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Abstract

In this work we start providing a short review of Stochastic Thermodynamics and discussing a
recent realization of a Maxwell demon that appeared in the a recent article using the equivalence
between Clausius and Shannon entropy. Then, we review the Gillespie algorithm that allow us to
study Stochastic Thermodynamics at the trajectory level. We numerically apply it to two systems.
First, a toy model consisting of a system with three energy levels coupled to three thermal baths.
We numerically check the validity of some fluctuation theorems for this system. Finally, for the
Maxwell demon model we verify some fluctuation theorems, discuss the régimes of operation and
quantitatively discuss the improved lower bound on the total entropy production presented in the
mentioned paper.

1 Introduction

Classical Thermodynamics is usually restricted to the description of equilibrium states of macro-
scopic systems, that undergo transformations involving exchange of heat, work and matter with an
environment. Those transformations are governed by universal laws such the non negativity of the
entropy production, which imposes limitations on the efficiency of thermal machines. Equilibrium
Classical Thermodynamics of macroscopic systems got its justification from a microscopic point
of view from equlibrium Statistical Mechanics, which basically states that for a system in contact
with a heat bath, the probability of a given system being at a certain microstate is given by the
Boltzmann factor.

Recently, these ideas have been extended to the description of non equilibrium states of small
scale systems for which an average description in terms of ensemble quantities is not sufficient.
These extensions has been carried out to different kinds of system, Markovian and non-Markovian,
discrete and continuous... giving birth to a new discipline, Stochastic Thermodynamics. In that
theory, the Second Law gets replaced by Integral and Detailed Fluctuation Theorems which con-
strain the probability distribution of quantities as entropy along individual trajectories as well as
the average production of entropy.

Stochastic Thermodynamics can be applied to a wide range of systems, being some paradigmatic
ones molecular motors in single molecule assays and thermoelectric devices involving single electron
transport. On the other hand, one kind of interesting small scale systems are some realizations
of the Maxwell demon mental experiment. In particular, there have appeared some models in the
literature, which behave as a Maxwell demon by using the equal footing of thermodynamic and
information entropy.

This manuscript is organised as follows. In section 2.1 we summarize the main results of
Stochastic Thermodynamics, mainly following the approach in [1]. In section 2.2 we remember the
definition of a Maxwell demon and present a realization that appeared recently in [9]. In section
2.3 we explain how can one simulate stochastic processes, using the Gillespie algorithm [5]. Results
for the stochastic simulation of a toy model and for the previous Maxwell demon realization are
presented and discussed in sections 3.1 and 3.2.

2 Theoretical Background

2.1 Stochastic Thermodynamics

2.1.1 Ensemble Stochastic Thermodynamics

We consider a system with discrete non-degenerate states (labeled by the index m) in contact with
a single heat and particle reservoir at a temperature T and chemical potential µ. The energy of a
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statem is given by ϵm and the number of particles in such a state by nm. The system is also allowed
to exchange work with a work source which controls the energy levels ϵ(λ) via a time dependent
control parameter λ(t).

In the (non)-equilibrium ensemble thermodynamics picture a system has a probability Pm of
being in the state m, with

∑
m Pm = 1. This probability distribution is not the equilibrium one.

In what follows we only consider Markovian dynamics, i.e: the evolution of a system only depends
on its current state. In that case the time evolution of the probabilities Pm is controlled by the
Markovian master equation:

dPm

dt
≡ Ṗm =

∑
m′

Wm,m′Pm′ (1)

With Wm,m′ the probability per unit time of making a transition from state m′ to m. From the
normalization of Pm, one can easily obtain the following property for the transition rates Wm,m′ :∑

m

Wm,m′ = 0 (2)

Which implies Wm,m = −
∑

m′ ̸=mWm′,m. This means that the diagonal elements contain the
probability rates of ”leaving” a given state. With this (1) is easily understood. The change in the
probability of a given state m is the result of a transition from any other state m′ ̸= m to m minus
the probability of jumping from state m to any m′ ̸= m.

