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Abstract

In this project, a modified version of the well-known random generalised Lotka-Volterra (rGLV)
model is studied. The rGLV model is revised and then modified by defining a threshold in pop-
ulation density below which the species are considered to become extinct. Our aim is to study
the modified model both analytically and numerically. A new closed-form solution for the order
parameter equations, analogous to that of the rGLV model, has been successfully imported to the
modified model. Several numerical experiments have been carried out so as to assess the claim that
the modifed rGLV model is more stable than the original one.

1 Introduction

In this work we are interested in studying a modified version of the generalised Lotka-Volterra model,
usually employed in population dynamics to describe biodiversity and ecological communities. In
the original rGLV model, it is possible for the population density of any of the coexisting species to
take extremely low values and then grow again until taking rather unlikely high values. In order to
prevent these unrealistic scenarios predicted by the original rGLV model, the following modification
is considered.

A threshold is defined so that species whose population density goes below that critical threshold
are automatically considered to become extinct. Not only might the study of this modified rGLV
model help us prevent such undesired scenarios, but it also might provide relevant information
about how ecosystems behave under constraints in the population density of the coexisting species.

The project’s main goal has been understanding the existing analytical and numerical results for
the original rGLV model (see [1]), as well as extending and adapting those results for the modified
version of the rGLV model. Accordingly, Section 2.1 is devoted to revising the main theoretical
results for the original rGLV model. In Section 2.2, analogous theoretical results are studied for
the modified rGLV model. In Section 3, the results of several numerical experiments are discussed
and compared against the analytical predictions derived in the previous Section 2.2.

2 Theoretical model

2.1 Random generalised Lotka-Volterra model

Governing equations

We consider a system of N coexisting species, indexed by i = 1, ..., N . The population density of
species i is denoted by xi and evolves continuously in time according to the Generalised Lotka-
Volterra equations, which are given by the following set of coupled ordinary differential equations

ẋi = xi

(
1− xi +

∑
j ̸=i

αijxi

)
, (2.1)

where i = 1, 2, . . . , N and the coefficients αij describe the interactions between the species, repre-
senting the influence that species j has on species i. Negative values of αij imply that the presence
of species j is detrimental for species i. If αij and αji have opposite signs, the pair of species i and
j constitutes a prey-predator pair. Self-interaction coefficients of the form αii have been set equal
to αii = −1, so that the existence of species i suppresses its own growth in population density.
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Figure 1: The random sampling approach used in the rGLV model captures the inherent uncertainty
and natural variability of ecological systems. Sample of off-diagonal interaction coefficients for pa-
rameters µ = 0.1, σ2 = 5, Γ = −0.5 and N = 10 (left). Outline of the formalism used to analytically
study the rGLV model (right).

The diagonally opposed interaction coefficients αij are chosen randomly from a random distri-
bution at the beginning, and remain fixed along the dynamics. The random distribution considered
is a Gaussian distribution with the following mean, variance and correlation

αij =
µ

N
,

α2
ij −

µ2

N2
=

σ2

N
, (2.2)

αijαji −
µ2

N2
= Γ

σ2

N
,

where the over-line denotes the average value. The parameter µ is called the co-operation param-
eter and it models the strength in the interactions between species. Negative values of µ imply
competition between species, and tend to stabilise the ecosystem. The parameter σ2 is the variance
of the interactions and controls the diversity of the interactions. The parameter Γ is called the
symmetry parameter and it modulates the correlation between the off-diagonal interaction coeffi-
cients, ranging between −1 ≤ Γ ≤ 1. When it comes to numerical experiment, the off-diagonal
interaction coefficients are generated, for each pair i < j, as follows

1. Two independent random Gaussian variables u and v are generated, each with mean zero and
variance one u, v ∼ N(0, 1). The variables u and v for one pair (i, j) are independent from
those of any other pair.

2. The diagonally opposed coefficients are chosen to be

αij =
µ

N
+

σ√
N

u,

αji =
µ

N
+

σ√
N

(
Γu+

√
1− Γ2v

)
.

It is straightforward to check that the coefficients resulting from this construction have the
desired mean, variance and correlation indicated in (2.2), since(

αij −
µ

N

)2

=
σ2

N

[
Γ2 u2︸︷︷︸

=1

+
(
1− Γ2

)
v2︸︷︷︸
=1

+Γ
√
1− Γ2 uv︸︷︷︸

=0

]
=

σ2

N
.

Fixed point ansatz and order parameter equations

The rGLV model can be characterised following an analytical approach. Such an approach is
beyond the scope of our project, so in this section we only include a brief and shallow discussion
of it and focus on the final results that it entails. The final theoretical results, whose derivation is
widely discussed in [1], will be compared against numerical experiment.
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The analytical approach that can be used to study the rGLV model is based on the Martin-
Siggia-Rose (MSR) formalism, as well as dynamic mean-field theory. The MSR formalism is a
generating-functional method to derive a dynamic mean-field description for a system of stochastic
differential equations (SDEs). This formalism is formulated via path integrals. The goal is to find
a mean-field description that captures the typical behaviour of the model.

In order to do that, a perturbation field is added to the Lotka-Volterra equations (2.1) to gener-
ate dynamical response functions. Then, a moment generating functional is defined over all possible
trajectories of the Lotka-Volterra dynamics. After averaging over all possible realizations and tak-
ing the thermodynamic limit, an effective process is obtained showing what a typical representative
species experiences. In turn, the effective process allows one to obtain the order parameters that
account for the dynamics of the model (Figure 1).

It is then assumed that the system reaches a stationary state and that this stationary state
does not depend on the initial condition. It is further assumed that the dynamics reaches a fixed
point. In the original system this means that all xi tend to fixed-point values x∗

i at long times.
Under these stronger assumptions (fixed-point ansatz ), the dynamical mean-field description can
be further simplified to

x(z) = max

{
0,

1 + µM∗ +
√
qσz + h

1− Γσ2χ

}
. (2.3)

It should be noted that only x ≥ 0 is physically meaningful. In the final simplified description of
population density (2.3), three new parameters M∗, χ and q have been introduced. These are the
so-called order parameters and they are related to the successive moments of x, according to the
following definitions

M∗ := ⟨x(z)⟩∗
∣∣
h=0

, (2.4)

q := ⟨x(z)2⟩∗
∣∣
h=0

, (2.5)

χ :=
d

dh

(
⟨x(z)⟩∗

)∣∣∣∣
h=0

. (2.6)

Thus, M∗ is the average species concentration and χ is the dynamic susceptibility, which measures
the dynamic response of the system to perturbations. Finally, z is a static Gaussian random variable
of mean zero and unit variance. This ansatz implies that a fraction of the N initial species dies
out during the Lotka-Volterra dynamics. The fraction of surviving species will be denoted ϕ and
is given by

ϕ :=

∫ ∆

−∞
Dz, (2.7)

where Dz := e−z2/2
√
2π

dz. By means of substituting equation (2.3) into definitions (2.4)-(2.6), one can

obtain the following order parameter equations

M∗ =

√
qσ

1− Γσ2χ

∫ +∞

−∆

(∆ + z)Dz, (2.8)

1 =
σ2

(1− Γσ2χ)2

∫ +∞

−∆

(∆ + z)2Dz, (2.9)

χ =
1

1− Γσ2χ

∫ +∞

−∆

Dz, (2.10)

∆ =
1 + µM∗
√
qσ

. (2.11)

It is worth noting that the integrals in the parameter equations only depend on ∆ and can be
computed in terms of the error function. It is convenient to define the following functions of ∆

w0(∆) :=

∫ +∞

−∆

Dz =
1

2

[
1 + erf

(
∆√
2

)]
, (2.12)

w1(∆) :=

∫ +∞

−∆

(∆ + z)Dz =
1

2

[
e−∆2/2

√
2

π
+∆

(
1 + erf

(
∆√
2

))]
, (2.13)

w2(∆) :=

∫ +∞

−∆

(∆ + z)2Dz = w0 +∆w1. (2.14)
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We can rewrite the order parameter equations (2.8)-(2.11) in a more compact form using the
new notation (2.12)-(2.14) as follows

M∗ =

√
qσ

1− Γσ2χ
w1(∆), (2.15)

1 =
σ2

(1− Γσ2χ)2
w2(∆), (2.16)

χ =
1

1− Γσ2χ
w0(∆), (2.17)

∆ =
1 + µM∗
√
qσ

. (2.18)

Henceforth, the functional dependence on ∆ of the functions defined in equations (2.14)-(2.16)
will be omitted. In the next subsection, a closed-form solution of the system of order parameter
equations (2.15)-(2.18) is described, so that the three order parameters of interest M∗, χ and q can
be obtained.

Closed-form solution of the order parameter equations

The parameter equations (2.15)-(2.18) can be solved parametrically. This set of equations can be
thought of as a system of 4 equations with 4 unknowns, namely M∗, q, σ2 and χ. The remaining
quantities µ and Γ are known constants that are already fixed for the system. Lastly, ∆ is the
solution parameter, so it can be seen as known quantity.

What we mean when we say that this system of equations can be solved parametrically is that
all 4 unknowns can be rewritten only as a function of a certain parameter ∆ i.e. one can arrive
at a parametric solution of the form M∗ = M∗(∆), q = q(∆), σ2 = σ2(∆) and χ = χ(∆). Each
time the parametric solution is evaluated at a certain ∆ value, all unknowns can be calculated for
a different rGLV system as follows

1. Values for µ and Γ are fixed.

2. One ∆ value is substituted into the parametric solution M∗ = M∗(∆), q = q(∆), σ2 = σ2(∆)
and χ = χ(∆). Thus, values for all 4 unknowns of the system M∗, q, σ2 and χ are obtained.

3. A complete description of the order parameters M∗, q and χ is obtained for the system whose
defining properties are given by µ, Γ and σ2.

Numerical evaluation shows that the substitution of ∆ values between −10 ≤ ∆ ≤ 10 into the
parametric solution M∗ = M∗(∆), q = q(∆), σ2 = σ2(∆) and χ = χ(∆), is enough to retrieve the
order parameters of a wide range of systems with different properties µ, Γ and σ2. We include
the detailed procedure to solve the system parametrically now, since the generalised procedure in
Section 2.2 will be analogous.

We will solve for the 4 unknowns M∗, q, σ2 and χ in terms of the parameter ∆. We start by
using equation (2.16) along with the square of (2.17) divided by (2.16), that is{

1 = σ2w2

(1−Γσ2χ)2

χ2 =
w2

0

(1−Γσ2χ)2
(1−Γσ2χ)2

σ2w2

⇔

{
σ2χ2 =

w2
0

w2

χ− Γσ2χ2 = w0

⇔

{
χ = w0 + Γ

w2
0

w2

σ2 = w2

(w2+Γw0)2

.

This gives us χ and σ2 as a function of ∆. It only remains to study the unknowns M∗ and q.
Since we already know χ and σ2 as a function of ∆, it will be enough to rewrite M∗ and q in terms
of ∆, χ or σ2. On the one hand, equation (2.15) yields q as a function of known quantities and M∗

M∗ =

√
qσw1

1− Γσ2χ
⇔ qσ2 =

(1− Γσ2χ)2M∗2

w2
1

⇔ q =

(
(1− Γσ2χ)M∗

σw1

)2

.

If we find M∗ as a function of known quantities, we will have solved the system. Combining
equations (2.18) and (2.15) gives us the desired result

∆ =
1 + µM∗
√
qσ

=
1 + µM∗

(1− Γσ2χ)M∗w1 ⇔ ∆

w1
=

1

(1− Γσ2χ)M∗ +
µ

1− Γσ2χ

1

M∗ =
∆(1− Γσ2χ)

w1
− µ
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Figure 2: Stability diagrams for the rGLV model in the (µ, σ2) plane. Lines mark the onset of diverging
abundances, dashed lines are the onset of linear instability. The fixed-point equations are not valid in
this part of the phase diagram. On the left, the phase diagram for different values of correlation Γ.
On the right, we fix Γ = −0.5 [1].

To sum up, the parametric solution of equations (2.15)-(2.18) is given in terms of the parameter
∆ by the following relations

χ = w0 + Γ
w2

0

w2
, (2.19)

σ2 =
w2

(w2 + Γw0)2
, (2.20)

1

M∗ =
∆(1− Γσ2χ)

w1
− µ, (2.21)

q =

(
(1− Γσ2χ)M∗

σw1

)2

. (2.22)

Stability analysis

For a given value of Γ, the rGLV model shows two different types of instability in the (µ, σ2) plane,
as depicted in Figure 2. The values for the critical points in the plane can be predicted by the
theoretical model, as follows

• Instability due to divergent abundances. The onset of divergent abundances is signalled
by a divergent mean abundance M∗. Setting 1/M∗ = 0 in equations (2.21) and (2.20) we find
that this occurs when

(µ, σ2) =

(
∆

w1

w2

w2 + Γw0
,

w2

(w2 + Γw0)2

)
.

For a fixed value of Γ, the above equation provides a parametric description of a line in the
(µ, σ2) plane in terms of the parameter ∆.

• Linear instability. The Lotka–Volterra system also shows a linear instability, which can be
predicted via the formalism briefly described in Section 2.1. It can be proved (see [1]) that
the linear instability is signalled by the condition ϕσ2 = (1 − Γσ2χ)2, which leads to ∆ = 0
and ϕ = 1/2 when substituted into (2.8). If these values are again substituted into (2.9) and
(2.10), a system of two equations and two unknowns χ and σ2 is obtained. The solution yields
the critical constant value of σ2

c signalling the linear instability

σ2
c =

2

(1 + Γ)2
.

5
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2.2 Modified random generalised Lotka-Volterra model

Governing equations

As in Section 2.1, we consider a system of N coexisting species, indexed by i = 1, ..., N . The
population density of species i is denoted by xi but now it doesn’t evolve according to (2.1), but
rather according to a modified version of (2.1). Since a rigorous description of the governing
equations is beyond the scope of the project, the following sloppy but practical description in the
limit of continuous time will be acceptedẋi = xi

(
1− xi +

∑
i ̸=j αijxi

)
if xi > θ

xi = 0 otherwise
, (2.23)

where the new parameter θ represents a critical threshold in population density, below which species
are forced to become extinct. The rest of parameters have already been described in Section 2.1
and remain having the same definition and properties as before.

Fixed point ansatz and order parameter equations

Following an analogous analytical approach as that of the fixed point ansatz described in Section
2.2, one obtains the following dynamical mean-field description

x(z) =

{
1+µM∗+

√
qσz+h

1−Γσ2χ if
1+µM∗+

√
qσz+h

1−Γσ2χ > θ

0 otherwise
. (2.24)

This order parameters M∗, χ and q present in the above equation (2.24) are defined by equations
(2.4)-(2.6). By substituting equation (2.24) into equations (2.4)-(2.6), the modified parameter
equations can be obtained as follows

M∗ =

√
qσ

1− Γσ2χ

∫ +∞

u

(∆ + z)Dz, (2.25)

1 =
σ2

(1− Γσ2χ)2

∫ +∞

u

(∆ + z)2Dz, (2.26)

χ =
1

1− Γσ2χ

∫ +∞

u

Dz +
e−u2/2

√
2π

θ
√
qσ

(2.27)

u = θβ −∆, (2.28)

β =
1− Γσ2χ

√
qσ

, (2.29)

∆ =
1 + µM∗
√
qσ

. (2.30)

We can rewrite the parameter equations (2.25)-(2.30) in a more compact form using the functions
previously defined in equations (2.12)-(2.14), but evaluated at u instead

M∗ =
1

β

(
∆w0(u) + w1(u)

)
, (2.31)

q =
1

β2

(
∆2w0(u) + 2∆w1(u) + w2(u)

)
, (2.32)

√
qσχ =

θ√
2π

e−u2/2 +
w0(u)

β
, (2.33)

u = θβ −∆, (2.34)

β =
1− Γσ2χ

√
qσ

, (2.35)

∆ =
1 + µM∗
√
qσ

. (2.36)

Henceforth, the functional dependence on u of the functions defined in equations (2.12)-(2.14)
will be omitted.
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Closed-form solution of the order parameter equations

The parameter equations (2.31)-(2.36) can be solved parametrically. This set of equations can
be thought of as a system of 6 equations with 6 unknowns, namely M∗, q, σ2, χ, ∆ and β. The
remaining quantities µ and Γ are known constants describing the system. Finally, u is to be
regarded as a known parameter which will range from −10 to 10. The goal is to substitute all
equations (2.31),(2.32) and (2.34)-(2.36) into equation (2.33) until it is reduced to a cubic equation
in ∆, with coefficients only depending on u and on the above-mentioned known quantities µ and
Γ. After this is done, the cubic equation is solved and a value for ∆ is found. This is enough to
retrieve the values of all other 5 unknowns, as we will show now.

We will use equations (2.31),(2.32) and (2.34)-(2.36) to reduce equation (2.33) to a cubic equa-
tion in ∆. For clarity, we define the constant K this way

K :=
θ√
2π

e−u2/2,

which allows us to rewrite (2.33) in the compact form

√
qσχ− w0

β
= K.

First we will rewrite the LHS of the above equation. The first step is to elminate the unknowns χ
and σ2 by using equations (2.35) and (2.36) respectively

√
qσχ− w0

β
=

√
qσ

β
√
qσ − 1

−Γσ2
− w0

β
= −βq

Γ
+

√
q

Γσ
− w0

β

= −βq

Γ
+

√
q

Γ

∆
√
q

1 + µM∗ − w0

β
= −βq

Γ
+

∆q

Γ(1 + µM∗)
− w0

β
.

Equating the rewritten LHS and the RHS we find

−βq

Γ
+

∆q

Γ(1 + µM∗)
− w0

β
= K.

Multiplying the above equation by the factor β2Γ(1 + µM∗) yields

∆qβ2 − β3q(1 + µM∗)− w0Γβ(1 + µM∗)− β2KΓ(1 + µM∗) = 0.

