Du¢*)(F + K + Dyg®) >0 VD,,D,,F,K,q>0 (3.8b)

It follows that the point (1,0) is always stable for every case included the constant advection one:

— <_qguac 0 ) (39)
q*=(1,0) 0 —4G9vzx

Because the matrix is non zero we expect an oscillatory behavior near the stable point.

By =Im{B,}

The simulation is made with a square grid of (n., ny) = (128, 128), alternative (256, 256) for preci-
sion purposes, with L, = L, = 64 and respectively a Az = {0.5,0.25}. The biological constants are
D, =2D, =0.02 and g, € [0,0.04]. The time evolution is made with a fourth order Runge-Kutta
in the Fourier space using the FFT. To facility pattern formation the initial conditions are 2 squares
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distributions in the middle of the grid with u(z,0) =1 — v(z,0).

The zones explored in the parameter space are defined in four blocks for practical purposes. Most
of the results were found in blocks 1 and 2. For each block about (10x10) parameter points where
uniformly taken to launch the respective simulations.

Stability of Fixed Point

0.25
Unstable
Saddle Node

0.20 4

0.15 -

0.10 -

0.05

Y
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Figure 9: Parameters space with stability enlightened. It’s possible to see the division in blocks

Predator V (step=240000)

. i

10 o1
% 20 in 3 10 ) o

(a) Pattern type A (self replicat- (b) Pattern type £ (maze). (c) Pattern type « (moving
ing spots). F=0.036, K=0.065 F=0.041, K=0.06 spots). F=0.011, K=0.0525

. i

(d) Pattern type p (worms). (e) Pattern type S (chaos). (f) Pattern type k (worms join
F=0.041 K=0.0625 F=0.006 K=0.025 into maze). F=0.081 K=0.06

A big amount of spatial patterns have been discovered:

Figure 10: Some examples of patterns discovered. Same initial condition applied for different F and
K. The classification is made using Pearson’s and Munafo’s [7] [§] as references
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Trajectories in the phase diagram are also diversified:

Gray Scott 2D

Time evolution Phase diagram

— Prey 100 — Phase diagram
— Predator Time evolution Phase diagram
10 — —
095 Prey 10 Phase diagram
— Predator
00 08 09
& <
§ 06 08
085 ] iy
2 &
2
g o4 07
0.80

e

Gray Scott 2D

02
06
50000 100000 150000 200000 250000 000 001 002 003 004 005 006 0.07 008 /
Time (u.a.) Predator

(a) Type X (self replicating spots).  F=0.036, e e
K=0.065. Stable. (b) Type k (maze). F=0.041, K=0.06. Stable.

Gray Scott 2D

Time evolution Phase diagram
Gray Scott 2D

10 —— Phase diagram
L\\[\\.V\/,,\,,_\/h,\«.wJ\, 1.000 Time evolution Phase diagram
0.8 0.975 1o — Prey 10 —— Phase diagram
0.950 —— Predator
g 06 — o 08 08
H — predator &
& 04 0900 § 06 06
5 3
02 0.875 g‘ 0.4 & o
0.850
00 0.825 0.2 02
50000 100000 150000 200000 250000 0.005 0.010 0015 0.020 0025 0.030
Time (u.a.) Predator
o 50000 100000 150000 200000 250000 0.05 0.10 0.15 0.20 0.25
. Time (u.a.) Predator
(¢) Type « (moving spots). F=0.011, K=0.0525.
Chaotic. (d) Type S (chaos). F=0.006 K=0.025. Chaotic.

Figure 11: Phase diagrams of four pattern types. In some cases the system is led to chaotic instability

Turning on advection and decreasing it at about half the simulation we see a rapid change in the
position of the stable point and consequently the collapsing to the trivial point (1,0).

77 0,040
Prodator, k = 0.0490, = 0,007 0.02 redator, k = 00490, [ = 0.0077 0

Predator, k = 0.0490, f = 0.0077, ).040 Predator 0.0490, = 0.00

Figure 12: From the initial condition the system forms a pattern called glider (F=0.0077, K=0.049)
that is completely stable around 20000 time steps (upper right). At 24000 the advection from g = 0.04
is progressively decreased (bottom left) until it reaches the value g = 0. At 36000 ts the system has
reached the point (1,0) and the predators are all extinct.
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20 (x0,40) = (0.9760436562598618,0.04955019012232424) 20 (x0,y0) =

Phase diagram Time evolution

Figure 13: The phase diagram and time evolution of a glider formation and extinction. At 24000 time
steps is possible to notice the angular point both in the time evolution and in the phase diagrams due
to the discontinuity caused by the parameter g. The predators are led to extinction.

It has been shown that decreasing the difference in velocity between the two species can force to
extinction one of them. A preliminary study on the Block 1 shows that thanks to advection the
areas in the parameter space where predators survive in the glider pattern are much wider than
the case with only diffusion. Even when the pattern doesn’t form in the first case, the formation of
the gliders is still possible with advection. On the other hand gliders seems to be the only possible
pattern that a constant advection forms breaking the ones seen in figure [I0]

For what we have just seen there seems to be strong suggestion of g as an instability type III critical
parameter as described in [2], but further study are needed.

4 Conclusions

Simple two species models like Predator-Prey are not affected by spatial considerations or constant
advection. Otherwise the Grey Scott model, that presents cubic terms, can reproduce a large variety
of patterns that mimic chemical and biological phenomena. For example, the A pattern ex-
hibits strong analogies with mitotic behavior. In its chaotic regime, recurrent break—reconstruction
cycles can be identified, reminiscent of processes typically observed in organic tissues.

It has been shown that a difference in constant advection between species is a critical parameter
for the system and enhances widely the stability and consequently the survival of the species. Fur-
ther studies are needed both in terms of analytical and numerical approaches in order to identify
quantitatively the critical parameter g and its capability to modify patterns and stability respect
to the diffusion regime. An extended research and classification of all patterns could delimit more
precisely the area interested by pattern formation and its relative change varying g. In addition
testing the system with more complex fluxes like gyres or parabolic flow and changing the boundary
conditions (reflective) could lead to an improved and more realistic model that permits a direct
confrontation with simplified but realistic natural cases.
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