In the steady state the system is in equilibrium with the reservoir and the probabilities are the
grand canonical equilibrium ones:

P eq
m = exp [−β(ϵm − µnm − Ωeq)] (3)

Where β ≡ 1/T (we use units where the Boltzmann constant equals 1 and has no dimensions) and
Ωeq is the equilibrium grand potential, which is obtained by normalization of P eq

m .
In this work we also impose the more restrictive condition of detailed balance, i.e: at equilibrium

the transitions from m to m′ and from m′ to m are equally likely, thus:

Wm,m′P eq
m′ =Wm′,mP

eq
m (4)

From (3) and (4) one obtains:

Wm′,m

Wm,m′
= exp [−β(ϵm′ − ϵm − µ(nm′ − nm))] (5)

Now we introduce the state functions (quantities that do not depend on how Pm was achieved):

E =
∑
m

ϵmPm (6)

N =
∑
m

nmPm (7)

S = −
∑
m

Pm lnPm (8)

These are the non-equilibrium ensemble-averaged values of the energy, number of particles and
entropy of the system (analogous to the familiar equilibrium expressions).

One can obtain a first and second law of stochastic thermodynamics at the ensemble level. We
start by taking the time derivative of (6):

Ė =
∑
m

(ϵmṖm + ϵ̇mPm) ≡ Q̇+ Ẇchem + Ẇ (9)

Where we have identified Ẇ =
∑

m ϵ̇mPm, Q̇ =
∑

m ϵmṖm − Ẇchem and Ẇchem ≡ µṄ . Therefore,
work is the result of an energy shift in an occupied state and heat and chemical work the result of
transitions between states.

Moving to the second law, one obtains from (8):

Ṡ =
1

2

∑
m,m′

(Wm,m′Pm′ −Wm′,mPm) ln
Wm′,m

Wm,m′︸ ︷︷ ︸
Ṡe

+
1

2

∑
m,m′

(Wm,m′Pm′ −Wm′,mPm) ln
Wm,m′Pm′

Wm′,mPm︸ ︷︷ ︸
ṠTOT

(10)
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The Ṡe term can be seen as an entropy exchange between the system and the reservoir. To see this,
first we note that from (9) we can write Q̇ =

∑
m(ϵm − µnm)Ṗm and that:

Ṡe =
∑
m,m′

Wm,m′Pm′
ϵm − ϵ′m − µ(nm − nm′)

T
=
∑
m

Ṗm
ϵm − µnm

T
=
Q̇

T
(11)

Where we have used (5) in the first equality and (2) and (1) in the second equality. Hence we can
identify Ṡe as the entropy exchanged.

Obviously ṠTOT ≥ 0 so then we identify it as the total entropy production. It is also easy to
check that for quasistatic processes, where Pm(t) = P eq

m (t) using (8) we retrieve the result that in
that case Ṡ = Q̇/T and there is no entropy production.

2.1.2 Trajectory Stochastic Thermodynamics

For large systems with a number of particles ∼ NA ∼ 1023, fluctuations are negligible and the
ensemble description is suitable. This is no longer the case for small scale systems, where the
measured quantities vary from one experiment to another and fluctuations become important. Of
course, if one averages the results for several experiments one expects to retrieve the ensemble
averages. Neveretheless, as we explain below, by studying the system at the trajectory level (i.e:
studying how the state m of a single system evolves in time) one obtains a deeper formulation of
the second law.

We shall imagine a small system and focus on its trajectory on time. The state of the system
at a time t will be m(t) and its energy e = em(t)(t), number of particles n = nm(t) and entropy
s = − lnPm(t)(t). The energy has a double dependence on time. First, it can vary as a result of
a change in the state of the system m(t). It can also change as a result of the external driving
that changes the energy levels em(t) for a fixed m. Note that this is not the case for n because we
assume that the number of particle in a given state does not change with time.