Now we will use equations (2.31), (2.32) and (2.34) to eliminate the unknowns M∗, q and β
respectively in the above equation. We will study each of the 4 addends in the above equation
separately. The goal is to express each of them only in terms of the unknown ∆ and/or known
quantities. The terms will be rearranged by powers of ∆, as follows

∆qβ2 = ∆(∆2w0 + 2∆w1 + w2) = w0∆
3 + 2w1∆

2 + w2∆,

β3q(1 + µM∗) = β(∆2w0 + 2∆w1 + w2)

(
1 +

µ

β
(∆w0 + w1)

)
= (∆2w0 + 2∆w1 + w2)

[(
u

θ
+ µw1

)
+

(
1

θ
+ µw0

)
∆

]
= w0

(
1

θ
+ µw0

)
∆3 +

[
2w1

(
1

θ
+ µw0

)
+ w0

(
u

θ
+ µw1

)]
∆2+

+

[
w2

(
1

θ
+ µw0

)
+ 2w1

(
u

θ
+ µw1

)]
∆+ w2

(
u

θ
+ µw1

)
,

w0Γβ(1 + µM∗) = w0Γ
(
β + µ(∆w0 + w1)

)
= w0Γ

(
1

θ
+ µw0

)
∆+ w0Γ

(
u

θ
+ µw1

)
,

β2KΓ(1 + µM∗) = β2KΓ + β2KΓµM∗ =
u2 + 2u∆+∆2

θ2
KΓ +KΓµ

u+∆

θ
(∆w0 + w1)

=
KΓ

θ

(
1

θ
+ µw0

)
∆2 +

KΓ

θ

[
2u

θ
+ µ(uw0 + w1)

]
∆+

KΓ

θ

(
u2

θ
+ µuw1

)
.
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Now we can rearrange the equations by powers of ∆ and define the coefficients of a cubic
equation in ∆. We recall that the cubic equation comes from eliminating all unknowns except for
∆ in equation (2.33)

a∆3 + b∆2 + c∆+ d = 0, (2.37)

a := w0

(
1− 1

θ
− µw0

)
,

b := 2w1

(
1− 1

θ
− µw0

)
− w0

(
u

θ
+ µw1

)
− KΓ

θ

(
1

θ
+ µw0

)
,

c := w2

(
1− 1

θ
− µw0

)
− 2w1

(
u

θ
+ µw1

)
− w0Γ

(
1

θ
+ µw0

)
− KΓ

θ

[
2u

θ
+ µ(uw0 + w1)

]
,

d := −w2

(
u

θ
+ µw1

)
− w0Γ

(
u

θ
+ µw1

)
− KΓ

θ

(
u2

θ
+ µuw1

)
.

This means that the modified parameter equations have been solved. The parameter u will
range between −10 and 10. For each value of u, the coefficients a, b, c and d of a cubic polynomial
must be computed according to the above relations. Then the cubic equation is solved, and a value
for ∆ is found. We can obtain the value of β by using (2.37)

β =
u+∆

θ
.

Then equations (2.31) and (2.32) can be used to calculate M∗ and q respectively. The value of σ2

can be obtained via equation (2.36) as follows

σ2 =

(
1 + µM∗
√
q∆

)2

.

Finally, the value of χ can be computed from equation (2.33) this way

χ =
1

√
qσ

θ√
2π

e−u2/2 +
1

√
qσ

w0

β
.

Stability analysis

For a given value of Γ, a complete study of the instabilities of the modified rGLV model is still
lacking. What is clear is that the instability due to divergent abundances, analogous to that in the
original rGLV model (see Section 2.1), is present in the modified rGLV model as well. The values
for the critical points in the plane can be predicted by the theoretical model, as follows

• Instability due to divergent abundances. The onset of divergent abundances is signalled
by a divergent mean abundance M∗. First observe that, for the critical pairs (ν, σ2) such that
M∗ −→ ∞, one has ∆ −→ −u. This is because equations (2.34) and (2.37) imply

∆ =
θw1 − uM∗

M∗ − θw0
−→ −u.

Setting ∆ = −u in the cubic equation (??), a linear equation in the unknown µ is obtained.
This allows us to find the µc value of the critical pair as follows

µc = −µ0

µ1
,

where µ0 and µ1 are given by

µ0 := −w0u
3 + 2w1u

2 − w2u,

µ1 := w2
0u

3 − 3w0w1u
2 + (w0w2 + 2w2

1 + w2
0Γ)u− w1w2 − w0w1Γ.

Once µc has been computed, it must be substituted into the original cubic equation (2.37).
Then the original cubic equation is solved for ∆ as usual, which will in turn give some value
for σ2

c . Thus, the critical pair (µc, σ
2
c ) is computed as a curve parametrized by u. Another

procedure to find the critical lines of divergent abundance is the following. Consider equations
(2.25)-(2.30). They are formally identical to equations (2.8)-(2.11), except for two facts: in
the lower limits of the integrals involved one finds u instead of −∆, and there is an additional
term in equation (2.27) compared to its counterpart (2.9). We wil see now that, in the limit
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M∗ −→ ∞, the set of equations (2.25)-(2.30) reduces to the set of equations (2.8)-(2.11).
The first difference regarding the integration limits disappears when M∗ −→ ∞ because
∆ −→ −u. The second difference regarding the additional term disappears as well when
M∗ −→ ∞ because it approaches zero when ∗ −→ ∞, as we will see now. First of all, note
that the only way for M∗ to diverge is that β −→ 0 since equation (2.31) implies M∗ is
the quotient of a bounded constant quantity divided by β. By (2.32), this implies q −→ ∞
and therefore the additional term e−u2/2θ/

√
2πqσ2 −→ 0. The fact that the set of equations

(2.25)-(2.30) reduces to the set of equations (2.8)-(2.11) whenM∗ −→ ∞ implies that the lines
of divergent abundance must be the same for both the modified and original rGLV models.

• Other types of instability. The study of other types of instability, analogous to the linear
instability in the original rGLV model (see Section 2.1), is beyond the scope of this project
since an analysis based on the path integral formalism would be needed.

3 Results and discussion

In this section, we describe and discuss the results obtained in four numerical experiments related to
species abundances and the ratio of survivors, stability indicators, stability diagrams and abundance
distributions, respectively. Before that, a note on the numerical simulation of the order parameters
and stability indicators must be made.

The way in which order parameters are numerically simulated is the following

• The fraction of surviving species can be simulated by the alternative expression

ϕ = lim
N→∞

1

N

N∑
i

Θ(x∗
i ),

where Θ(·) denotes the Heaviside function, i.e. Θ(x) = 1 for x > 0 and Θ(x) = 0 for x ≤ 0.
The notation x∗

i indicates abundances at stable fixed points.

• The mean abundance M∗ per species is simulated according to the formula

M∗ = lim
N→∞

1

N

N∑
i

x∗
i ,

which is the first moment of abundances.

It is also important to define the following pair of stability indicators

• One possible indicator to characterize whether the system has reached a fixed point or not,
is to calculate the relative variation of species abundances (i.e. the fluctuations), which is
defined as

h2 =
1
N

∑N
i

(
xi(t)2 − xi(t)

2)
1
N

∑N
i xi(t)2

,

where the overline denotes averages over time in the stationary state. If h2 ∼ 0, the system
has converged to a fixed point, while a positive h2 indicates volatile dynamics or unbounded
growth if it diverges. When performing numerical simulations, we will say that a fixed point
has been reached if h2 < 0.001.

• Another relevant indicator is given by

d2 =
1
N

∑N
i

(
xi(t)− x′

i(t)
)2

1
N

∑N
i x′

i(t)
2

,

which allows us to study the phase with multiple fixed points by performing two simulations for
the same interaction matrix with different initial conditions, generated randomly. If d2 < 0.001
and h2 ∼ 0, the system reaches a unique fixed point independent of initial conditions. If d2 > 0
and h2 ∼ 0, a fixed point is reached but it depends on initial conditions. If h2 > 0, the system
has not converged to a fixed point, regardless of d2.

9
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Figure 3: Left column shows mean abundance M∗ as a function of σ2. Right column shows the fraction
of surviving species ϕ as a function of σ2. First row shows the results for a threshold θ = 0.01, second
row for θ = 0.1 and third row for θ = 0.2. Light colors show the results for the original rGLV model,
whereas darker colors show the results for the modified rGLV model. Solid and dashed lines represent
theoretical results for the modified and original rGLV models respectively. Point and star markers
represent numerical results for the modified and original rGLV models respectively. The study has
been performed for five different values of Γ, which correspond to the five different colors used in the
plots according to the legends on the bottom.
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Figure 4: Zoom view of subfigure in lower right corner of Figure 3 (left). Lines of divergent abundance
instability for both the original rGLV model (solid lines, light colors) and the modified rGLV model
with θ = 0.1 (dotted lines, dark colors). The results describe five different Γ values, color-coded as
indicated in the legend (right).

Species abundance and ratio of survivors

The goal of the first experiment was to test the closed-form solution of the order parameter equations
that has been extended for the modified rGLV model in Section 2.2, and see whether it agrees with
numerical experiment. Results for the original rGLV model have also been included for comparison
in lighter colors, as can be seen in Figure 3.

When a negligible threshold θ = 0.01 is chosen, the modified rGLV model matches the results
of the original rGLV model as expected (first row in Figure 3). For higher values of the threshold
θ = 0.1 (second row in Figure 3), no changes are noticed in mean abundance. The fraction of
survivors, however, does become lower in the modified case compared to the original rGLV model.
The difference is especially noticeable for positive values of the correlation parameter Γ.

It should be noted that the closed-form solution in the modified case successfully reproduces
numerical simulations, for low thresholds ranging between 0.01 ≤ θ ≤ 0.1 (see dark color lines and
points in the first and second rows of Figure 3). However, for higher θ = 0.2, theoretical predictions
deviate considerably from numerical simulations in the modified rGLV model (third row in Figure
3). It is still unclear whether these deviations are due to a lack of numerical precision or to the fact
that the theoretical lines are only expected to match numerical experiment in the stable phase i.e.
the theoretical lines are only valid for unique stable fixed points.

It is important to take into account that this experiment has been performed with no less than
N = 200 species (in some cases N = 250), no less than m = 100 realisations (in some cases
m = 150) and the dynamics has been allowed to evolve during no less than M = 7000 timesteps
(in some cases M = 10000) of length dt = 0.12.

Stability diagram

Finally, Figure 4 shows the divergent abundance lines of instability as theoretically predicted in
Section 2.2 for the modified rGLV model. Lighter colors show the same instability lines for the
original rGLV model. We clearly see that the lines of instability due to divergent abundances are
the same in both models, as predicted by theory in Section 2.2. In this case, numerical experiments
to test the theoretical predictions haven’t been performed because they are too computationally
expensive.

11



Proceedings of the SURF@IFISC (2024)

Figure 5: Left column shows stability indicator h2. Right column shows stability indicator d2. First
row shows the results for Γ = −0.5, second row for Γ = −1. According to each color-bar, colours
indicate the difference between the number of realisations in which h2 < 0.001 or d2 < 0.001 out of 20
realisations at each point, when the original and modified methods are used. Exactly 20 realisations
were computed at each point. For a first example, consider the point (−1, 7) in the upper left diagram.
Its blue color signifies that there were 4 realisations out of 20 in which the modified model showed
h2 < 0.001 and the original model didn’t. For another example, take the point (0, 7) in the lower right
diagram. Its dark blue color signifies that there were 20 out of 20 realisations in which the modified
model showed d2 > 0.001 and the original model showed d2 < 0.001. The threshold parameter was
θ = 0.1 in all cases.
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Stability indicators h2 and d2 in the (µ, σ2) plane

In order to assess the claim that the modified rGLV model is somewhat more stable than the original
rGLV model, a numerical experiment whose results are shown in Figure 5 has been performed. A
value for Γ is chosen (see the first row in Figure 5 to see results in the case Γ = −0.5). We will
now explain how the h2 indicator has been studied. The following procedure must be repeated a
total of 20 times

1. Define two matrices of size (U, V ), U being the number of studied values for µ and V being
the number of studied values for σ2. Fill these matrices with zeros. In one of the matrices,
values related to the original rGLV model will be stored. In the other, values related to the
modified rGLV model will be stored.

2. Fix a point in the (µ, σ2) plane, as well as a set of initial conditions and a random matrix of
coefficients.

3. Numerically integrate the associated equations of both the original rGLV model and the
modified rGLV model for a threshold θ = 0.1.

4. Compute parameter h2 for both the original rGLV model and the modified rGLV model. If
h2 < 0.001, sum a unit in the matrix entry corresponding to that point of the plane, in the
matrix associated to the corresponding model.

5. Repeat this process for all other points in the (µ, σ2) plane.

Thus, one obtains two matrices whose entries range between 0 and 20. One of the matricesMoriginal

describes, at each point of the plane, the number of realisations (out of 20) in which the original
rGLV model reached a value h2 < 0.001. The remaining matrix Mmodifed offers an analogous
description of the indicator h2 for the modified rGLV model. Finally, the difference between both
matrices Mmodified −Moriginal is represented in Figure 5 (see upper left corner).

The results shown in Figure 5 are inconclusive. For Γ = −0.5 (upper row of Figure 5), we see that
there is a region in which the modified rGLV model does show plenty of points in which h2 < 0.001.
This means that, in that predominantly blue region, it is more common for the system to reach a
fixed point when the modified rGLV model is used, compared to the original model. When d2 is
computed in all the plane using the modified model, it always happens that d2 > 0.001. Hence,
what we see in the upper right corner of Figure 5 is actually Mmodified −Moriginal = −Moriginal.
In other words, in the original model unique fixed points are reached regardless of initial conditions
in the colored region with d2 < 0.001. However, in the modified model, d2 > 0.001 is positive in all
regions, meaning that there is a dependence on initial conditions.

4 Conclusions

Generalized equations describing the order parameters of the dynamical system have been derived
for the modified rGLV model. A new closed form solution for the order parameter equations has
been found for the modified rGLV model. This has allowed to theoretically predict relevant order
parameters, which have been successfully tested against numerical experiment. The instability lines
due to divergent abundances have also been analytically studied, turning out to be analogous to
those of the original rGLV model. It remains to be numerically checked whether these instability
lines predicted by theory for the modified model are correct.

Little numerical evidence has been found in order to support the initial claim that the stability is
in some sense higher in the modified rGLV model for some regions of the (µ, σ2) plane, compared to
the original rGLV model. A deeper understanding of the MSR formalism and dynamic mean-field
theory are necessary in order to make significant progress in the analytical study of the modified
rGLV model.
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Abstract

The problem of group-level comparison of sets of complex networks is usually tackled through
two, prima facie orthogonal, approaches: the analysis of topological properties, as customary in
statistical physics, and the training and evaluation of Deep Learning models in computer science.
A fundamental and hitherto unanswered question is, which one is better? We here sketch an answer
by comparing the performance of both viewpoints on undirected unweighted networks generated
using a suite of synthetic models. We show that topological metrics outperform Deep Learning
whenever the differences between the networks are structural; the latter can nevertheless go further
and discriminate networks that are different but topologically equivalent. We further propose a
minimal way of merging both approaches, i.e. using the output of a Deep Learning model as a
topological feature, to achieve outstanding results in both situations.

1 Introduction

A fundamental problem arising in many scientific endeavours is the quantification, and eventually
description, of the differences between sets of systems, i.e. what is known as group-level comparison.
A clear example involving complex network theory is the study of the differences between brain
connectivity of patients and control subjects [1, 2, 3], both at structural and functional levels
[4, 5]. The researcher aims at knowing whether the reconstructed network representations are
dissimilar in both groups, or in other words, whether they are identifiable [6]; for then proceeding
to extract quantitative descriptions of such dissimilarities, towards validating hypotheses about
the pathogenesis, endophenotypes, or diagnostic markers of the disorder. Finding no differences
between groups can also be relevant, as it may either suggest that they are equivalent, or that the
reconstructed network representations are not optimal.

Among the many approaches for group-level network comparison [2], statistical physics has
traditionally focused on topological metrics [7], i.e. the quantification of specific structural patterns
or features. This simply requires comparing the probability distributions of a given metric for
both groups, leveraging suitable statistical tests when a p-value is needed; but is nevertheless
limited by its reliance on a pre-hoc hypothesis about which topological feature is actually relevant.
An alternative has recently started to emerge, based on Deep Learning (DL): roughly speaking,
computational models inspired by the structure of neurons in the human brain and trained to
perform specific tasks [8, 9]. Such models can be trained to distinguish between two sets of networks
in a hypothesis-free way, thanks to their capacity of internally synthesising relevant features from
data; yet, the black-box nature of this process makes it difficult to extract what is represented by
these features, and hence, which topological properties are affected.

If DL models are able to recover standard topological metrics [10], it stands to reason to expect
the former one to be able to discriminate groups of networks with a similar (if not higher) efficiency
than the latter ones. Whether and under which conditions this is actually true, is nevertheless a
question that has hitherto not been tackled. We here provide a first answer by resorting to a set
of generative algorithms, creating (undirected and unweighted) networks of known (and tuneable)
topological characteristics; for then evaluating the results yielded by both methodologies as a
function of the programmed dissimilarity.

2 Theoretical model

We consider the following sets of unweighted and undirected networks, created using well-known
generative models:
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• Erdős-Rényi (ER) random networks with fixed number of nodes and tuneable probability of
edge creation, i.e. of tuneable link density.

• Watts–Strogatz (WS) small-world networks [11] with fixed number of nodes and of nearest
neighbours (k = 4), and with tuneable rewiring probability. The latter parameter allows
to change two characteristics of the resulting networks, namely the efficiency [12] and the
transitivity [13].

• Random networks of known degree distribution, created using a configuration model [14].
The considered distribution corresponds to a power law, which is defined by its exponent;
the resulting networks thus have a tuneable α, calculated through the method proposed by
Clauset et al. [15].

• Modular networks created using a stochastic block model, composed of two communities of
equal size and equal inter- and intra-community link density. The tuneable parameter is the
latter, while the former is varied to maintain a constant overall link density. The resulting
measured property is the modularity of the network, estimated through the metric Q [16]
calculated over the best partition obtained by the Louvain community detection algorithm
[17].

• Networks of tuneable assortativity, obtained by starting from a Dorogovtsev-Goltsev-Mendes
graph [18] that undergoes a Spectral Graph Forge (SGF) [19] randomisation process with a
user-defined ratio of preserved eigenvectors of the initial adjacency matrix.
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Figure 1: Classification of synthetic networks of known properties. Each panel reports the results obtained when
comparing two groups of n = 200 networks created with synthetic models - see main text for definitions. Dark grey and
orange lines respectively correspond to the classification score obtained by the DL model, and by the DT trained with
the extracted topological metric (see title of each panel). For each set of lines, the vertical arrow indicates the value of
the tuneable parameter for one set of networks, while the abscissa the parameter for the second set. Light grey lines in
bottom graphs report the log10 of the p-value of a K-S test between the observed topological metrics in both groups;
note that values smaller than 10−20 are not reported. The dashed lines in the bottom left panel correspond to the use
of the maximum degree. In all cases, results correspond to the median calculated over 200 independent realisations.