For an arbitrary quantity of our system fm(t)(t), we can picture it as a continuous function of
t except for the times t∗ where there is a transition from state m(t∗ − dt) to m(t∗ + dt) and using
properties of the distributional derivative one obtains:

dfm(t)(t)

dt
=
∑
t∗

[
δ(t− t∗)(fm(t∗+dt)(t)− fm(t∗−dt)(t))

]
+ ḟm(t)(t) (12)

Where δ(t) is the Dirac delta distribution and the sum is for the times where there is a transition.
For simplicity, from here on we follow the notation in [2]:

dfm(t)(t)

dt
=
∑
m

[
δ̇Kr
m,m(t)fm(t) + δKr

m,m(t)ḟm(t)
]

(13)

Where the first term is the one related with transitions and the second with the driving (δKr is the
Kronecker’s delta). Applying (13) to e one obtains the first law at the trajectory level:

ė = q̇ + ẇchem + ẇ (14)

Where w =
∑

m δKr
m,m(t)ėm(t) (work), q =

∑
m

[
δ̇Kr
m,m(t)em(t)

]
− ẇchem (heat) with ẇchem =∑

m µnmδ̇
Kr
m,m(t) (chemical work). The interpretation is the same as before. Work is related with a

shift in the energy of a given level and heat to the transition between levels.
For the second law, using (13) we obtain:

ṡ = −
∑
m

[
δ̇Kr
m,m(t) ln

Pm(t)

P eq
m (t)

+ δKr
m,m(t)

Ṗm(t)

Pm(t)

]
︸ ︷︷ ︸

ṡTOT

−
∑
m

δ̇Kr
m,m(t) lnP

eq
m (t)︸ ︷︷ ︸

ṡe

(15)

Where P eq
m is given by (3). This decomposition was introduced in [3]. First, we see that ṡe is the

usual entropy exchange:

ṡe = −
∑
m

δ̇Kr
m,m(t) lnP

eq
m (t) =

1

T

∑
m

δ̇Kr
m,m(t)[ϵm(t)− µnm] =

q̇

T
(16)

And therefore the remaining part must be the entropy production. What is remarkable now is
that ṡTOT is not semipositive defined, and therefore, at the trajectory level we no longer need
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ṡTOT ≥ 0. One can find a more physically meaningful expression for the entropy production. Let
M[0,τ ] = {m(t0 ≡ 0),m(t1), . . . ,m(τ = t)} be a trajectory followed by the system. This trajectory
has a probability given by:

P(M[0,τ ]) = P0(m0)P1(m1|m0)P2(m2|m1) . . . Pt(mt|mt−1) (17)

Where P1(m1|m0) is the probability that at time t1 we have a transition from m0 to m1 and so on.
If we consider ti − ti−1 ≡ dt infinitesimal, that probability is simply Wm1,m0

dt. The claim is that
the entropy production along M[0,τ ] is given by:

STOT (M[0,τ ]) = ln
P(M[0,τ ])

P̃(M̃[0,τ ])
(18)

Where M̃[0,τ ] is the time reversal trajectory. Namely, reversing the time-dependence of the driving

while using as starting probabilities for the time reversal experiment (P̃0(mt)) the final ones for the
direct experiment Pt(mt):

P̃(M̃[0,τ ]) = Pt(mt)Pt(mt−1|mt) . . . P2(m1|m2)P1(m0|m1) (19)

One can separate (18) as:

STOT (M[0,τ ]) = ln
P0(m0)

Pt(mt)

∏τ
t=t1

Pt(mt|mt−1)∏τ
t=t1

Pt(mt−1|mt)
(20)

Using (5) we have ln Pt(mt|mt−1)
Pt(mt−1|mt)

=
−qmt,mt−1

T and using the properties of ln:

STOT (M[0,τ ]) = − lnPt(mt)− (− lnP0(m0)) +

t=τ∑
t=0

−qt+dt,t

T
= ∆Ssys(M[0,τ ]) +

−Q(M[0,τ ])

T
(21)

Where Q(M[0,τ ]) is the heat exchanged by the system during the trajectory and ∆Ssys(M[0,τ ]) is
the total entropy change in the system. Equation (18) has a clear meaning. The more likely the
forward trajectory is respect to the inverse trajectory, the more irreversible the evolution is, and
hence the larger the entropy production is. In the next subsection we introduce and derive some
fluctuations theorems for the evolution of a system along trajectories.