To illustrate the approach underpinning the numerical experiments, let us suppose that two
equal-size sets a and b of ER networks are created with slightly different values of the link densities,
i.e. dal and dbl . Firstly, these can be compared by extracting the corresponding topological metric

(in this example, the sample link density d̂l) from each network, thus obtaining a probability
distribution for each of the two sets; and by comparing these using a two-sample Kolmogorov-
Smirnov (K-S) test. Note that in general d̂l ̸= dl, and that the latter is usually not known; hence

the need to resort to the sample estimation of the metric. Secondly, d̂l can be used to train a
classical machine learning model - we here consider a simple Decision Tree (DT) [20] of one single
level and a ten-fold cross-validation. Thirdly, the raw adjacency matrices can be used to train and
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evaluate a DL model, using a random half of the network in each case. The DL model here used
in an extended version [21] of the Graph Isomorphism Neural Network (GIN) paradigm [22], i.e.
artificial neural networks designed to learn over graph data, and leveraging recursive neighbourhood
aggregations to detect isomorphic structures [23] 1. In short, given two sets of networks differing in
a known topological feature, we compare three analysis methods: the statistical significance of the
difference between the observed feature; the usefulness of the observed feature to distinguish both
groups, leveraging classical machine learning; and the capacity of DL to recover similar information
only using the raw structure of the network.

3 Results and discussion

Fig. 1 reports a synthesis of the main results for networks of N = 30 nodes - this initial network size
has been chosen for being the number of sensors typically available in EEG setups. As expected,
the farther away are the parameters driving the creation of the two sets of networks, the smaller
the p-value yielded by the K-S test - see light grey lines in the bottom graph of each panel. The
behaviours of the two remainder approaches are nevertheless more complex. DL (dark grey lines)
clearly outperforms the direct use of the topological metric (orange lines) only in the case of the
power law model (bottom left panel). Note that this may be caused by the fact that the estimation of
this topological metric is very unreliable and noisy due to the very small network size, as confirmed
by the improvements in the results when considering the maximum degree, see dashed lines. In all
other cases, the use of the topological feature yields generally better results than DL.

In order to understand the effect of the network size, the top panel of Fig. 2 reports the evolution
of the classification score obtained by the DL approach as a function of the number of nodes in
the network. To simplify the analysis, networks correspond to the left-most value of each graph
in Fig. 1 - i.e. to the maximum difference between the two network sets. The evolution is quite
clear, and suggests that large networks are beneficial for DL, provided the difference is one that the
model can distinguish. Note that this result is not trivial: large networks contain more information,
and should therefore be more difficult to analyse. As previously suggested in the literature, our
understanding of the capacity of DL to avoid overfitting in the case of very high dimensional input
data is still quite limited [24, 20].

As a final point, we analyse whether the poor results obtained by DL for some network structures
could be due to the limited size of the data sets here considered - as it is well known that this
framework requires very large number of training examples in order to converge to a reliable result.
The bottom panel of Fig. 2 reports the evolution of the classification score as a function of the
number of networks available in the training phase. As in the previous case, each line corresponds
to the left-most value of each graph in Fig. 1. While a weak increasing trend can be observed,
no substantial benefit is obtained by using more than 400 networks; and, most notably, a larger
number of networks does not impact results for assortative, modular, and WS structures. In short,
the topological features to be detected are basic enough to require few examples to be described;
the low performance of DL in these three cases is thus due to structural limitations.

The above results seem to indicate that the DL model is detecting differences between networks
that are not necessarily linked to standard topological metrics used in the literature. We test this
by resorting to a synthetic model, based on two reference networks G1 and G2, both corresponding
to Erdős-Rényi graphs of equal number of nodes and link probability. We then create two sets of
networks, starting with ER graphs (also with the same number of nodes and links), but whose links
are copied from the corresponding reference network with an overlap probability po. In other words,
for po ≈ 0, the two sets are composed of completely random graphs - they are hence not identifiable.
Increasing po makes the networks in each set more similar to the corresponding reference, hence
more identifiable; up to the point that, for po = 1, all networks in a set are equal to the reference.
Note that both G1, G2, and all individual networks are random ones, i.e. they have no characteristic
structure; topological metrics yield values as expected in ER graphs, independently on po; and a
topological analysis would thus be useless.

As can be seen in the top panel of Fig. 3, depicting the median classification score as a function
of the overlap probability po, the DL model is able to successfully discriminate between the two
groups. Results are further stable independently on the number of networks used in the training
(bottom panel of the same figure), but worsen with larger networks (middle panel).

1The DL model is composed of three convolutional layers of dimension (h, h) and two fully connected layers of size
3h, where h = 32. Unless otherwise stated, training has been performed over 2, 000 epochs and with a batch size of 64;
and all results are the median over 200 independent realisations.
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Figure 2: Characteristics of the networks. (Top) Evolution of the classification score obtained by the DL model as a
function of the number of nodes N in each network. (Bottom) Evolution of the classification score as a function of the
number of networks n used in the training phase. Networks correspond to the left-most value of each graph in Fig. 1.
The vertical dashed lines indicate the number of nodes (top) and networks (bottom) used in Fig. 1, i.e. N = 30 and
n = 200. In all cases, results correspond to the median calculated over 200 independent realisations.
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Figure 3: Evolution of the classification score obtained by the DL model over synthetic networks with random topological
features - see main text for definition. Top, middle and bottom panels respectively report the results as a function of
the overlap probability po, the number of nodes N in each network, and the number of networks n used in the training.
In the two latter panels, po is set to 0.7; the orange dashed vertical lines further report the values used in the top one,
i.e. N = 30 and n = 200. In all cases, results correspond to the median calculated over 200 independent realisations.
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The attentive reader will have by now noticed an interesting behaviour in the bottom panels
of Figs. 2 and 3, i.e. a regular oscillation in the classification score when the number of networks
n used in the training is changed. This oscillation is the result of the interaction between n and
the batch size, i.e. the number of networks fed into the DL model at each iteration of the training
process, see Fig. 4. While no satisfactory answer can be given at this time, such interaction can be
the result of the destabilising effect that small batches can have, which allow escaping poor local
minima in the parameter space. Independently on the cause, the practitioner must be aware of
these potential problems.
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Figure 4: Evolution of the classification score, for the synthetic model of Fig. 3 and po = 0.7, as a function of the
number of networks n used in the training, and the batch size. Results correspond to the median calculated over 500
independent realisations.

As previously shown, topological metrics and Deep Learning seem to be complementary in
the way they describe networks. Notably, tertium datur: joining these two approaches is the
natural next step, by designing a model to estimate the identifiability of sets of networks, internally
combining both contributions. For the sake of simplicity, we here consider a minimal solution based
on a Random Forest model [25] trained on features comprising both standard topological metrics
and the output of a GINE model. The output of the DL model is thus considered as an additional
feature, at the same level of all topological metrics 2.

When comparing the classification score obtained with this hybrid model and that obtained
through DL alone (see Fig. 5), the former consistently outperforms the latter. Not only it recovers
the score obtained with topological metrics, but it even improves what obtained in the case of the
synthetic model presented in Fig. 3 - see light grey diamonds in Fig. 5. Even though the networks
composing both sets are random, the hybrid model is able to leverage the small differences in the
topological properties of the reference networks G1 and G2.

4 Conclusions

While it may be tempting to assume that DL models, being the state of the art in machine learning,
should outperform a more classical approach based on evaluating topological features on graphs,
we have here shown that the truth is much more complex. When the objective is to assess the
difference between two groups of networks, and when such difference is associated to a topological
feature that can be measured using a standard metric available in the literature, resorting to DL
is generally sub-optimal - see Fig. 1. On the other hand, when such differences are not of a
topological nature, and therefore these metrics become useless, the GINE model yields interesting
results - see Fig. 3. Still, the practitioner has to be aware of the mixed effect of increasing the
size of the analysed networks - see Figs. 2 (top) and 3 (middle). On the positive side, DL models
seem to be less sensitive than expected to the number of instances available for training, allowing
their application in problems of limited size - see Figs. 2 (bottom) and 3 (bottom). Not completely
surprising, the best solution involves merging both approached into a single classification algorithm,

2Note that more complex solutions could be envisioned, for instance by introducing topological metrics in intermediate
layers of the GINE network.
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Figure 5: Analysis of an hybrid model combining topological metrics and DL. Each point reports the classification score
obtained by the hybrid model, as a function of the score of the original DL model. Points correspond to the network
characteristics of Figs. 1 and 3, with symbol colours and shapes defined in the legend.

combining classical topological metrics with the output of the DL model - see Fig. 5. The best way
of creating such hybrid model, and the synergies that can emerge, may provide a fertile ground for
future research efforts.
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Abstract

We propose a quantum heat engine based on an Aharonov-Bohm interferometer with Rashba
Spin Orbit Coupling in a two-terminal geometry and investigate its thermoelectric performances in
the linear response regime. Sizeable thermopower (up to 0.5 mV/K) as well as spin seebeck coeffi-
cients (up to 0.4 mV/K) can be achieved by simply adjusting parameters of the setup. Changing
the magnetic flux, the asymmetry of the structure, a side-gate bias voltage through a capacitively
coupled electrode, the average electric field along the axial direction and the transmission of the
T junctions connecting the AB ring to the contacts allows us to finely tune the operation of the
quantum heat engine.

1 Introduction

The study of thermal properties and heat transport at the nanoscale has received significant atten-
tion in recent years [1, 2]. The substantial progress made so far has led to a deeper understanding of
the fundamental processes that govern thermal transport and dynamics in solid-state nanosystems,
from both theoretical and experimental perspectives. A particularly important question is whether,
and to what extent, quantum effects play a role in determining and controlling the performance of
nanoscale heat engines, such as their conversion efficiency and output power [4, 5].

While classical thermodynamics remains applicable at the microscale, it is well established that
quantum effects and phase coherence can significantly influence the behavior of nanoscopic heat
engines. In this context, the well-known Aharonov-Bohm effect [6], which describes the quantum-
mechanical phenomenon where a charged particle is affected by electric or magnetic potentials,
could serve as a foundational element for the development of efficient quantum heat engines.

Besides quantum mechanics describes particles possessing an intrinsic degree of freedom that
is not present in classical mechanics, this is spin. Then, a new field emerges when elements of
spintronics [8] and thermoelectrics [3] are combined, focusing on the study of the interplay between
spin, charge, and heat currents in materials. In spin caloritronics, it is explored how thermal
gradients (differences in temperature) can influence the spin and charge transport properties of
materials, and conversely, how spin currents can generate or manipulate thermal effects.

The Rashba interaction, a specific type of spin-orbit interaction, occurs in systems lacking
structural inversion symmetry, such as surfaces, interfaces, or certain types of semiconductor het-
erostructures. In the Rashba effect, the spin degeneracy of electronic states is lifted due to the
presence of an external electric field (or an effective field created by the asymmetry), causing a
momentum-dependent splitting of the different spin orientations. The strength of the Rashba [7]
interaction depends on the magnitude of the electric field and the material’s intrinsic properties.
This interaction is significant in spintronics, as it enables electric field control of spin states, which
is useful for designing spin-based devices like spin transistors. The emergent interdisciplinary field,
spin coherent caloritronics, benefits from the quantum coherence and the spin degree of freedom,
features that are intrinsic of quantum systems in the context of transport of charge, heat and spin
when thermal and electrical gradients are considered. In this context, ”spin-coherent” refers to the
preservation of the quantum phase relationship between spin states as they propagate through a
material or device. This coherence allows for the precise control of spin and heat currents at the
quantum level, leading to potentially novel thermoelectric effects and functionalities.

Here we envision and analyze a solid-state phase-coherent heat engine based on a mesoscopic
Aharonov-Bohm (AB) ring connected to two fermionic reservoirs. Indeed we consider a non-
reciprocal quantum ring [9], where one arm of the ring contains the Rashba spin-orbit interaction
but not in the other arm. This set-up is found to posses very unique electronic properties that are
reflected in the spin caloritronic transport. One of the key phenomena studied in spin caloritronics
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include the spin Seebeck effect [10], where a temperature gradient generates a spin current, and
the spin Peltier effect, where a spin current can cause a temperature change. These effects have
potential applications in energy conversion, such as developing new types of thermoelectric devices
that convert waste heat into electricity, as well as in spin-based information processing and storage
technologies.

2 Theoretical model

2.1 Aharonov-Bohm Effect in a 1D Quantum Ring

The set-up under study is that of a particle confined in a circular ring of radius b in the XY plane.
Inside the ring there is a magnetic field pointing in the axial direction creating a magnetic flux Φ,
which is assumed to be a tunable quantity. Under no other considerations the Hamiltonian of the
ring is [11]:

ĤAB =
ℏ2

2mb2

(
−i ∂
∂ϕ

+
Φ

ΦL

)2

(2.1)

Following the considerations outlined in Appendix A, the unnormalized eigenstates of this
Hamiltonian are planewaves of the form ψ(ϕ) = eikϕ with wavenumbers and energies taking the
form:

k = − Φ

ΦL
±
√

E

Erot
(2.2)

E = Erot

(
k +

Φ

ΦL

)2

=
ℏ2

2mb2

(
k +

Φ

ΦL

)2

(2.3)

where we have introduced the quantum flux ΦL = 2πℏc
e and the energy corresponding to the first

rotational mode Erot =
ℏ2

2mb2 .
The additional term found in the expression of the wavevector(2.2) has the interpretation of

an accumulated phase that the electron will acquire as it travels through the ring. This phase
can be used to build interferometers through quantum coherence, which is especially relevant when
considering transmission problems.

2.2 Aharonov Bohm effect in a 1D Quantum Ring with Rashba Spin-
Orbit Interaction

If we now include Spin-Orbit Interaction, the Hamiltonian of a one-dimensional ring of radius b is
given by:

Ĥ =
ℏ2

2mb2

(
−i ∂
∂ϕ

+
Φ

ΦL

)2

+
α

b
(σxcos(ϕ) + σysin(ϕ))

(
−i ∂
∂ϕ

+
Φ

ΦL

)
−i α

2b
(σycos(ϕ)− σxsin(ϕ))

(2.4)
where Φ is the magnetic flux , ΦL = 2πℏc

e is the quantum flux, α is the Rashba SO constant and
σx and σy are the Pauli matrices.

The expression can be simplified by introducing the parameters Erot = ℏ2

2mb2 , Ω = Erot/ℏ
and ωso = α

ℏb and the Pauli matrices in cylindrical coordinates σr = σxcos(ϕ) + σysin(ϕ) and
σϕ = σycos(ϕ)− σxsin(ϕ), together with some manipulations that are specified in Appendix B.

Ĥ = Erot

(
−i ∂
∂ϕ

+
Φ

ΦL
+
ωso

2Ω
σr

)2

(2.5)

Given our Hamiltonian (2.5), we can find the energies and eigenstates by diagonalizing the
corresponding matrix problem. As earlier, the full solution can be found in Appendix B. The
relationship between wavenumber and energy and the unnormalized eigenstates are found to be

k(µ) = − Φ

ΦL
+

Φ
(µ)
AC

2π
±
√

E

Erot
(2.6)

ψ(µ)(ϕ) = eikϕχ(µ)(ϕ) (2.7)
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with µ = 1, 2, Φ
(µ)
AC = −2π

(
1
2 + (−1)µ

√
1
4 +

ω2
so

4Ω2

)
being the Aharanov-Casher phase and χ(µ)(ϕ)

the mutually orthogonal spinors that in the Sz basis take the form:

χ(1)(ϕ) =
1√

2 (ωso/2Ω)
2 − Φ

(2)
AC/2π

(
−Φ

(2)
AC/2π

−ωso/2Ω · eiϕ

)
(2.8)

χ(2)(ϕ) =
1√

2 (ωso/2Ω)
2 − Φ

(2)
AC/2π

(
ωso/2Ω

−Φ
(2)
AC/2π · eiϕ

)
. (2.9)

With the above results we can see that due to the presence of Spin Orbit Interaction, electrons
acquire an additional phase as they travel through the ring, with each spin state in the ring having
different phases.

2.2.1 Spin Flip

It is a well known result that spin-orbit interaction changes the probability of finding the particle
in a certain spin state as it moves.

First we will mention that diagonalization of the Hamiltonian 2.5 for the case of no SOI (ωso =

0), yields as eigenvectors

(
1
0

)
and

(
0
1

)
, which are the eigenvectors of the σz Pauli Matrix. This

means that SOI changes the possible spin states, which will have an effect on the measurement of

spin in the

(
1
0

)
and

(
0
1

)
basis.

To further study this effect we will consider a particle that is at position ϕ = 0 with spin-up

(i.e. its spin state is described by

(
1
0

)
). We will now project this state into the basis of spin in

the ring given by the eigenvectors of the Hamiltonian.

(
1
0

)
=

c1√
2 (ωso/2Ω)

2 − Φ
(2)
AC/2π

(
−Φ

(2)
AC/2π

−ωso/2Ω

)
+

c2√
2 (ωso/2Ω)

2 − Φ
(2)
AC/2π

(
ωso/2Ω

−Φ
(2)
AC/2π

)
. (2.10)

We can find the coefficients c1 and c2 by solving a linear system of equations. The solution of
such system yields the result:

c1 =
β

α2 + β2

√
2α2 + β, c2 =

α

α2 + β2

√
2α2 + β (2.11)

where we have introduced the parameters α = ωso/2Ω and β = 1/2−
√

1/4 + ω2
so/4Ω

2.
With the above result we can now write the state of a particle with a certain fixed energy.

ψ =
c1√

2α2 + β
eik

(1)ϕχ(1)(ϕ) +
c2√

2α2 + β
eik

(2)

χ(2)(ϕ) = (2.12)

=

[
α2e−iβϕ

α2 + β2
+
β2ei(β−1)ϕ

α2 + β2

]
e
i(− Φ

ΦL
±ko)ϕ

(
1
0

)
+

[
αβe−i(β−1)ϕ

α2 + β2
− αβeiβϕ

α2 + β2

]
e
i(− Φ

ΦL
±ko)ϕ

(
0
1

)
Hence, the probability of finding the particle in each spin state is given by:

Pup(ϕ) =

∣∣∣∣∣α2e−iβϕ

α2 + β2
+
β2ei(β−1)ϕ

α2 + β2

∣∣∣∣∣
2

=
2β2 + 2(β − 1)β cos(ϕ− 2βϕ)− 2β + 1

(1− 2β)2
(2.13)

Pdown(ϕ) =

∣∣∣∣∣αβe−i(β−1)ϕ

α2 + β2
− αβeiβϕ

α2 + β2

∣∣∣∣∣
2

=
4(β − 1)β sin2

(
1
2 (ϕ− 2βϕ)

)
(1− 2β)2

(2.14)

In this result, we can see how the probability of finding the particle in one spin or another
changes with the angular coordinate ϕ. This allows for the spin to flip from one state to another
as the particle is in motion inside the ring. This allows thermoelectric properties to be different for
different spin states as there will be different transmission for up and down-electrons.