2.1.3 Fluctuation Theorems

Each trajectory (M[0,τ ]) has a given probability P(M[0,τ ]). Therefore, the probability that there is
a given entropy production (P (STOT )) is given by the following path integral:

P (STOT ) =

∫
M[0,τ]

DM[0,τ ]δ

(
STOT − ln

P(M[0,τ ])

P̃(M̃[0,τ ])

)
P(M[0,τ ]) (22)

Where δ is the Dirac delta distribution. By using that δ(ax) = 1
|a|δ(x), that the jacobian for the

transformation from M[0,τ ] to M̃[0,τ ] is 1 and (18):

P (STOT ) = expSTOT

∫
M̃[0,τ]

DM̃[0,τ ]δ

(
−STOT − ln

P̃(M̃[0,τ ])

P(M[0,τ ])

)
P̃(M̃[0,τ ]) = expSTOT P̃ (−STOT )

(23)
And we obtain:

P (STOT )

P̃ (−STOT )
= expSTOT (24)

Which is the Detailed Fluctuation Theorem ([1]). It has a clear meaning, the probability of having
an entropy production STOT in the forward trajectory is exponetially more likely than having a
decrease −STOT in the reverse trajectory.

From (18) we can also derive the so-called Integral Fluctuation Theorem ([3]):

⟨exp(−STOT )⟩ ≡
∫
M[0,τ]

DM[0,τ ]P(M[0,τ ]) · exp

(
− ln

P(M[0,τ ])

P̃(M̃[0,τ ])

)
=

∫
M[0,τ]

DM[0,τ ]P̃(M̃[0,τ ]) = 1

(25)
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Where we have used the fact that that the probability of any path happening is equal to 1.
It has already been mentioned that in a given trajectory the entropy production can be negative,

i.e: STOT < 0. However, by applying the Jensen inequality (i.e: f(⟨x⟩) ≤ ⟨f(x)⟩) to the exponential
function which is a convex function:

1 = ⟨exp (−STOT )⟩ ≥ exp (−⟨STOT ⟩) → ⟨STOT ⟩ ≥ 0 (26)

Which is nothing but the Second Law of Thermodynamics. Thus, even though a single trajectory
can violate the Second Law of Thermodynamics, on average one has that the entropy cannot
decrease.

2.2 A realization of a Maxwell Demon

2.2.1 Maxwell Demons

Let us picture two chambers filled with gases at different temperatures and imagine a tiny intelligent
creature acting as a gatekeeper between the two chambers (see Figure 1). It lets the fast-moving
particles move from the cold to the hot chamber and conversely, the slow-moving particles move
from the hot to the cold chamber. In such a way, the system acts as a refrigerator by transferring
heat from a cold to a hot chamber and doing so without work involved. Such a thought experiment
is known as the Maxwell Demon (see [6]), and it violates the Second Law of Thermodynamics.

Such a device could exist without violating the first law if [8] it was at the same time allowed
to write information in a physical memory. In such a way the increase of information entropy
compensates the decrease of entropy of the refrigerator, and the Second Law is no longer violated
if the total entropy increase is positive. Such a system obviously requires treating the Clausius
entropy and the Shannon entropy on equal footing.

Figure 1: Depiction of a Maxwell Demon. Extracted from [?]

2.2.2 The model

Recently, [9], an analytically solvable model that uses the equivalence between Shannon and Clau-
sius entropy has been introduced.

The system under consideration is shown in Figure 2.

Figure 2: Realization of a Maxwell demon. Extracted from [9]

There are four elements. Two thermal baths, at temperature Th (hot bath) and Tc (cold bath)
with Th > Tc. The demon in this case is a two level system, u and d with an energy difference
∆E ≡ Eu − Ed. Then there is a memory register, consisting of a sequence of bits (with equal
energy for the 0 and 1 states) equally spaced along a tape that slides past the demon.

The joint state of the demon and bit can undergo two types of random transitions. First, the
state of the demon can change without a change in the state of the bit (0d ↔ 0u and 1d ↔ 1u),
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coupled to the Th bath. We shall call these the intrinsic transitions. The rates verify (5), i.e (we
continue with the notation introduced in Section 2.1):

Wu,d

Wd,u
= exp (−βh∆E) (27)

As in [9] we parameterize the rates as Wu,d = γ(1− σ) and Wd,u = γ(1 + σ) with σ = tanh βh∆E
2

and γ a parameter that characterizes the rate for the transitions.
The other type of transitions, the corporative transitions, involve a simultanous change in the

state of the bit and demon (see Figure 2 right). The allowed transitions are 0d ↔ 1u, coupled to
the cold bath. Again that rates verify:

W1u,0d

W0d,1u
= exp (−βc∆E) (28)

And a similar parametrization W1u,0d = 1− ω and W0d,1u = 1 + ω with ω = tanh βc∆E
2 . It is also

convenient to introduce:

ϵ = tanh
(βc − βh)∆E

2
(29)

Which controls the temperature difference between the two baths. The value of the incoming bits
has probabilities p0 and p1. For later convenience we introduce δ ≡ p0 − p1.