In Fig.1 we can see how the spin is originally in the up-state but probabilities begin changing
sinusoidally as the particle moves. Total spin-flip does not happen though, since Pup > 0 always.
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Figure 1: Probability of the particle being in the up (blue) or down (yellow) states versus ϕ with
β = 2.

Figure 2: Scheme of the two-terminal Aharonov-Bohm (AB) quantum heat engine. L1 and L2 denote
the lengths of the arms of the interferometer, with the top arm having Rashba Spin Orbit Coupling,
Thot and Tcold are the temperatures of the hot and cold reservoirs, ΦAB is the magnetic flux piercing
the loop, Vg is the gate voltage, and J is the heat current flowing through the system. Transmission
from the leads to the AB ring goes through T junctions, parametrized by ϵ whose value ranges from
0 to 1/2.

2.3 Scattering in a 1D Quantum Ring with AB and SOI

We will use the previous results to find the transmission coefficient of a mesoscopic ring that is
connected to two fermionic reservoirs by two leads (Fig 2). Our set-up is the AB interferometer
proposed in Ref [13] with the introduction of SOI in one of the arms.

Transmission from the leads to the AB ring is parameterized by the quantity ϵ whose value can
range from 0 (i.e. fully disconnected ring) to 1/2 (i.e. fully transmitting junction). The ring is
divided into two sections: the top arm of the ring has Rashba Spin Orbit Interaction, while the
bottom is coupled to a gate electrode applying an additional gate voltage Vg. The asymmetry in
the ring is further increased by having arms of different lengths (L1 = L + δL and L2 = L, being
δL the length difference between the arms).

Transmission will depend on energy through the kinematic phase that the electron acquires
by travelling along each half of the ring. Electrons moving through the top arm acquire a phase
k1(π+θ), while electrons moving through the bottom arm acquire a phase k2(π−θ). By linearizing
around the Fermi Energy, µ, and taking into account tuning of the Fermi wave vector (kµ → k̃µ)
and the gate voltage applied to the second arm, the wave number for each of the arms is given by:
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Figure 3: Device geometry and the local coordinates (x, z, ϕ, ϕ′) that parameterize different parts of
the ring.

k1
b
(E) = k̃µ +

E − µ

ℏvd
(2.15)

k2
b
(E) = k̃µ +

E − (µ+ eVg)

ℏvd
(2.16)

The left lead is associated to a local coordinate x, with x = 0 corresponding to the left junction.
The chosen basis of wavefunctions in this region are plane waves of the form e±ikxx, with positive
wavevectors indicating that the wave is travelling into the ring and negative wavevectors indicating
that the wave is travelling out of the ring.

In the same way, the right lead is associated to a local coordinate z, with z = 0 corresponding to
the right junction. The basis in this region will be planewaves (i.e. e±ikzz) with positive wavevectors
indicating that the wave is travelling out of the ring and negative wavevectors indicating that the
wave is travelling into the ring.

Since the two leads break the symmetry of the problem, we will have to consider separately the
top and bottom halves of the ring separately. Length in the top half will be parameterized by an
angular coordinate ϕ ϵ[0, π + θ] that grows in the anticlockwise direction. ϕ = 0 corresponds to
the right junction, while ϕ = π + θ corresponds to the left junction. On the other hand, the local
coordinate in the bottom half is ϕ′ ϵ[0, π − θ] , with ϕ′ = 0 corresponding to the left junction and
ϕ′ = π− θ corresponding to the right junction. Hence, ϕ′ also grows in the anticlockwise direction.
Since we have a circular ring the angle θ will be:

θ =
δL

2L+ δL
π (2.17)

To use the scattering matrix formalism, we need to find the incoming and outgoing waves in
each of the nodes. To do so we will begin by finding how a wavefunction in the top-half of the ring
can be expressed as a function of the eigenstates of its Hamiltonian.

ψT =
(
c1e

ik1ϕ + c3e
−ik1ϕ

)
e
i
(
−Φ/ΦL+Φ

(1)
AC/2π

)
ϕ
χ(1)(ϕ) +

(
c2e

ik1ϕ + c4e
−ik1ϕ

)
e
i
(
−Φ/ΦL+Φ

(2)
AC/2π

)
ϕ
χ(2)(ϕ) =

=

(
c1e

ik1ϕ + c3e
−ik1ϕ

)√
2 (ωo/2Ω)

2 − Φ
(2)
AC/2π

e
i
(
−Φ/ΦL+Φ

(1)
AC/2π

)
ϕ
(

−Φ
(2)
AC/2π

−ωo/2Ω · eiϕ

)
+

+

(
c2e

ik1ϕ + c4e
−ik1ϕ

)√
2 (ωo/2Ω)

2 − Φ
(2)
AC/2π

e
i
(
−Φ/ΦL+Φ

(2)
AC/2π

)
ϕ
(

ωo/2Ω

−Φ
(2)
AC/2π · eiϕ

)
. (2.18)

This expression can be recasted into a form where the motion of the up and down spin-states is
more obvious:
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ψT =

[(
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(2.19)

The same can be done with the bottom half of the ring. Since we have no SOI, we can use
directly the Sz basis and planewaves with wavenumber k2.

ψB = c5e
i(−Φ/ΦL+k2)ϕ

′
(
1
0

)
+ c6e

i(−Φ/ΦL+k2)ϕ
′
(
0
1

)
+

+ c7e
i(−Φ/ΦL−k2)ϕ

′
(
1
0

)
+ c8e

i(−Φ/ΦL−k2)ϕ
′
(
0
1

)
. (2.20)

To find the reflection and transmission coefficients, we will use the Landauer-Büttiker formalism,
where the amplitudes of in-going and outgoing waves at a junction are related linearly through a
product with the scattering matrix. Since with SOI, we lose symmetry in the spin, we must take
into account separately the amplitudes of wavefunctions for spin up and down. Therefore, we must
relate the in-going and out-going waves as:

ψ↑
Lead

ψ↓
Lead

ψ↑
T

ψ↓
T

ψ↑
B

ψ↓
B


out

= Ŝ



ψ↑
Lead

ψ↓
Lead

ψ↑
T

ψ↓
T

ψ↑
B

ψ↓
B


in

(2.21)

Since we have a symmetrical scattering problem, the scattering matrices for the left and right
junctions should be the same and given by [14]:

Ŝ =


−
√
1− 2ϵ 0

√
ϵ 0

√
ϵ 0

0 −
√
1− 2ϵ 0

√
ϵ 0

√
ϵ√

ϵ 0 a 0 b 0
0

√
ϵ 0 a 0 b√

ϵ 0 b 0 a 0
0

√
ϵ 0 b 0 a

 (2.22)

where a = 1
2

(√
1− 2ϵ− 1

)
and b = 1

2

(√
1− 2ϵ+ 1

)
.

2.3.1 Scattering on the Left Junction

We will consider that a plane wave of amplitude is incident to the AB ring through the left lead,
with i↑ being the amplitude of this incident wave with spin up and i↓ being the amplitude of the
wave with spin down. As a result, there will be a reflected wave in the left lead, with amplitudes
r↑ and r↓ for the corresponding spin states. Meanwhile, on the ring, there will be waves going in

6
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and out of the junction in both halves. Waves in the top half must be evaluated at ϕ = π + θ and
waves in the bottom half at ϕ′ = 0. The scattering problem on the left junction is then:



r↑

r↓

[βc3ei(β−1)(π+θ)+αc4e
−iβ(π+θ)]√

2α2+β
ei(−Φ/ΦL−k1)(π+θ)

[−αc3e
iβ(π+θ)+βc4e

−i(β−1)(π+θ)]√
2α2+β

ei(−Φ/ΦL−k1)(π+θ)

c5
c6


out

= Ŝ



i↑

i↓

[βc1ei(β−1)(π+θ)+αc2e
−iβ(π+θ)]√

2α2+β
ei(−Φ/ΦL+k1)(π+θ)

[−αc1e
iβ(π+θ)+βc2e

−i(β−1)(π+θ)]√
2α2+β

ei(−Φ/ΦL+k1)(π+θ)

c7
c8


in

,

(2.23)

where we have introduced α = ωo/2Ω and β = −Φ
(2)
AC/2π.

2.3.2 Scattering on the Right Junction

In the right lead, we will consider that there is only the transmitted wave (i.e. there is no wave
going into the ring through the right lead) with amplitudes t↑ and t↓ for the corresponding spin
states. Again, in the ring, there will be waves travelling in and out of the junction. Waves in the
top half must be evaluated at ϕ = 0 and waves in the bottom half at ϕ′ = π − θ. Hence, we arrive
at the equation for the right junction:

t↑

t↓
(βc1+αc2)√

2α2+β
(−αc1+βc2)√

2α2+β

c7e
i(−Φ/ΦL−ko)(π−θ)

c8e
i(−Φ/ΦL−ko)(π−θ)


out

= Ŝ



0
0

(βc3+αc4)√
2α2+β

(−αc3+βc4)√
2α2+β

c5e
i(−Φ/ΦL+ko)(π−θ)

c6e
i(−Φ/ΦL+ko)(π−θ)


in

. (2.24)

2.4 Thermoelectric Properties

In our work we try to study the thermoelectric performances in the linear response regime of the
Aharanov-Bohm ring in the presence of spin-orbit interaction. The interesting feature of this device
is that the transmission contains spin-flip terms as T↑↓ and T↓↑ in which the second index is the
injected spin and the first one is the outgoing spin channel. Therefore, the electrical conductance
at zero temperature for ↑ channel is simply

G↑ =
e2

h
(T↑↓(EF ) + T↑↑(EF )) (2.25)

Similarly

G↓ =
e2

h
(T↑↓(EF ) + T↓↓(EF )) (2.26)

In the finite temperature case these expressions have to replaced by the following

Gσ =
∑
σ′

e2

h

∫
Tσσ′(E)

(
−∂f(E)

∂E

)
(2.27)

The thermoelectrical conductance in the linear regime are

L↑ = − e

hT0

∫
dE(E − EF ) (T↑↓(E) + T↑↑(E))

(
∂f(E)

∂E

)
(2.28)

where in the zero temperature limit (by using the Sommerfeld expansion) one gets

L↑ =
eπ2k2B
3h

(
∂T↑↓
∂E

|E=EF
+
∂T↑↑
∂E

|E=EF

)
(2.29)

Here T0 is the background or common temperature. Similarly for ↓ spins

L↓ = − e

hT0

∫
dE(E − EF )(T↓↑(E) + T↓↓(E))

(
∂f(E)

∂E

)
(2.30)

7
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where in the zero temperature limit (by using the Sommerfeld expansion) one gets

L↓ =
eπ2k2B
3h

(
∂T↓↑
∂E

∣∣∣∣∣
E=EF

+
∂T↓↓
∂E

∣∣∣∣∣
E=EF

)
(2.31)

The charge current is given by

Iq = (G↑ +G↓)δV +
1

2
(G↑ −G↓)∆Vs + (L↑ + L↓)δT (2.32)

The spin current is generated due to the spin flip terms in the transmission, its expression is

Is = (G↑ −G↓)δV +
1

2
(G↑ +G↓)∆Vs + (L↑ − L↓)δT (2.33)

The Seebeck coefficient can be defined in different manners depending on the electric-thermal
configuration. Thus we defined the ”classic” Seebeck coefficient as

S = −
(
∆V

∆T

)∣∣∣∣∣
Iq=0,∆Vs=0

(2.34)

This is the voltage generated in the junction in response to a temperature shift. In this case, the
analytical expression for S is easy to get as

S =
L↑ + L↓

G↑ +G↓
(2.35)

With this definition and the expressions for the thermoelectric properties, it is clear to see
that the Seebeck coefficient strongly depends on the symmetry of the transmission coefficients with
respect to the energy (i.e. it vanishes in the symmetric case). Hence, introducing adequate values of
gate voltage, spin-orbit interaction and length difference are vital to obtain a better thermoelectric
performance.

Applied temperature gradients can also lead to spin accumulations in the attached leads driven
by spin Seebeck effects. Then, it is natural to ask whether a local spin-orbit in- teraction leads to
different spin occupations. We then calculate the spin bias ∆Vs generated when Iq = 0 and Is = 0
but ∆T = 0. In this case we have

Ss = −
(
∆Vs
∆T

)∣∣∣∣∣
Iq=0,Is=0

(2.36)

with an explicit expression in terms of linear conductances as

Ss =
L↑

G↑
− L↓

G↓
(2.37)

Notice that this result can be achieved if instead one applies the following electrical bias ∆V as

∆V = −1

2

(
L↑

G↑
+
L↓

G↓

)
∆T (2.38)

In the zero temperature limit the spin Seebeck coefficient reads as

Ss =
−π2k2BT0

3e

∂ lnT↑↓
∂E

|E=EF
(2.39)

In the linear response regime, thermal conductivity is given by:

K = − 1

hT0

∫
dE(E − EF )

2 (T↑↓(E) + T↑↑(E) + T↓↑ + T↓↓)

(
∂f(E)

∂E

)
(2.40)

The thermal conductance of the ring can then be calculated as:

kth =
(
K − S2(G↑ +G↓)T

)
(2.41)

8
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3 Results and discussion

Transmission coefficients were calculated by solving the Scattering Problem with Mathematica. All
results presented here use the realistic values for the problem parameters present in Table 1, unless
it is specified otherwise.

In our results SOI is characterized by the quantity η = β − 1 = Φ
(1)
AC/2π, with η = 0 corre-

sponding to α = 0.

Table 1: Values of transmissivity, length, asymmetry, gate voltage, magnetic flux, Wave Vector offset,
drift velocity and temperature used to obtain most results.

ϵ 0.1
L 2× 10−6m

δL/L 0.3
eVg 2πµ/5
Φ/Φl 1/14

k̃µ
√
πkµ

vd 106m/s
T 500mK

3.1 Energy Dependence of the Transmission Coefficient

To achieve the maximum possible thermopower we have to fix ϵ, the parameter that characterizes
the transmission from the leads that connect the fermionic reservoirs to the arms of the ring. In
Fig 4 we distinguish between two different cases.

Transmission probability is calculated for full transmissivity (i.e. ϵ = 0.5) represented in yellow
for a symmetric device (left) and an asymmetric device (right). In the symmetric scenario, the
transmission probability appears to be periodic with energy having a very small amplitude. On the
other hand, the asymmetric case exhibits a very non-linear behaviour that has really low values of
transmission for energies near the Fermi Level, which at a low temperature is the region responsible
for transmission. Thus, full transmissivity will not give us optimal performance in our engine.

When transmission in the T junctions is weak (in our case ϵ = 0.1), represented in blue,
electrons must excite the resonances in the ring to be transported, hence the repeated spikes when
transmission probability is against energy. Optimal properties will be found when there is a high
number of spikes around the Fermi Energy for low values of temperature.

It shall be mentioned that the result for the assymetric case matches perfectly Ref [13].

δL/L = 0, η = 0

E − µ[ℏ2/2mb2]

T
ra
n
sm

is
si
on

P
ro
b
a
b
il
it
y

δL/L = 0.3, η = 0

E − µ[ℏ2/2mb2]

Figure 4: Comparison between the transmission probability versus energy obtained with ϵ = 0.1 (blue)
and ϵ = 0.5 (yellow) for a symmetric (left) and asymmetric (right) device.
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In our device we have an extra degree of freedom, since we can tune the Rashba Spin Orbit
Constant in the top arm by changing the axial electric field. This allows us to obtain different trans-
mission for electrons in different spin states. In Fig 5, we show transmission for ↑-electrons (blue)
and ↓-electrons (yellow) for different values of η. The observable difference in the transmission for
the two spin-states can allow us to create temperature differences through different concentrations
of spins in each fermionic reservioir (Spin-Seebeck Effect) [10].

δL/L = 0.3, η = 0.02

E − µ[ℏ2/2mb2]T
ra
n
sm

is
si
on

P
ro
b
ab

il
it
y

δL/L = 0.3, η = 0.15

E − µ[ℏ2/2mb2]

δL/L = 0.3, η = 90.59

E − µ[ℏ2/2mb2]

Figure 5: Transmission probability for ↑-electrons T↑ (blue) and ↓-electrons T↓ (yellow) against energy
for different values of η.

We shall also investigate what type of behaviour we shall expect for different values of η. In
Fig 6 we study how T↑ (blue) and T↓ (yellow) changes as the value η increases for both the usual
symmetric and asymmetric devices.

In both cases, we find that for low values of η (top), the behaviour is not periodic, with spike-like
peaks. Eventually, for higher values of η (bottom), periodic behaviour arises with the period being
equal to ∆η = 2 − δL

L+δL . For the symmetric case we can see that the behaviour appears to be
sinusoidal with T↑ and T↓ being 180º out of phase. Meanwhile, the asymmetric case appears to be
more ”step-like” with T↑ and T↓ sharing critical points.

δL/L = 0

η

T
ra
n
sm

is
si
on

P
ro
b
a
b
il
it
y

δL/L = 0.3

η

Figure 6: T↑ (blue) and T↓ (yellow) changes as the value η. Distinguishing between low (top) and high
(bottom) values of η.
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3.2 Charge Thermoelectric Properties

We will now calculate the basic thermoelectric properties to find which parameters of gate voltage,
magnetic field, η and assymetry δL allow us to achieve a better thermal performance.

In figures 7 and 8 we show density plots of the electric conductance, thermal conductivity and
Seebeck Coefficient versus ΦAB and Vg for the case of no SOI, distinguishing between δL/L = 0 and
δL/L = 0.3. We can see how in Fig 8 we achieve better thermal conductivity and thermopower,
thanks to the additional asymmetry introduced by having a longer top arm.

In these figures we can also observe how the thermal conductivity is not simply proportional to
the electric conductance. This means that, unlike for full transmissivity [13], for low values of ϵ the
Wiedemann-Franz Law is not satisfied.

G[e2/h]

ΦAB/Φ

eV
g
[L
/
h
v d
]

κ[W/K]× 1013

ΦAB/Φ

eV
g
[L
/h
v d
]

Seebeck[µV/K]

ΦAB/Φ

eV
g
[L
/
h
v d
]

Figure 7: Density plots of the electric conductance, thermal conductivity and Seebeck Coefficient vs
magnetic flux ΦAB and gate voltage Vg for η = β − 1 = 0 and δL/L = 0.

G[e2/h]

ΦAB/Φ

eV
g
[L
/h
v d
]

κ[W/K]× 1013

ΦAB/Φ

eV
g
[L
/h
v d
]

Seebeck[µV/K]

ΦAB/Φ

eV
g
[L
/h
v d
]

Figure 8: Density plots of the electric conductance, thermal conductivity and Seebeck Coefficient vs
magnetic flux ΦAB and gate voltage Vg for η = β − 1 = 0 and δL/L = 0.3.

In figures 9,10 and 11 we show the same thermoelectric properties but now varying the value of
η. In all cases, we can see how the maximum values are achieved for a magnetic flux ΦAB = 0 and
ΦAB = ΦL/2. We can also see how the maximum values of these quantities decrease and begin to
form different periodic patterns.

3.3 Spin Thermoelectric Properties

In Fig 12 we show the density plots of the electric conductance for each spin channel for the case
of no SOI. Evidently, we obtain that they are the same and are half of what was found in Fig 8.
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Figure 9: Density plots of the electric conductance, thermal conductivity and Seebeck Coefficient vs
magnetic flux ΦAB and gate voltage Vg for η = β − 1 = 0.15 and δL/L = 0.3.
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Figure 10: Density plots of the electric conductance, thermal conductivity and Seebeck Coefficient vs
magnetic flux ΦAB and gate voltage Vg for η = β − 1 = 0.5 and δL/L = 0.3.

In figures 13, 14 and 15, we show the density plots of the electric conductance for each spin
channel and the Spin-Seebeck Coefficient for different values of η.

As SOI increases, the conductances for each spin become more shifted in terms of the magnetic
flux until they acquire a 2πΦAB/Φ = π/2 phase difference. This is the explanation on why the
charge thermoelectric coefficients decrease their value when having higher values of η.

We can also see that we can obtain a high Spin-Seebeck Coefficient for high values of η, achieving
a maximum value of Ss = 0.4mV/k for η = 90.59 (in the ηϵ[90, 100] range). This result indicates
that if we intend to focus on spin-related performances, we must sacrifice thermopower.

3.4 Broken Time-Reversal symmetry

The shift that is experienced in magnetic field for the spin-thermoelectric coefficients is a con-
sequence of having a spin-dependent Hamiltonian, which breaks time-reversal symmetry under a
magnetic field (i.e. Jσ(B) ̸= Jσ(−B)). In Fig.16 we plot the spin thermal conductances J↑, J↓ and
J↓ for a reversed magnetic field. In the figure, it can be seen that, as a result of SOI in the ring,
we end up obtaining that J↑(B) = J↓(−B). This result is especially interesting since time-reversal
symmetry breaking allows heat engines to reach Carnot Efficiency for smaller values of the ZT
coefficient [15].
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Figure 11: Density plots of the electric conductance, thermal conductivity and Seebeck Coefficient vs
magnetic flux ΦAB and gate voltage Vg for η = β − 1 = 90.59 and δL/L = 0.3.
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Figure 12: Density plots of the electric conductance for each spin channel versus magnetic flux ΦAB

and gate voltage Vg for η = β − 1 = 0 and δL/L = 0.3.

4 Conclusions

In summary, we have proposed and analyzed a phase- coherent mesoscopic heat engine based on
a Aharonov-Bohm quantum interferometer, that includes Rashba SOI in one of its arms. The
system can provide sizable thermoelectric response and Spin-Seebeck Coefficient. Under conditions
which are easily accessible from the experimental point of view, the heat engine is able to yield full
phase and electrostatic control of thermal and electric conductance as well as of its spin equivalents.
Furthermore, the breaking of time reversal symmetry opens up the possibility of achieving a thermal
machine with very high efficiency. Thus, we have checked that the AB interferometer, is the
archetypal quantum platform for the realization of unique phase-tunable heat engines and quantum
thermal machines operating at low temperatures [13] and the great range of possibilities that are
opened when introducing the spin-degree of freedom which is intrinsic to the quantum realm.
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Moskalets, with whom I have had the honor of working.

This work was supported by the SURF@IFISC fellowship.

13



Proceedings of the SURF@IFISC (2024)

G↑[e
2/h]

ΦAB/Φ

eV
g
[L
/
h
v d
]

G↓[e
2/h]

ΦAB/Φ

eV
g
[L
/
h
v d
]

Seebeck[µV/K]

ΦAB/Φ

eV
g
[L
/h
v d
]

Figure 13: Density plots of the electric conductance for each spin channel and the Spin Seebeck
Coefficient versus magnetic flux ΦAB and gate voltage Vg for η = β − 1 = 0.15 and δL/L = 0.3.
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Figure 14: Density plots of the electric conductance for each spin channel and the Spin Seebeck
Coefficient versus magnetic flux ΦAB and gate voltage Vg for η = β − 1 = 0.5 and δL/L = 0.3.

A Aharonov-Bohm Effect in a 1D Quantum Ring

The set-up under study is that of a particle confined in a circle of radius b in the XY plane. An
infinitely long solenoid of radius a < b is placed along the z-axis, producing a uniform magnetic
field B in the region satisfying r < a, while maintaining the region of r > a free of field.
The magnetic flux outside the solenoid, where B=0, can be found as:

Φ =

∫∫
S

B⃗ · d⃗S = πa2B (A.1)

Knowing that the magnetic field can be written in terms of the vector potential A⃗, as B⃗ = ∇⃗ × A⃗.
We can use Stokes’ theorem to give the vector potential in terms of the magnetic flux.

Φ =

∫∫
S

B⃗ · d⃗S =

∮
∂S

A⃗ · d⃗l = 2πbAϕ (A.2)

Therefore, our vector potential takes the form A⃗ = Φ
2πb ϕ̂. It should be noted that this potential is

within the Coulomb’s Gauge (i.e. ∇⃗ · A⃗ = 0).

A.1 Solution of the Time Independent Schrödinger’s Equation

Given that there is no time-dependence in the Hamiltonian of the system, we can use separation
of variables, to arrive to the following eigenvalue equation.
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Figure 15: Density plots of the electric conductance for each spin channel and the Spin Seebeck
Coefficient versus magnetic flux ΦAB and gate voltage Vg for η = β − 1 = 90.59 and δL/L = 0.3.
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Figure 16: Density plots of the thermal conductance for each spin channel versus magnetic flux ΦAB

and gate voltage Vg for η = β − 1 = 0.15 and δL/L = 0.3.

Ĥψ = Eψ (A.3)

Introducing the canonical momentum for an electron, π⃗ = p⃗+ e
c A⃗, the equation to solve is:[

p2 +
(e
c

)2
A2 + 2

e

c
A⃗ · p⃗

]
ψ = 2mEψ (A.4)

Due to the geometry of the problem, the momentum operator will take the form p⃗ = ℏ
ib

∂
∂ϕ ϕ̂.

Substitution in the above equation of the momentum and vector potential reads:[
−ℏ2

b2
d2

dϕ2
+
(e
c

)2( Φ

2πb

)2

− 2i
e

c

Φ

2πb

ℏ
b

d

dϕ

]
ψ = 2mEψ (A.5)

After some careful manipulation we can arrive to the following equality:

d2ψ

dϕ2
+ 2i

Φ

ΦL

dψ

dϕ
+ Cψ = 0 (A.6)

where we have introduced the quantum flux ΦL = 2πℏc
e , the constant C =

(
E

Erot
− Φ

Φ2
L

)
and the

energy corresponding to the first rotational mode Erot =
ℏ2

2mb2 .
A second order linear ODE like (A.6) can be solved by introducing wavefunctions of the form
ψ(ϕ) = Aeikϕ, leading to the following equation for the modes:
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k2 + 2
Φ

ΦL
k − C = 0 (A.7)

Thus,

k = − Φ

ΦL
±
√

E

Erot
(A.8)

A further constraint can be obtained for the wavevectors by imposing periodic boundary conditions.

ψ(ϕ) = Aeikϕ = ψ(ϕ+ 2π) = Aeikϕei2πk (A.9)

which means that k must be an integer. That is k = n = 0,±1,±2, ...
As a consequence of (A.8) and (A.9), we will have discrete energy levels of the form:

En = Erot

(
n+

Φ

ΦL

)2

=
ℏ2

2mb2

(
n+

Φ

ΦL

)2

(A.10)

In the case of no magnetic field, (A.10) allows us to recover the usual energy levels for a particle

rotating in a circle En = ℏ2n2

2mb2 .

A.2 Orthogonality of Eigenstates

We will now prove that the basis for our wave function is orthogonal, which is an important result
knowing that the Hamiltonian is a hermitian operator and as such, should have mutually orthogonal
eigenstates. In our geometry, orthogonality of a basis takes the following form:∫ 2π

0

ψ∗
n′(ϕ)ψn(ϕ)bdϕ = 0 (A.11)

where ψn′ and ψn(ϕ) are different elements of our basis {ψn(ϕ)} = {einϕ}.
By introducing the elements of our basis into equation A.11 and expanding the exponentials in
terms of sines and cosines we get:

∫ 2π

0

ei(n−n′)ϕbdϕ =

∫ 2π

0

{cos [i(n− n′)ϕ] + isin [i(n− n′)ϕ]} bdϕ = (A.12)

=

{
sin [i(n− n′)ϕ]

n− n′
− i

cos [i(n− n′)ϕ]

n− n′

}ϕ=2π

ϕ=0

= 0

where we have used the above result that the wavenumbers must be intergers (i.e. n = 0,±1±2, ...).

A.3 Aharonov Bohm Phase Shift

The Time Dependent Schrödinger Equation for an electron in a region of A⃗ ̸= 0 and B⃗ = 0 is:

iℏ
dΨ

dt
= ĤΨ =

[
1

2m

(
ℏ
i
∇⃗+

e

c
A⃗

)2
]
Ψ (A.13)

It is a well known result that the solution of equation (A.13), is given by the solution for no magnetic

field ΨO times a phase factor containing the vector potential A⃗.

Ψ = ΨOe
ig(r) (A.14)

where

g(r) = − e

ℏc

∫ r⃗

r⃗O

A⃗ · d⃗r (A.15)

To prove this result we will first apply the canonical momentum operator to the wavefunction.

π⃗Ψ =

(
ℏ
i
∇⃗+

e

c
A⃗

)
Ψ =

ℏ
i
∇⃗(ΨO)e

ig(r) +
ℏ
i
ΨO∇⃗(eig(r)) +

e

c
A⃗Ψ

=
ℏ
i
∇⃗(ΨO)e

ig(r) +
ℏ
i
ΨOe

ig(r)(−e
c
)A⃗+

e

c
A⃗Ψ =

ℏ
i
∇⃗(ΨO)e

ig(r) (A.16)
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Hence, equation (A.13) can be expressed as:

iℏ
dΨ

dt
= iℏ

dΨO

dt
eig(r) = − ℏ2

2m
∇2(ΨO)e

ig(r) (A.17)

Removing the common terms at both sides of the equality, we indeed find that ΨO satisfies the
Schrödinger Equation for A⃗ = 0

iℏ
dΨO

dt
= − ℏ2

2m
∇2(ΨO) (A.18)

which implies that the addition of a non-zero vector potential only results in a phase difference
with the unperturbed wavefunction.
Now, the question that arises is if we can arrive to the same conclusion with the result from the
previous section, knowing that the wavefunction must be expressed as.

Ψ =
∑
{E}

A(E)e−iE
ℏ teik(E)ϕ (A.19)

We will begin by looking at the expression for the wavenumber in terms of the energy (A.8)

k = − Φ

ΦL
±
√

E

Erot
= − Φ

ΦL
± kO(E) (A.20)

where kO(E) =
√

E
Erot

would be the wavenumber associated to an electron with the same energy

in the case of no magnetic field. Combination of the two previous expressions yields:

Ψ =
∑
{E}

A(E)e−iE
ℏ teik(E)ϕ = e

−i Φ
ΦL

ϕ
∑
{E}

C1(E)e−iE
ℏ teikO(E)ϕ + C2(E)e−iE

ℏ te−ikO(E)ϕ (A.21)

Here, we can see how our expansion is the expansion in the case of no magnetic field plus an
additional phase factor.
This phase term can be expressed in the following way:

e
−i Φ

ΦL
ϕ
= e−i e

2πℏc (2πbAϕ)ϕ = e−i e
ℏc

∫ ϕ
0

Aϕbdϕ = ei
(−e)
ℏc

∫ ϕ
0

Aϕbdϕ (A.22)

This is precisely the phase shift that you would find using equation A.15 putting as reference ϕ = 0.

B Aharonov Bohm effect in a 1D Quantum Ring with Spin-
Orbit Interaction

In the presence of Spin-Orbit Interaction and a constant vector potential with only angular com-
ponent, the Hamiltonian of a one-dimensional ring of radius b is given by [11]:

Ĥ =
ℏ2

2mb2

(
−i ∂
∂ϕ

+
Φ

ΦL

)2

+
α

b
(σxcos(ϕ) + σysin(ϕ))

(
−i ∂
∂ϕ

+
Φ

ΦL

)
−i α

2b
(σycos(ϕ)− σxsin(ϕ))

(B.1)
where Φ is the magnetic flux given by (A.1), ΦL = 2πℏc

e is the quantum flux, α is the Rashba SO
constant and σx and σy are the Pauli matrices.

We can further simplify a bit our expression by introducing the parameters Erot = ℏ2

2mb2 and
ωso = α

ℏb and the Pauli matrices in cylindrical coordinates σr = σxcos(ϕ) + σysin(ϕ) and σϕ =
σycos(ϕ)− σxsin(ϕ).

Ĥ = Erot

(
−i ∂
∂ϕ

+
Φ

ΦL

)2

+ ℏωsoσr

(
−i ∂
∂ϕ

+
Φ

ΦL

)
− i

ℏωso

2
σϕ (B.2)

We will now try to simplify the expression for the Hamiltonian. First, we can note that the Pauli
matrices are related by σϕ = ∂σr/∂ϕ. This allows us to right-hand side terms as:

ℏωsoσr

(
−i ∂
∂ϕ

+
Φ

ΦL

)
− i

ℏωso

2
σϕ = ℏωsoσr

(
−i ∂
∂ϕ

+
Φ

ΦL

)
− i

ℏωso

2

∂σr
∂ϕ

(B.3)

=
ℏωso

2
σr

(
−i ∂
∂ϕ

+
Φ

ΦL

)
+

ℏωso

2

(
−i ∂
∂ϕ

+
Φ

ΦL

)
σr
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Taking into account that σ2
r = σ2

xcos
2(ϕ) + σ2

ysin
2(ϕ) = Îcos2(ϕ) + Îsin2(ϕ) = Î, we can rewrite

(B.2) into

Ĥ = Erot

(
−i ∂
∂ϕ

+
Φ

ΦL
+
ωso

2Ω
σr

)2

(B.4)

where we have introduced the parameter Ω = Erot/ℏ and neglected an additive constant
ℏω2

so

2Ω since
it carries no physical meaning.

B.1 Diagonalization of the Hamiltonian

Given our Hamiltonian (B.4), we can find the energies and eigenstates by diagonalizing the corre-
sponding matrix. We will follow a procedure similar to the one that can be found in Ref. [12] in
the case of no magnetic flux. Since our Hamiltonian is the square of an operator, we can simplify
the problem by diagonalizing that operator.

The eigenvalue problem to solve is then:(
−i ∂
∂ϕ

+
Φ

ΦL
+
ωso

2Ω
σr

)
ψ(ϕ) = λψ(ϕ) (B.5)

where the eigenvalues relate to the energies as E = Erotλ
2.

Introducing solutions of the form

ψ(ϕ) = eikϕχ(ϕ) = eikϕ
(

a
beiϕ

)
, (B.6)

we obtain (
−i ∂
∂ϕ

+
ωso

2Ω
σr

)
χ(ϕ) =

(
λ− k − Φ

ΦL

)
χ(ϕ). (B.7)

We can further simplify the eigenvalue problem by introducing σr =

(
0 e−iϕ

eiϕ 0

)
(in the SZ

basis) and take a look at the result of (B.7).

−i ∂
∂ϕ

χ(ϕ) +
ωso

2Ω
σrχ(ϕ) =

(
ωso

2Ω b(
ωso

2Ω a+ b
)
eiϕ

)
=

(
λ− k − Φ

ΦL

)(
a
beiϕ

)
(B.8)

From (B.8) we can construct our final eigenvalue equation:(
0 ωso

2Ω
ωso

2Ω 1

)(
a
b

)
=

(
λ− k − Φ

ΦL

)(
a
b

)
= ϵ

(
a
b

)
(B.9)

The eigenvalues of the above equation are ϵ = 1
2 +(−1)µ

√
1
4 +

ω2
so

4Ω2 = −Φµ
AC/2π, where µ = 1, 2

and ΦAC is the Aharanov-Casher phase. The normalized eigenvectors uµ of the equation are

u1 = 1√
2(ωso/2Ω)2−Φ

(2)
AC/2π

(
−Φ

(2)
AC/2π

−ωso/2Ω

)
and u2 = 1√

2(ωso/2Ω)2−Φ
(2)
AC/2π

(
ωso/2Ω

−Φ
(2)
AC/2π

)
.

In summary, we find that our energies are given by

E(k) = Erot

(
k +

Φ

ΦL
−

Φµ
AC

2π

)2

(B.10)

with the wavenumber being related to the energies as

k(µ) = − Φ

ΦL
+

Φµ
AC

2π
±
√

E

Erot
. (B.11)

The eigenstates of the system end up looking as ψ(ϕ) = eikϕχ(µ)(ϕ) with the χ(µ) being spinors
that in the Sz basis take the form

χ(1)(ϕ) =
1√

2 (ωso/2Ω)
2 − Φ

(2)
AC/2π

(
−Φ

(2)
AC/2π

−ωso/2Ω · eiϕ

)
(B.12)

χ(2)(ϕ) =
1√

2 (ωso/2Ω)
2 − Φ

(2)
AC/2π

(
ωso/2Ω

−Φ
(2)
AC/2π · eiϕ

)
. (B.13)
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we shall also indicate that (B.11) indicates that SOI adds an additional phase with displacement
in the same way as the Aharonov-Bohm Effect.
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Abstract

This article pretends to bring light to the penetration of variable renewable energy sources
into a power grid. By studying the frequency dynamics, we are able to determine the power grid’
stability, therefore, we can prevent blackouts and line failures from happening. The central objective
of this work is to implement a battery into the power grid to control frequency fluctuations. We
modeled the power grid as a set of nodes (generators and consumers) interacting via links (power
transmission lines) and chose Gran Canaria as our case study. Once we had simulated different
scenarios and played with different parameters, we finally found the most suitable battery for Gran
Canaria’s power grid, able to reduce frequency fluctuations.