We first provide an heuristic explanation of how this system behaves as a Maxwell demon. First,
assume that δ = 1, i.e: the incoming bits are all 0’s. The demon interacts with the incoming bit
during a time τ . The initial joint state can be either 0u or 0d. If the final state is also one of these
two, it means no neat energy was exchange with the cold bath as every 0d↔ 1u was compensated
by the opposite one. On the other hand, if the joint state after the time τ is 1u or 1d it means
there was an energy transference ∆E from the cold bath to the system. As the demon cannot
”keep” absorbing energy, the conservation of energy implies that there is an effective transference
of energy from the cold to the hot bath, thus acting as a refrigerator. If the incoming bits were
all 1’s, the opposite situation takes place. The cold bath absorbs energy from the hot bath. Thus,
heuristically an excess of 0s (δ > 0) favors the flow of heat from the cold to the hot bath and an
excess of 1s (δ < 0) favors the opposite.

Obviously, that competes with the usual thermodynamic bias due to the temperature difference,
so a quantitative description is necessary.

Let p′0 and p′1 be the probabilities of the outgoing bits once the demon has reached its periodic

state, with δ′ ≡ p′0−p′1. Φ ≡ p′1−p1 = δ−δ′

2 represents the average production of 1s per interaction
interval. As a transition 0 → 1 is accompanied by the absorption of energy ∆E from the cold
reservoir, the average transfer of energy from the cold to the hot reservoir per interaction interval
is given by:

Qc→h = Φ∆E (30)

Therefore a positive value of Φ implies that the system behaves as a refrigerator. The Shannon
entropy of the incoming bits is given by:

S(δ) = −1− δ

2
ln

1− δ

2
− 1 + δ

2
ln

1 + δ

2
(31)

And the outgoing bits the same just changing δ by δ′. Therefore the increase in information due
to the process is:

∆SB ≡ S(δ′)− S(δ) = S(δ − 2Φ)− S(δ) (32)

A positive value, means the demon writes information in the tape. A negative value implies
the demon erases information. By (30) and (32) ∆SB and Qc→h are determined if one knows
Φ(ω, σ, γ, τ, δ). For that, we need to find the periodic steady state of the system.

The statistical state of the demon is PD =

(
pu
pd

)
, that of the incoming bit PB =

(
p0
p1

)
and

the joint state P =


pu0
pd0
pu1
pd1

. By introducing the following matrix M =


p0 0
0 p0
p1 0
0 p1

, we clearly have

P = MPD. The joint probabilities evolve acording a master equation Ṗ = WP, where W contains
the rates of (27) and (28). Solving it, the joint state of the system after the interaction time τ is:

Pτ = exp (Wτ)MPD
0 . (33)
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Projecting the marginals for the state of the demon after an interaction:

PD
τ = PD exp (Wτ)MPD

0 ≡ T PD
0 . (34)

T is the transition matrix and PD =

(
1 0 1 0
0 1 0 1

)
. As T is a positive transition matrix, the

demon evolves to a periodic state, PD,ps defined by:

T PD,ps
0 = PD,ps

0 (35)

Once the periodic state has been obtained, the probability of the outgoing bits will be:

PB,ps
τ = PB exp(Wτ)MPD,ps

0 (36)

With PB =

(
1 1 0 0
0 0 1 1

)
the matrix that projects out the state of the demon. Now the procedure

for an analytical or numerical calculation is clear. First, we find the eigenstate of (35). Then, we
use it in (36) and then we simply use that Φ = p′1 − p1. In the next section we will show some
results we obtained by simulating that system numerically. For future comparison we write the
analytical result derived using symbolic calculus [10]:

Φ =
δ − ϵ

2
η(Λ) (37)

The explicit form of η(Λ) is complicated and it can be found in [10]. However, what is relevant is
that η(Λ) ≥ 0 and therefore, the sign of Φ (that determines if the system behaves as a refrigerator)
is fully determined by δ (information bias of the input bits) and ϵ (thermodynamics bias of the
temperature difference between the baths).