1 Introduction

Since electricity has become essential to guarantee the well-being and commodities of our modern
societies, understanding how power grids work and being able to predict their stability (balance
between consumption and generation at any time) is key to ensuring their good function. De-
spite that, one of humanity’s purposes is to achieve decarbonization, due to the escalating climate
change. To do so without losing the advantages of electricity, variable renewable energy sources
(VRES) must be part of the solution.

Although VRES are the greatest option we currently have, they entail two significant drawbacks.
Because they are subject to uncontrollable factors (e.g., weather conditions), they are intermittent
and unpredictable (unlike conventional power plants, which are controllable energy sources), which
jeopardizes the power grid’ stability. This correlation is because networks have to operate around a
given reference frequency to be stable (50 Hz in Europe). Stable grid operation is also characterized
by the randomness of the load and, due to the lack of large-scale storage capacity, production has to
be adjusted to the demand continuously and in real-time. As a result, when consumption increases,
the frequency of the network decreases, forcing the generators to raise their output, and vice versa.
Hence, we can understand frequency fluctuations as a measure of the difference between supply
and demand, i.e., the instability of the grid. As we will see, these fluctuations can be induced by
the load and/or the generation variations (power imbalances).

The second downside is the practically null inertia of the VRES, considering wind and sunlight
as the two major energy sources. Because conventional power plants provide inertia and control fre-
quency dynamics, they help to reduce the amplitude of frequency fluctuations, unlike VRES, which
can even bring them up at different timescales, making it harder to match the production to the
consumption. Consequently, this affects the global flexibility of the grid and decreases its reliability.

Being clear that any unbalance in the network may cause a blackout or a line failure, this
essay aims to apply a storage strategy to palliate the possible inconveniences that may arise when
introducing a larger share of VRES in high-voltage power grids. We will consider only two of
them: solar and wind, focusing on the latter, due to the characteristics of the studied system, Gran
Canaria (Spain), which has abundant wind power generation available all year. Other reasons to
choose this island as our case study are its relatively small size and energy independence, given
that it is not connected to any mainland.
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2 Theoretical model

High-voltage power grids are networks of interacting conventional power plants, VRES, and sub-
stations (consumers) connected via power transmission lines, and we represent them as networks of
interacting nodes connected via links. All nodes can be viewed as nonlinear oscillators that operate
synchronously at the same frequency. We consider devices below the substation level as aggregated
loads. To normalize frequency to zero, we choose a reference frame rotating to the reference fre-
quency of the network. We always assume that the voltage is kept within legal limits.

Because conventional power plants are powered by synchronous generators (large rotating
masses), they have mechanical inertia and can store kinetic energy. This available energy can
help to stabilize the grid, slowing down frequency dynamics and dampening fluctuations. If the
production exceeds the consumption, the rotating masses absorb the energy surplus and rotate
faster (at a higher frequency). Conversely, if the supply does not cover the demand, the rotating
masses provide energy and rotate slower (at a lower frequency). Again, we notice that frequency
is a good indicator of the stability of the network.

To model the dynamic behaviour of conventional generators taking into account their inertial
characteristics, we use the definition of angular velocity and the swing equation, shown in Eq. (2.1),
where the subscript i refers to the node’s number.

θ̇i = ωi , ω̇i =
ω2
R

2 · Ĥi · (ωi + ωR)
(Pm

i − P e
i ) , (2.1)

where θi is the voltage phase, ωi, the angular frequency, ωR, the reference frequency, Ĥi, the
inertia constant, Pm

i , the supplied mechanical power and P e
i , the electrical power. The inertia

constant is the product of the inertia per unit power, Hi, and the nominal power generation, PG
i ,

i.e., Ĥi = HiP
G
i . Note that the swing equation is nonlinear in ωi. Even if the rotating mass

speed does not vary significantly from synchronous speed (transient state), i.e., ωi +ωR ≃ ωR, this
non-linearity does not disappear if frequency control mechanisms (see Eq. (2.2)) are implemented.

If the exchange of kinetic energy with the rotating masses does not compensate for frequency
deviations (from its nominal value), power plants rely on two control mechanisms that act at
different timescales. The primary control (left expression in Eq. (2.2)) can stop the frequency drift
within a few seconds, to stabilise its value to the reference frequency progressively. Subsequently,
the secondary control (right expression in Eq. (2.2)) restores frequency to its nominal value within
a few minutes.

˙Pm
i =

1

τi

[
P s
i − Pm

i − P c
i

Ri

ωi

ωR

]
, Ṗ s

i = −κi
ωi

ωR
− 1

τ refi

(P s
i − P ref

i ) , (2.2)

where τi is the turbine time constant, P s
i , the spinning reserve power, Ri, the governor speed regu-

lation parameter, P c
i , the primary control power, κi, the integral controller gain, τ

ref
i , the timescale

of the forcing and P ref
i , the reference power. The first term of the secondary control expression

ensures that the total generation covers the demand, but does not impose any condition on which
fraction of generation corresponds to which plant. To break this indeterminacy, we have to add the
second term, which forces plants to operate close to a given set point, P ref

i , on a scale of several

minutes, τ refi . Accordingly, power interchanges are satisfied because we are able to establish a
reference power for each plant based on the demand. Furthermore, generation dispatch data is
assimilated into the model. If we set P ref

i = 0, the power output of that plant is null, however, it
still contributes to the global inertia and control capacity of the system. To completely shut down
a power plant, we would also have to impose P c

i /Ri = 0, κi = 0, and the inertia constant to be
that of a consumer node (see next paragraph).

Consumers correspond to substations, which include the attached load from lower grid levels.
Even though they do not have generation or mechanisms of frequency control, they may present
some residual inertia (very low compared to the power plants’). Along these lines, we can model
consumers using the conventional generators’ equations, but setting Pm

i = 0 and the inertia constant

to be Ĥi
C
:

θ̇i = ωi , ω̇i =
ω2
R

2 · Ĥi
C
· (ωi + ωR)

(−P e
i ) . (2.3)
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Regardless of the node type, the electric power is given by Eq. (2.4).

P e
i =

(
1 +Di

ωi

ωR

)
P d
i +

∑
j

B̂ij · sin(θi − θj)− PV RES
i , where B̂ij =

V 2
ij

Zij
. (2.4)

Seeing that equivalent loads include all types of devices, their demand can be frequency and
voltage-dependent. Nonetheless, since we consider that the voltage is kept constant, there is no
such dependency. To account for the frequency dependency, we introduce Di as the percent change
in load divided by the percent change in frequency. Considering that our loads can correspond
to residential, commercial, or industrial consumers and that we do not know the load distribution
across substations, we estimate that Di = 1. In consequence, if the frequency decreases (and
conventional plants do not entirely correct this unbalance by increasing their production), the
loads reduce their demand, and vice versa. A great approach to describe the power demand
dynamics, P d

i , as shown in [1], is to plot the power spectrum of frequency measurements recorded
at different timescales, given that frequency is a reflection of the demand-generation balance. It is
concluded that frequency fluctuations (thus, demand) have a power spectrum characteristic of an
Ornstein-Uhlenbeck (OU) noise, which is a correlated stochastic process that follows Eq. 2.5.

P d
i (t) = P dd

i (t)(1 + ϵouξou(t)) , (2.5)

where P dd is the actual demand data provided by the grid operator at the scale of minutes,
which we interpolate and use as the demand’s base profile. We incorporate the faster stochastic
changes, ξou, with an amplitude ϵou. This process has a zero mean <ξou(t)> = 0 and a correlation

<ξou(t)ξou(t
′)> = 1

2τou
e−

|t−t′|
τou , being τou the correlation time.

In order to understand what represents the second addend of the left expression in Eq. 2.4, we
have to focus only on high-voltage transmission lines. That implies working within the lossless line
approximation (resistance is smaller than reactance) and neglecting voltage fluctuations. This term
represents the power transmitted from node i to its neighboring nodes j. B̂ij is the susceptance
parameter of the line that connects node i to node j, Vij is the voltage of the line, and Zij is the
impedance of the line, estimated by the line’s longitude.

Given that VRES generation technologies connect to the grid via power electronic inverters
effectively, their power, PV RES

i , can be described as a frequency- and voltage-independent negative
demand, because of their negligible inertia.

When it comes to integrating a battery into the network, it can be understood as a primary
control with an additional term to avoid large deviations of the charge of the battery, Q, from the
charge set point, QSP :

dPb

dt
=

1

τb

[
γ (Q−QSP )− Pb − αω

]
,

dQ

dt
= −Pb , (2.6)

where Q can solely oscillate between zero and the capacity of the battery, C (boundaries included),
and the absolute power provided by the battery, |Pb|, has to be lower or equal to Pb,max = 2C,
which means it can discharge or charge at a rate equivalent to twice its capacity per hour. Even
though the battery can emulate the plants’ frequency control mechanisms, we impose that its
response time, τb, has to be smaller than that of conventional primary control, so it acts faster.
Additionally, γ controls the charge fluctuations by adjusting the strength of the forcing towards
QSP and α determines the strength of the reaction to frequency deviations. To guarantee that the
restrictions of Q and Pb are met, first, we calculate Q̄ = Q(t)−Pb(t)dt, where dt is the integration
time step. At that point, we proceed depending on the value of Q̄:

• If 0 ≤ Q̄ ≤ Qmax, then Q(t+ dt) = Q̄ and Pb is given by Eq. 2.6.

• If Q̄ < 0, then Q(t + dt) = 0 and the battery delivers the power allowed by the remaining
battery energy Pb(t+ dt) = Q(t)/dt.

• If Q̄ > Qmax, then Q(t+ dt) = Qmax and Pb(t+ dt) = (Q(t)−Qmax)/dt.

Because batteries age unavoidably and their performance decreases over time, we estimate
battery wear based on the number of cycles per day. The number of equivalent charge-discharge
cycles over some time t, ncycles, can be estimated as:
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ncycles =
Eb

Eb,1cycle
, where Eb(t) =

∫ t

0

|Pb(s)|ds , (2.7)

where Eb is the absolute value of the energy interchanged by the battery accumulated over time
and Eb,1cycle = 2C is the energy in a full charge and discharge cycle.

This model can be used to simulate grid dynamics over extended periods of time and of grids
of any size and any generation technologies, with the one condition that there is enough inertia to
disregard sub-second timescale dynamics.

3 Results and discussion

The program used to create the simulations, written by Maŕıa Mart́ınez and Pere Colet, integrates
power grid dynamics using a first-order semi-implicit Euler method and taking advantage of the
sparse structure of the grid. We obtain Gaussian random numbers with the Box-Muller algorithm
and use the same set of numbers for every simulation, in order to be able to compare them. To
implement the battery equations in the grid, we use a first-order explicit Euler method.

Dispatch data has also been provided by Maŕıa Mart́ınez and Pere Colet. Dispatch files were
created using 10-minute power data from Red Eléctrica de España for Gran Canaria. Each of them
contains the load per node, the operation set point (and its timescale) of each generating group,
and the power provided by renewables. All simulations are of the day 07/02/2019.

Regarding constant parameters, we consider the reference frequency, ωR, equal to 2πfR, where
fR = 50 Hz because of Europe’s regulations, and the charge set point, to be the 60% of the
maximum charge. For other global parameters, see the next table.

Parameter Value

Nodes 29
Power stations 6

Transmission lines 39
VRES 6

Integration time step (s) 0.2
D 1

τou (s) 60
ϵou 0.15

Ĥconsumers (MWs) 10−4

Table 1: Values of the global constant parameters used in all simulations.

Once we have briefly stated how the program works, we present which approach we have taken.
First of all, to comprehend the huge potential of VRES, we simulate ten different cases of wind
power generation. Secondly, we aim to contrast the effectiveness and durability of two size-different
batteries, to figure out which one is more convenient. As soon as we have concluded the proper
battery’ size, we try to determine the most adequate value of α, considering the battery’s limita-
tions. Finally, with the right value of α, we adjust γ to enhance the battery’s performance.

To better interpret the simulations, we also compute the complementary cumulative distribution
of the absolute frequency deviations, |f |. To do so, first, we reorder the data from the smallest to
the largest and evaluate the rank of the frequency deviations as R(|fk|) = 1−(k−1)/(N−1), being
N the number of data points. That way, R(|f |) measures the probability of having a frequency
fluctuation of size larger than |f |. In addition, we calculate the standard deviation and the rate
of change of frequency (RoCoF). The last one is calculated by making the difference between two
consecutive values of frequency and dividing by the time step that separates them (in our case, a
one-second time interval). RoCoF quantifies the faster behavior of the frequency.
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3.1 Wind power

In this section, we represent ten different cases of wind power generation of the same day. To do
so, we multiply the actual wind power generation of that day by numbers between one and ten.
It is worth mentioning that, although the plots shown correspond to simulations without battery,
integrating it would not modify them.

Figure 1: The left plot corresponds to the generated wind power and the right plot, to the used wind
power, both of the same day. The numbers in the legend of the left plot indicate the multiplicative
factor applied to wind generation. This legend is used for both plots.

As we can observe in the two images, as we augment wind power generation, a bigger fraction of
the demand is covered by it, being able to almost satisfy it (seven-or-more-times cases). Starting at
that simulation, the energy excess (not used to meet the demand) has to be discarded if it cannot
be stored in a battery.

3.2 Size determination

To ascertain the most suitable battery, we compare two size-different ones by plotting how well
they reduce frequency fluctuations and how much their power and charge vary in three α-different
scenarios. From now on, each time we plot frequency fluctuations, we will do it against the frequency
fluctuations obtained without battery (in color blue) and with two dotted lines at ±0.15 Hz that
indicate the statutory limits. In the case of charge plots, they will have a dotted line to designate
the corresponding QSP value. That being said, the battery’s parameters used are given in the
next table. Just to situate us, notice that the small and big batteries correspond to batteries of
maximum charges of 1000 kWh and 10000 kWh, respectively (an electric car uses a battery with a
maximum charge between 40 to 100 kWh).

Battery’s parameters Small Big

Qmax (MWs) 3600 36000
Pb,max (MW) 2 20

τb (s) 0.2 0.2
γ (Hz) 0.002 0.002

QSP (MWs) 2160 21600
α (MWs) 0.5//2.5//4.5 0.5//2.5//4.5

Table 2: Values of the battery’s parameters used in this section.
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Figure 2: Frequency fluctuations with the small battery (left) and with the big battery (right), both
of the same day. The first line of plots corresponds to the α = 0.5 MWs simulations, the second line,
to the α = 2.5 MWs ones, and the third line, to the α = 4.5 MWs ones.

In both situations, with the small and the big battery, we clearly perceive an improvement in
frequency fluctuations as we keep increasing the value of α. Nevertheless, we can also appreciate
that these frequency deviations are smaller in the bigger battery case, especially when α = 4.5
MWs. However, we still have two battery properties to analyse.
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Figure 3: Instant power provided by the small battery (left) and by the big battery (right), both of
the same day. The first line of plots corresponds to the α = 0.5 MWs simulations, the second line, to
the α = 2.5 MWs ones, and the third line, to the α = 4.5 MWs ones.

In tune with what we have learned from the frequency plots, we can barely notice differences
between the performance of the two batteries in the first line of plots. Nonetheless, once we start
to raise the value of α, we see that the small battery begins to work at its full capacity, reaching
values of its instant power equal to its maximum power (2 MW), which causes the battery to age
faster. On the contrary, the big battery never reaches its maximum power (20 MW) and its instant
power oscillates within the 15% of it, which can help ensure its correct function.
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Figure 4: Instant charge of the small battery (left) and of the big battery (right), both of the same day.
The first line of plots corresponds to the α = 0.5 MWs simulations, the second line, to the α = 2.5
MWs ones, and the third line, to the α = 4.5 MWs ones.

Again, we observe the same behaviour we have seen so far. In the first line of plots, both
batteries work similarly, whereas, when increasing α, the smaller battery charges and discharges
almost completely (at some point, its charge is the 33% of its QSP ) and the charge of the bigger
one hardly oscillates (8%) around its QSP . Lastly, we look over the number of cycles each battery
has completed in each case.

α (MWs) Small Big

0.5 22053 2206
2.5 93116 9422
4.5 146437 15049

Table 3: Number of cycles of the battery in each simulation.

Noticing that the number of cycles the small battery completes is ten times the bigger one’ in
all cases and considering all the plots shown above, we conclude that the big battery is the right
choice. Although the reductions of the frequency fluctuations are nearly equal, the agings of the
batteries are very different. The smaller battery would not last long, given all these peaks in its
instant power and charge that damage it.

3.3 α determination

Now that we have settled the size of the battery, it is time to find out the most fitting value of α. In
order to achieve that, we plot the frequency standard deviation, the rank of the absolute value of the
frequency, and the RoCoF, aside from plotting the frequency fluctuations and the battery’s power
and charge. All these three new magnitudes are plotted against the without-battery simulation for
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reference. The battery’s parameters used in this section are all the same as the big one’s except
for α, which varies. The values of α are given in the next table.

Battery α (MWs)

01 0.5
02 2.5
03 4.5
04 15.0
05 30.0
06 40.0
07 50.0

Table 4: Values of α used in our simulations.

Figure 5: Frequency fluctuations (left) and standard deviation, rank, and RoCoF (right), all of the
same day. The frequency fluctuations plots correspond to the cases α = 4.5 MWs, α = 15.0 MWs,
and α = 40.0 MWs, in order of appearance. The legend for the RoCoF plot is the same as the rank’s.
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Given that α is a parameter that depends on the grid’ size, augmenting its value can help reduce
the frequency fluctuations. That is exactly what we observe in all the plots above. Starting at
values of α = 15.0 MWs, the rapid frequency fluctuations have already vanished.

Figure 6: Instant power (left) and instant charge (right), both of the same day. The first line of plots
corresponds to the α = 4.5 MWs simulations, the second line, to the α = 15.0 MWs ones, and the
third line, to the α = 40.0 MWs ones.

Even considering what we have said in the last paragraph, we now learn that, from α = 15.0
MWs, the battery charges and discharges a great fraction of its QSP (54% in the last case shown),
damaging itself, and, therefore, the fittest value for α is 4.5 MWs (only charges and discharges an
8% of its QSP ). That is because it is adequate for decreasing the frequency fluctuations while not
causing the battery to age so quickly. Another indicator of this characteristic is that the number
of cycles the battery goes through increases with the value of α, as shown below.

α (MWs) Big

0.5 2206
2.5 9422
4.5 15049
15.0 34688
30.0 51653
40.0 59476
50.0 65312

Table 5: Number of cycles of the battery in each simulation.
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3.4 γ determination

Once we have determined the size of the battery and the value of α, we have to figure out the
proper value of γ. In order to achieve that, we plot the frequency standard deviation, the rank of
the absolute value of the frequency, and the RoCoF, aside from plotting the frequency fluctuations
and the battery’s power and charge. The battery’s parameters used in this section are all the same
as the big one’s (α = 4.5 MWs) except for γ, which varies. The values of γ used are shown below.

Battery γ (10−3 Hz)

01 0.02
02 0.20
03 2.00
04 20.00
05 50.00
06 200.00
07 500.00

Table 6: Values of γ used in our simulations.

Figure 7: Frequency fluctuations (left) and standard deviation, rank, and RoCoF (right), all of the
same day. The frequency fluctuations plots correspond to the cases γ = 0.0002 Hz, γ = 0.02 Hz, and
γ = 0.2 Hz, in order of appearance. The legend for the RoCoF plot is the same as the rank’s.
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Opposed to what happens with α, augmenting γ increases the frequency fluctuations, as we see
in all the plots above (this is why the plotting of battery 07 covers the others). As a result, we go
after a smaller value of γ.

Figure 8: Instant power (left) and instant charge (right), both of the same day. The first line of plots
corresponds to the γ = 0.0002 Hz simulations, the second line, to the γ = 0.02 Hz ones, and the third
line, to the γ = 0.2 Hz ones.

Nevertheless, as we observe in the plots above, a smaller value of γ (first line of plots) implies
bigger charges and discharges of the battery (26% in this case). In spite of this, bigger values of γ
do not help to take profit of the battery, seeing that, in those cases, it never reaches a 10% of the
maximum power. Another indicator of this characteristic is that the number of cycles the battery
goes through decreases with the value of γ, as shown below. Consequently, the most befitting value
of γ is 0.002 Hz.

γ (10−3 Hz) Big

0.02 20764
0.20 19040
2.00 15049
20.00 9169
50.00 6802
200.00 3545
500.00 2011

Table 7: Number of cycles of the battery in each simulation.
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To summarize, we show the final parameters of the battery in the next table.

Battery’s parameters Big

Qmax (MWs) 36000
Pb,max (MW) 20

τb (s) 0.2
γ (Hz) 0.002

QSP (MWs) 21600
α (MWs) 4.5

Table 8: Values of the final battery’s parameters.

3.5 Battery’s effectiveness

To conclude this search for the most appropriate battery, we calculate the standard deviation of
frequency fluctuations for the ten different wind power scenarios simulated before, without and
with battery.

Figure 9: Standard deviation of frequency fluctuations for increasing wind power generation.

We can easily notice that, regardless of the generated wind power, the battery always succeeds
in reducing the frequency fluctuations, as we expected.

4 Conclusions

With all the ongoing VRES research efforts, we have been able to offer useful insights on the topic
by modeling the power grid with realistic representations and using real data. Furthermore, we
have simulated different cases and learned from them to understand the theoretical model better.
Finally, we have found an adequate battery for Gran Canaria’s power grid that can help reduce
frequency fluctuations.

The power grid, continuously adapting to meet the changing demand needs, has to be accurately
modeled and simulated in very different scenarios. Some of them could involve: transmission line
stress, closing of conventional generators, increasing photovoltaic generation, a grid connected to
the mainland, large inter-area power imbalances...

Other approaches in order to balance VRES fluctuations instead of storage control are the inte-
gration of demand-side technologies with smart charging, energy efficiency measures, and potential
infrastructure upgrades.
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Abstract

Reservoir Computing constitutes a cost-efficient alternative to Recurrent Neural Networks that
has been shown to work well for tasks such as time series prediction. In recent times, the use
of quantum systems as reservoirs has allowed to efficiently solve purely quantum tasks with this
machine learning scheme. One of these tasks is entanglement classification. In this work, we use a
spin network as a reservoir, and study how it performs at classifying the entanglement of two-qubit
states. In particular, we pay special attention to the impact of the internal memory of the reservoir
in the accuracy of the classification for different families of states.

1 Introduction

The basic idea of Reservoir Computing (RC) is to replace the deep hidden layers in a Recurrent
Neural Network (RNN) with a complex physical system that automatically processes the input
information through its evolution, without the need to optimize any weights. This system is called
reservoir. Although this approach doesn’t work for every machine learning task, it has been shown
to function really well for time series prediction. The advantage lies in the training process, which
is reduced to solving a linear system of equations to find the optimal weights for the output layer,
as opposed to the computationally demanding backpropagation methods used in RNNs.

The RC scheme consists of three basic layers. First, an input layer, where the information
is encoded into some degrees of freedom of the reservoir. Then, the reservoir layer, where the
information is processed via the natural evolution of a physical system. If the system consists
of multiple nodes, its evolution in time will naturally include recursion, which is the key element
that allows RNN to retain information about multiple past inputs. That is, the reservoir will have
memory, which explains its usefulness in time series prediction. Additionally, the reservoir should
have the following three properties [4]:

• Non-linear processing: the reservoir should transform the input non-linearly.

• Separability: different inputs should be processed to different outputs.

• Fading memory: the performance of the algorithm should be independent of the initial condi-
tions of the reservoir, that is, its state before inserting the input. Thus, the reservoir should
only have short-term memory, forgetting about its long-past states.

Finally, we have an output layer, where some quantities xi of the reservoir are measured. The
final output, Y , of the scheme is usually obtained as a linear combination of these quantities. The
weights of this linear combination are contained in a matrix of coefficients, W . During the training
step, we modify W using linear regression so that the outputs of the scheme match the desired
values. This training procedure is very simple and efficient compared to the usual RNN backprop-
agation strategy.

RC can be performed using a wide range of physical systems as reservoirs. The ultimate goal
is to choose a system that will map the input into a much bigger state space, allowing the machine
to clearly separate the information, distinguish between different inputs, and learn effectively as a
consequence. Quantum systems satisfy this requirement particularly well, as the dimension of the
Hilbert space of a system of N spin particles grows exponentially with the number of them. For
spin-1/2 particles, this is 2N . The fact that the degrees of freedom of a quantum reservoir increase
exponentially with its size means that this type of reservoir will require less nodes in order to
outperform other reservoir systems. Besides that, quantum reservoirs allow to solve both classical
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and purely quantum tasks, as they can take quantum states as inputs. The goal of this project
is to study the application of Quantum Reservoir Computing (QRC) to classifying the entangle-
ment of a two-qubit quantum state. The code developed can be found in the following repository:
https://github.com/estaffet/QRC_entanglement_classification.git

Figure 1: Quantum Reservoir Computing scheme. Taken from [2].

2 Theoretical model

2.1 Ising model

It has been shown that fully-connected transverse-field Ising lattices work well as quantum reser-
voirs. These are described by the following Hamiltonian [3]:

H =
∑
i,j

JijXiXj + h
∑
i

Zi , (2.1)

where Xi and Zi represent the spin operators along the x and z directions, respectively, for the
i-th spin of the lattice. For spin-1/2 particles, these operators are the Pauli matrices. The coupling
matrix (J)ij is random, and allows for interactions between any pair of spins, as opposed to the
usual nearest neighbour approximation. Its entries are randomly drawn from the uniform distribu-
tion in the interval [0,1].

Let’s first discuss the common use case of time series prediction. If we wanted to analyze a
sequence u = (u0, u1, . . . , uk, . . .), at each time step t = k∆t (with k = 1, 2, 3, . . .) the state of the
first node in the lattice would be replaced by |ψk⟩ =

√
1 − uk |0⟩ +

√
uk |1⟩. This is achieved by

taking the partial trace over all spins except the first one. Between each time step, the reservoir is
left to evolve naturally. In this way, the state of the reservoir at the k-th step will be influenced by
all the previous elements in the sequence. Thus, the reservoir processes the entire sequence simulta-
neously, keeping memory of its past states, which explains its usefulness in time series predictions [1].

In our present case, the target task is not temporal, meaning that the memory of the dynamical
system is not required in principle. The input data will be two-qubit quantum states, and the targets
will either be binary classification labels (entangled/separable) or some numerical entanglement
measure that characterizes the states. This type of scheme is known as Extreme Learning Machine
(ELM). However, inspired by the time series prediction protocol, it is plausible that reinserting the
same input multiple times at different time steps might improve the performance of this classification
algorithm, especially for complex quantum states. For the purpose of evaluating the impact of
input reinsertion, we will start working with Werner states. These are two-qubit states that are
parametrized by a single parameter. For this reason, its classification in the training process should
be simple enough for the reservoir to not need reinsertion. Then, we will study more complex
families of two qubit-states, dependent on more than one parameter. The goal is to analyize if
reinsertion improves classification in these cases, and determine the optimal number of reinsertions.
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2.2 Approach

First, the reservoir is initialized to a random state, ρ0. Then, we take the partial trace over all
spins except the first two, and inject the input state, ρinput, there. Explicitly, the reservoir is left
in the following state:

ρ = ρinput ⊗ Tr1,2{ρ0} . (2.2)

where the notation Trx indicates the partial trace over all spins except those in the subindex. Next,
the reservoir is left to evolve for a time ∆t following the dynamics of the Hamiltonian, obtaining:

ρ(∆t) = e−iH∆t[ρinput ⊗ Tr1,2{ρ0}]eiH∆t . (2.3)

After this time interval, we extract some data from the reservoir by measuring different observ-
ables Oj over each spin:

xj = Tr[Ojρ(∆t)] . (2.4)

This data is then linearly combined with weights wi to produce the final scalar output. These
weights are optimized in the training step to best match the desired outputs for the set of training
inputs. In our case, we measured Xi, Yi and Zi over each of the spins. In practice, in the training
step we repeat the mentioned process with multiple inputs, building a matrix of observables:

X =


Tr[O1ρ

(1)(∆t)] Tr[O2ρ
(1)(∆t)] . . . Tr[Okρ

(1)(∆t)] 1
Tr[O1ρ

(2)(∆t)] Tr[O2ρ
(2)(∆t)] . . . Tr[Okρ

(2)(∆t)] 1
...

. . . . . .
...

...
Tr[O1ρ

(M)(∆t)] Tr[O2ρ
(M)(∆t)] . . . Tr[Okρ

(M)(∆t)] 1

 , (2.5)

where the superscript that ranges from 1 to M labels the different input states used for training.
Additionally, an extra column has been included in the matrix to account for the independent term
of the linear regression:

Y = XW (2.6)

where Y are the targets of the training step, and W is a vector of weights.

If we wanted to reinsert the input, we would repeat the previous steps iteratively by taking the
partial trace at the end of each evolution interval, and end up with the following state:

ρ(k∆t) = e−iH∆t[ρinput ⊗ Tr1,2{ρ((k − 1)∆t)}]eiH∆t . (2.7)

3 Results and discussion

3.1 Werner states

The first goal was to classify the entanglement of uniparametric 2-qubit states known as Werner
states. These are given by the following expression:

ρW (λ) = λ
∣∣ψ−〉 〈ψ−∣∣ +

1 − λ

4
I, (3.1)

where ∣∣ψ−〉 =
1√
2

(|01⟩ − |10⟩) (3.2)

is a Bell state (maximally entangled), and λ ∈ [−1/3, 1]. These states are separable for λ ≤ 1/3 and
entangled for λ > 1/3. Since this family of states depends on a single parameter, one insertion of
the input should be enough for the reservoir to classify them correctly. In fact, since this task should
be fairly easy for a quantum reservoir, the goal was to predict directly the value of the parameter λ
given an input Werner state. The following figure shows the predictions in the training and testing
steps. Since the estimation is almost perfect, the target and predicted values overlap in the graphs.
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Figure 2: Training and testing stages for Werner states.

The prediction is really good, with a MSE1 of 10−19. To obtain this result, we have used a
reservoir of N = 6 spins.

3.2 Cross states

After this first example, we move on to more complex 2-qubit states. Instead of one parameter, we
now define the so called cross-states, which depend on 3 independent parameters. Their general
density matrix is:

ρC =


p 0 0 c1
0 q c2 0
0 c2 q 0
c1 0 0 p

 , with p+ q = 1, c1 ≤ |p|, c2 ≤ |q|. (3.3)

The last two conditions on the non-diagonal elements come from the general requirement (ρ14 ≤√
ρ11ρ44 and ρ23 ≤ √

ρ22ρ33) for the density matrix to represent a physical state.

In this case, it will be necessary to insert the input multiple times to obtain accurate results.
That is, instead of measuring the reservoir after the first evolution, we take the partial trace again
over all spins but the first two, and reinsert the input on the first two qubits. Then we let the
reservoir evolve again, and repeat this process as many times as necessary.

3.2.1 Entanglement metrics

In order to characterize the level of entanglement of a bipartite system like ours, we use two different
metrics: concurrence and negativity, both defined for a two-qubit state ρ [5].

• Concurrence. Defined as:

C(ρ) := max(0, λ1 − λ2 − λ3 − λ4) , (3.4)

where λ1, . . . , λ4 are the eigenvalues, in decreasing order, of the following Hermitian matrix:

R =
√√

ρρ̃
√
ρ , (3.5)

and

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) . (3.6)

1Computed over a set of 100 input states in the testing phase by comparing the difference between their actual λ
parameter and the prediction.
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• Negativity. Defined as the absolute sum of the negative eigenvalues of the partially trans-
posed density matrix:

N (ρ) =
∑
i

|λi| − λi
2

(3.7)

If the negativity is 0, the state is separable. On the other hand, for entangled states it is < 0.

The classification task was seen to work much better when using negativity as a metric, so in this
report we will not comment the results obtained with the concurrence. We want to classify the
states in entangled or separable, without predicting directly any entanglement metric or parameter.
For this purpose, we train the reservoir by assigning the vector Y = [1, 0] to separable states, and
Y = [0, 1] to entangled states. In the testing phase, the reservoir will provide as output a 2D vector.
If the first element of this vector is larger than the other, the input state is classified as separable.
Otherwise, it is considered to be entangled.

3.2.2 Results

The next figures show the evolution of the classification accuracy as the number of input reinsertions
is increased. We see that inserting the input multiple times in fact improves the performance of
the algorithm, which makes no mistakes with 3 iterations. This has been seen to be the tendency
for this family of two-qubit states. Figure 6 shows the performance of the algorithm when asked to
predict the negativity of the input states directly, with 3 input insertions. The MSE in this case is
of the order of 10−3.

Figure 3: 1 iteration: 3 mistakes. Figure 4: 2 iterations: 1 mistake.

Figure 5: 3 iterations: no mistakes. Figure 6: Prediction of negativity for 3 iterations.
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Figure 7: Evolution of error with number of inputs.

In order to generalize the previous observations, we perform a statistical average of the MSE
for the negativity prediction over multiple random seeds (which modifies the coupling matrix of the
Hamiltonian, and thus the structure of the reservoir lattice). Figure 7 shows the evolution of this
average with the number of input reinsertions. As seen previously, reinserting the input improves
the performance, 4 times being the optimal number. Beyond this number, the MSE seems to
increase.

4 Conclusions

This work has shown that the memory of the reservoir turns out to be useful for classification tasks
which are not temporal in nature. This is true at least for the entanglement classification task under
study. Further work could consist in analyzing the performance of this scheme with other families
of quantum states, in order to generalize the conclusions achieved thus far. It has also become
clear that the metric used to quantify entanglement plays an important role in the accuracy of the
classification. It would also be interesting to study which properties make a metric stand out, and
if this advantage depends on the underlying quantum system of the reservoir. Additionally, not
much attention was paid to the hyperparameters associated to the Ising lattice, like the intensity
of the transverse magnetic field or the range of values of the elements in the coupling matrix. A
more thorough inspection could have found values for which the algorithm worked better.
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Abstract

Inhomogeneities in vegetation meadows, like fairy rings, appear spontaneously in all kinds of
enviroments and they provide vital information about the ecosystem’s health. Monitoring them
allows us to identify growth and risk factors. These patterns, that appear both in drylands and
underseas, can have many different triggers like soil composition, animal or human intervention or
water-biomass feedback.
Spatial heterogeneity and patterns are also present in Posidonia oceanica meadows in the Mediter-
ranean sea. This seagrass is a key element of the Mediterranean ecosystem. Identifying posidonia’s
dynamics is essential to preserve the marine environment.
Our objective is to explore if the same dynamics between sulfide accumulation in the sediment and
seagrass growth used by Ruiz-Reynés et al. to describe rings of posidonia that propagate through
bare soil can result in the opposite pattern: arcs of bare soil propagating through an homogeneous
meadow that have been observed in the Balearic coasts.
In this work we analyze how the system’s behavior changes with the active removal of sulfides due
to vegetation presence, which has not been studied before.

1 Introduction

Posidonia oceanica is a species of seagrass that is of particular interest due to it’s abundance in
the Mediterranean ecosystems. it has a big impact in the environment’s health as large meadows
of posidonia fix the values of CO2, produce large quantities of oxygen and protect the soil as well
as the fish that live around it, accumulating large quantities of biomass. It is commonly used as
a marker to determine the state and health of marine ecosystems. It occupies a portion of the
Mediterranean under sea, growing both in large homogeneous meadows or forming varied hetero-
geneous patterns in different regions.

When under favorable conditions, vegetation tends to occupy all available space, forming large
homogeneous meadows. However, once we add spatial-extended negative feedback in the equation
like toxic sediment, resource limitation, human intervention or animal grazing, inhomogeneities can
emerge spontaneously forming a wide variety of particular patterns like fairy circles in the Namibian
desert, which Juergens associated with the intervention of termites [3], other fairy circles in Aus-
tralia associated with a different biomass-water feedback [4], or vegetation labyrinths in northern
Negev.

These dynamics are vital, providing a smooth transition between the homogeneous meadow and
a bare landscape, allowing for intermediate states when not all conditions are favorable to the
vegetation’s development, for example, fairy circles in the Namibian desert can survive through
many decades of drought. So, in understanding them, we can assess the ecosystem’s health and
functioning, identify the factors that allow for vegetation growth as well as risk factors that could
endanger it.
Due to their complexity and sensibility to many conditions like temperature, precipitation, soil
composition or animal participation, these systems can have a very sensible equilibrium that could
disappear with a minor change in the environment. That is why it is so important to understand
and monitor these systems. Even more now that climate change is rising the temperature and
producing changes at a global scale. The total disappearance of vegetation would be catastrophic
for their ecosystem.
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Though this patterns are mostly known in deserts and drylands, where they have been studied
extensively, similar patterns appear underseas in seagrass meadows, although a different mech-
anism must be considered other than the competition for water that drives these dynamics in
drylands. Among these patterns, there are fairy circles, which have been observed in the Corsican
coast (Mediterranean sea) in meadows of Posidonia oceanica [5] [6], or ring-like pulses of posidonia
propagating through bare soil in the coasts of the balearic islands (Fig. 1).
A recent study by Ruiz-Reynés et al. has shown that the spatiotemporal dynamics of these rings is
associated to excitable dynamics resulting from the interaction between seagrass growth and sulfide
accumulation in the sediment [1].

Figure 1: Excitable ring. High-resolution 2021 drone image of an excitable ring of Posi-
donia oceanica in the Pollença bay. [1]

Hydrogen sulfides are toxic to seagrass. As the plant absorbs them, they inhibit growth and
increase mortality. However they are closely connected as they are the main byproduct of bacteria
in seagrass sediment: when the plant dies and decomposes, sulfides are generated. However as the
plant grows it also absorbs sulfides, reducing its concentration. Under the right conditions, which
typically require high input of organic matter, mathematical modelling predicts the emergence of
the aforementioned excitable behaviour.
Consider the formation of a patch of seagrass. It’s center saturates and, as the concentration of
sulfides raises, the plant decays and starts to die outward form the center. However, as the center of
the region dies, its perimeter also grows towards the surrounding soil, which is less rich in sulfides,
resulting in a ring of vegetation that grows radially [1].

This project emerges from the results obtained by Ruiz-Reynés et al., successfully relating the
dynamics of these propagating rings of posidonia with the interaction between seagrass growth and
sulfide concentration.
The idea we explore in this project is that a similar coupled mechanism can form the inverted
pattern: arcs of bare soil that propagate through an homogeneous meadow of seagrass. These
patterns have also been observed along the Balearic coasts (Fig. 2).
We use the same mathematical model to describe the interaction between seagrass and sulfides to
see if excitability compatible with the propagating arcs is related to the active removal of sulfides
due to vegetation. The effects of this term have not been analyzed before and in this work we see
that when this term is largely increased, it allows for the inverted patterns we where searching for.
These arcs would account for a patch of vegetation that transitionally vanishes into bare soil before
it grows again, stabilizing in an homogeneous state.
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Figure 2: Arcs of bare soil in an homogeneous meadow of Posidonia oceanica. Satellite
image from Google Maps of the Pollença bay.

2 Theoretical model

The theoretical model used to describe the dynamics of the vegetation density is composed of two
coupled partial differential equations describing the time evolution of vegetation density and sulfide
concentration [1]:

∂tn = (ωb − ωd(n, S))n+ d0∇2n+ d1(n∇2n+ |∇n|2) (2.1)

∂tS = csωd(n, S)n+ Ps − δsS − δ0nS +Ds∇2S (2.2)

Where ωb is the branching rate, δs + δ0n is the removal rate of sulfides, Ps is the external input
of sulfides (which is assumed constant) and ωd is the mortality rate as a function of the vegetation
density and the sulfide concentration:

ωd(n, S) = ωd0 −
ωd0an

1 + an
+ bn2 + γS (2.3)

ωd0 is the intrinsic mortality rate of the plant, γ is the sensibility of the plant to sulfides, bn2

is a saturation term for large values of density and ωd0an
1+an is a facilitative, self-saturating term: it

grows linearly with n until it saturates to the value of ωd0 for large values of density.

For simplicity, spatial terms were not considered in this work (d0, d1, Ds = 0) so the resulting
system is composed of two coupled, first-order differential equations, with nine parameters remain-
ing. In this project we focused on how the model’s stability changes with the intrinsic mortality
rate, ωd0, and how the active removal of sulfides due to vegetation, δ0, affects the dynamical regimes.

2.1 Stability analysis and bifurcation theory were used to determine the
different dynamical regimes of the system

Fixed points are those where the system remains constant. They can be stable, when the system
evolves towards the fixed point and tends to stay there. Or they can be unstable, meaning that
the system will evolve away from those points at the smallest perturbation [2].
The fixed points, which would account for a steady solution where the vegetation density has a
constant value, can be found by solving the equations ∂tn

∗ = 0, for which we have ωd(n
∗, S∗) =

ω∗
d = ωb, and ∂tS

∗ = 0. Keeping in mind that the bare soil solution, n = 0, is always a fixed point,
independent of the parameters, the other fixed points are given by:

ωd0 =

(
ωb − bn∗2 − γ

csωbn
∗ + Ps

δ0n∗ + δs

)
(1 + an∗) (2.4)

Where we used that S∗ = csn
∗ωb+Ps

δ0n∗+δs
, which can be derived from ∂tS

∗ = 0.
Notice that this equation gives us the inverse expression of the bifurcation diagram, ωd0(n

∗), but
we cannot isolate the fixed points, n∗(ωd0). However, we can solve it numerically by simply using
an array of values of n∗, calculating the respective ωd0 and then plotting the parameter in the X
axis instead of the Y axis.
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To study the stability of these fixed points, we study the respective eigenvalues using linear stability
analysis: considering a pertorbation of the type n = n∗ + δn and S = S∗ + δS, doing a first order
aproximation around the fixed point (Taylor expansion) we get the linear system [2]:{

∂tδn = (ωb − ω∗
d + ωd0an

∗

(1+an∗)2 − 2bn∗2)δn− γn∗δS

∂tδS = [cs(ω
∗
d + 2bn∗ − ωd0an

∗

(1+an∗)2 )− δ0S
∗]δn+ (csγn

∗ − δs − δ0n
∗)δS

(2.5)

Which we can diagonalize to find the eigenvalues:
For the bare soil solution (n∗ = 0): {

λ+ = ωb − ωd0 − γPs

δs

λ− = −δs
(2.6)

So we find that n∗ = 0 is an unstable point for ωd0 < ωd − γPs

δs
(it’s eigenvalues have opposite

sign) whilst n∗ = 0 is a stable point otherwise (both eigenvalues become negative).
For n∗ ̸= 0 the eigenvalues have a much more complex expression that depends on all parameters
and has to be solved numerically.

Bifurcations are points of special importance, as they often indicate the presence of a threshold
between two different behaviours. The bifurcations that are relevant to us are:

1. Saddle node bifurcation: two fixed points merge and then disappear. We determined it
by finding the zeros of the derivative of Eq. (2.4) respect to n∗.

2. Transcritical bifurcation: two fixed points collide and change stability. To find it we
imposed n∗ = 0 to Eq. (2.4), by which we got ωd0 = ωb − γ Ps

δs
. Notice that, according to it’s

definition, this bifurcation marks the change in stability of n∗ = 0 Eq. (2.6).

3. Hopf bifurcation: when the eigenvalues around a fixed point are complex conjugates, the
system evolves in a spiral around said fixed point. If the real part of the eigenvalues is negative,
the spiral converges into the fixed point (the fixed point is stable). However, if the real part
of the eigenvalues is positive, the spiral converges into a stable orbit around the fixed point:
if we start the evolution of the system outside the orbit it will spiral inward until it steadies
in the orbit; however, if we give an initial condition inside the orbit, it will spiral outwards to
the orbit, so the fixed point becomes unstable.
This means the Hopf bifurcation can be determined by finding the zeros of the real part of
both eigenvalues (when they are complex conjugates) [2].

2.2 Numerical methods

To find the fixed points and bifurcations, the equations have been solved numerically using methods
like bisection or Newton-Raphson, using Fortran90 as the programming language.
To compute the evolution of the system we used a Runge-Kutta4 method to solve the coupled
differential equations (2.1) and (2.2) (without spatial terms). A step of between h = 0.1year and
h = 1year has been used, depending on the accuracy needed for the concrete regime, The initial
conditions have been chosen based on streamline diagrams and the bifurcation diagrams obtained.

During the one month stay of the fellowship, we focused on studying the ODE system, while
the spatial terms will be added in the future to compute the final, complete simulations. The
idea is to run spatiotemporal simulations using a pseudo-spectral method to compare the evolution
predicted by the model with images of the arcs seen in the Balearic coasts (Fig. 2) to see if there
is correlation.

3 Results and discussion

To distinguish the different regimes in the theoretical model, we plotted the bifurcation diagram
using Eq. (2.4) with the parameters used by Ruiz-Reynes et al, which were measured in the posi-
donia meadows of Pollença bay [1].
The parameters are: ωb = 0.6y−1, a = 15.0cm2y−1, b = 6.67cm4y−1, cs = 30.6µMcm2, Ps =
1.13µMy−1, δs = 0.036y−1, δ0 = 0.06cm2y−1, γ = 6.54 · 10−3µM−1y−1.
Plotting the corresponding eigenvalues gave us an idea of the stability of the fixed points and the
types of bifurcations (Fig. 3).
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Figure 3: Panel a: bifurcation diagram showing the fixed points of the system (stationary
values of vegetation density, n∗, as a function of mortality rate, ωd0. The solid line accounts
for the stable fixed points whilst the dotted line represents the unstable points. The green
point marks a Hopf bifurcation; the red dot marks a saddle node bifurcation and the
yellow point marks a transcritical bifurcation. Panel b: real part of the eigenvalues. Panel
c: imaginary part of the eigenvalues.

In Fig. 3 we can see that, for mortality rate below the Hopf bifurcation there is only one stable
point, with complex conjugate eigenvalues. That means the system will evolve towards the fixed
point in a spiral (Fig. 4a). As a result, for low mortality we will have large, homogeneous meadows
of vegetation.
For mortality values between the Hopf bifurcation and the saddle node bifurcation we can see that
the real part of the eigenvalues becomes positive, meaning that the stable point becomes a stable
orbit around said point (Fig. 4b). This would result in an oscillatory regime driven by the nega-
tive feedback between sulfides and vegetation: density would grow to a maximum point; then, the
sulfide concentration would be high enough that plants would start to die, the vegetation density
would decrease while sulfides dissipate until the sulfide concentration is low enough for vegetation
to grow again.
The saddle node bifurcation can be identified where one of the eigenvalues becomes zero. For val-
ues of mortality above the saddle node plants can not grow and n∗ = 0 becomes the only stable
solution, meaning that vast plains without vegetation are the only possible outcome.
In the transcritical bifurcation, again we have that one of the eigenvalues disappears. This bifur-
cation marks a change in stability of the bare soil solution: for low mortality, n∗ = 0 is unstable,
meaning that vegetation will easily appear and grow to the stable value. For mortality above the
transcritical solution, however, bistability appears. There are two possible stable solutions: the
bare soil solution and the oscillatory regime.
The unstable branch below the saddle node bifurcation establishes which stable solution will be
found: when above the unstable branch, we should find the stable oscillatory solution; whereas
when below the unstable branch, the vegetation density would inevitably decline to zero.

The most interesting phenomenon that we can find in this system occurs when oscillations and
bistability coincide. And only if the stable orbit of the oscillatory regime grows below the unstable
branch. When this happens excitability emerges. In this case, given an initial condition around the
upper fixed point, the system will grow spiraling away from the fixed point, hoping to reach the
stable orbit. However, as it happens, it would cross the unstable solution and then decay inevitably
to zero (Fig. 4c).
In this scenario, vegetation would grow until saturation, where it would start to decay. However,
unlike the stable oscillatory solution, it would not reach the point where it can grow again, and so
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it would disappear.
Recently, Dr. Ruiz-Reynés et al. have shown that this excitable dynamics are compatible with
rings of posidonia that radially expand in space in the Balearic coast [1].

Figure 4: Evolution of the system for different values of ωd0. We plotted the vegetation
density, n, as a function of the sulfide concentration, S. Panel a: ωd0/ωb = 0.5, homoge-
neous regime. The systems evolves in an inward spiral towards the stable point, where it
will remain constant. Panel b: ωd0/ωb = 0.61, oscillatory regime. The system stabilizes
in an orbit around the now unstable point. Panel c: ωd0/ωb = 0.67, excitable regime. We
can see how the system spirals away from the fixed point before decaying to zero.

For a more complete understanding of the system, we also studied how the diagram changes
with the sensitivity to sulfides, γ, (Fig. 5).
We see that if γ is increased, the saddle node disappears (and so there is no more bistability nor
excitability) and a second Hopf bifurcation appears. This means that the stable oscillations are
confined in between both points.
If the sensitivity to sulfides is low, the oscillatory regime disappears and we have two stable points.
We can also note that excitability happens in a very thin region of the diagram, for a very concrete
set of parameters.

Figure 5: Phase diagram of the system with mortality, ωd0, and sensitivity to sulides, γ,
(dimensionless) as control parameters. The green line represents the transcritical bifurca-
tion, the Hopf bifurcations are represented by the red line and the saddle node bifurcations
by the blue line.
In the green shaded area, the only steady solution is an homogeneous meadow of vege-
tation. The red shaded area marks the oscillatory regime. For large mortality but low
sensitivity, in the blue area, there are two stable solutions: the homogeneous meadow and
the bare soil solution. In the white area vegetation can not grow due to the large mortality
and sensitivity to sulfides, so bare soil is the only stable solution. The yellow area marks
the excitable regime.
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Seeing that the excitable regime of the model is compatible with the propagating pulses of
posidonia observed in Pollença bay, we hoped that a similar mechanism would give an explanation
for the opposite pattern: a pulse of bare soil propagating through a large meadow of posidonia.
So we searched a new set of parameters that would allow for a lower branch of fixed points from
which the vegetation could oscillate around zero before shooting up to a stable point of larger
density.
To do so, we varied all parameters until we found a second saddle node, then adjusted them to
enlarge the bistability zone. The set of parameters found is:

ωb = 1.0y−1 a = 19.0cm2y−1

b = 1.6666667cm4y−1 cs = 90µMcm2

Ps = 0.4µMy−1 δs = 0.036y−1

δ0 = 3.2cm2y−1

(3.1)

Notice that the most notable change is in δ0, which has been augmented 50 times. This term
corresponds to the elimination of sulfides due to vegetation presence.
The corresponding phase diagram is shown in Fig. 6

Figure 6: Phase diagram of the system for the newfound parameters. A second saddle
node appears which merges with the transcritical bifurcation as sensitivity decreases. The
excitable regime is now before the transcritical bifurcation, between the new saddle node
bifurcation and the Hopf bifurcation.

Next, we study how the system behaves for different sensitivities.

For high values of γ, we see that the saddle nodes disappear, that means there will only be one
stable solution for the system to reach. There is also a small region with two Hopf bifurcations.
Between them, the fixed point becomes unstable and so a stable orbit solution appears (Fig. 7).
However, the lack of bistability does not allow for excitability to happen.
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Figure 7: Panel a: bifurcation diagram for the newfound parameters with γ cs
ωbb

= 2.6.
There is no bistability nor saddle node bifurcations, only an oscillatory regime of stable
orbits between the two Hopf bifurcations. Panel b: real part of the eigenvalues. Panel c:
imaginary part of the eigenvalues.

For low sensitivities, one saddle node remains (there still is bistability), while the other one
merges with the transcritical bifurcation. We get a bifurcation diagram similar to the one found
for the initial parameters, with the exception that now there are no Hopf bifurcations (Fig. 8). As
a result there will not be stable orbits that could have resulted in excitability.

Figure 8: Panel a: bifurcation diagram for the newfound parameters with γ cs
ωbb

= 1.0. We
can see that, although there is bistability, there are no Hopf bifurcations that could result
in an oscillatory regime, meaning that excitability cannot happen. Panel b: real part of
the eigenvalues. Panel c: imaginary part of the eigenvalues.

The most interesting regime of the phase diagram, however, is for γ cs
ωbb

∈ [1.5, 2.1], where the
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bifurcation diagram shows multiple folds, as shown by Fig. 9. Comparing with the old parameters
(Fig. 3) we see that the Hopf bifurcation has moved from the upper stable points to the new
branch of lower fixed points. Notice also that before the oscillations appeared to the right of the
Hopf bifurcation (positive eigenvalues), while now they can be found to its left.
In the zone between the lower saddle node and the Hopf bifurcation, we encounter an inverse
excitability, which is what we where looking for. In this new regime, the oscillations appear below
the unstable branch. So given an initial condition around the lower fixed point, it will spiral away
from it looking for the stable orbit. However, it will grow over the unstable branch and then shoot
up directly to the stable point above.
This should result in a patch of vegetation that decays momentarily to zero as it does a loop around
the fixed point just before shooting up to the upper stable point in a spiral, as shown in Fig. 10.
This new behaviour should be a result of the now larger removal rate of sulfides, δ0. As the patch
of vegetation saturates and decays, sulfides now dissipate much quicker, allowing for a comeback
of the vegetation where it can grow stronger.

Figure 9: Panel a: bifurcation diagram for the newfound parameters with γ cs
ωbb

= 2.0.
Panel b: real part of the eigenvalues. Panel c: imaginary part of the eigenvalues.

Figure 10: Panel a: evolution of the system for ωd0/ωb = 0.585. In blue the evolution
followed in the excitable regime, with initial conditions below the unstable branch (n0 =
0.01cm−2 and S0 = 18cm−2), and in red the evolution of the system with initial conditions
above the unstable branch (n0 = 0.05cm−2 and S0 = 18cm−2). Panel b: streamlines for
ωd0/ωb = 0.585 where we can see the tendencies followed by the system in each region.
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4 Conclusions

The theoretical results obtained in this work show a change in the behaviour of the coupled me-
chanics of sulfides and vegetation. As the removal rate of sulfides, δ0, is largely augmented from
the values that have shown compatibility with the propagating rings of posidonia [1], the dynamics
of the system change slightly:
For large sensitivity to sulfides, the populated solution decays quickly as mortality raises, passing
through an oscillatory regime (Fig 7).
For lower sensitivities, the stable points for the populated region do not exhibit oscillations any-
more. However, for the appropriate sensitivity to sulfides, a new branch of stable oscillations
appears for low densities and intermediate mortality. This region combines all necessary features
for excitability to emerge: oscillations close to an unstable point and a bistable regime opposite to
the one associated with the propagating rings: instead of a patch of vegetation that grows from an
unpopulated area before decaying to zero again (which results in the propagating rings), the new
regime that we have found should be consistent with a patch of vegetation initially populated that,
after a small perturbation, decays to bare soil before reaching populated stability.
We hope that this newfound regime will be compatible with the propagating arcs of bare soil ob-
served in the Balearic coasts.

In this work we have proven that the theoretical model studied exhibits a new kind of excitability
for the right parameters.
The next step will be to add the spatial terms to the equations and run spatiotemporal simulations
to see if the behaviour predicted by the model is compatible with the excitable arcs observed in
nature.
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