Now, we show how this system verifies a generalized Clausius inequality. If the interaction time

τ → ∞, the system reaches a steady state, P̄ defined by WP̄ = 0. The result is P̄ = 1
N


1
µ
µν
µ2ν

:

Where µ = 1+σ
1−σ , ν = 1−ω

1+ω and N = (1+µ)(1+µν). This is the product of the marginal distributions

p̄ij = p̄Di p̄
B
j with i ∈ {0, d} and j ∈ {0, 1} and P̄

D
= 1

1+µ

(
1
µ

)
and P̄

B
= 1

1+µν

(
1
µν

)
Let P be the

joint probabilities at time t. We introduce the Relative Entropy or Kullback divergence ([11]):

D(P||P̄) =
∑
α

pα ln
pα
p̄α

≥ 0 (38)

Where the sum over α is for the joint states (α = {0u, 0d, 1u, 1d}). It can be shown ([12]) that
Ḋ(P||P̄) ≤ 0. That means that P evolves monotonically to P̄. If P0 and Pτ are the joint
distributions at the start of the interaction and right after the interaction, then:

D(P0||P̄)−D(Pτ ||P̄) ≥ 0 (39)

By expanding and using that P̄ factorizes, we have:∑
α

p0,α ln p0,α︸ ︷︷ ︸
−S0

−
∑
α

p0,α ln p0,α︸ ︷︷ ︸
Sτ

+
∑
i=u,d

(pDτ,i − pD0,i) ln p̄
D
i +

∑
i=0,1

(pBτ,i − pB0,i) ln p̄
B
i ≥ 0 (40)

The third term is 0 by considering the steady periodic state. Here S0 and Sτ are the joint Shannon
entropies of the initial and final states. The joint entropy is usually written as S = SD+SB−I(D;B)
where SD is the entropy of the demon, SB of the bit and I(D;B) is the mutual information 1. In
our case SD

0 = SD
τ by periodicity and I0(D;B) = 0. Therefore:

∆SB − Iτ (D;B) + Φ ln
p̄B1
p̄B0

≥ 0 (41)

1Let X and Y be two discrete random variables. Let PX(x) and PY (y) be the marginal probabilities and
PXY (x, y) be the joint probability. By definition, the mutual information of both variables is I(X;Y ) ≡∑

x∈X
∑

y∈Y PXY (x, y) ln PXY (x,y)
PX (x)PY (y)
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And finally:
∆SB +Qc→h(βh − βc) ≥ Iτ (D;B) ≥ 0 (42)

This is the generalization of Clausius inequality. In this case, only the sum of the information and
thermodynamic entropy is positive. Not only that, but the ”total” entropy has a lower bound given
by the mutual information.

From (37) and (42) we can plot the phase diagram of the system (see Figure 3). First, from
(37) it is obvious that for δ > ϵ the system acts as a refrigerator. In that case, from (42) ∆SB > 0
and the system writes information on the memory. Thus, the cost of refrigeration is the increase in
entropy on the memory. This corresponds to the darker region in Figure 3. For δ < ϵ the system
no longer acts as a refrigerator and it can erase/write information depending on the parameters.
In Figure 3 it is shown for certain values of τ the boundary of such behaviours. To the right (for a
given τ) the system acts an eraser. To the left it writtes information. When τ → ∞ the boundary
is the line δ = −ϵ. To the left of that (white region) it neither acts as a refrigerator nor as an
eraser.

Figure 3: Different modes of operation for γ = 1 and ω = 0.5. Extracted from [9].

2.3 Simulating Trajectories: Gillespie Algorithm

In this section we explain two methods to simulate the stochastic trajectory of a given system. For
simplicity we assume that the probabilities for the different states at t = 0 are the the stationary
ones Π, such that equation (1) in matrix form becomes Π̇ = WΠ = 0. From the fact that
det(W) = 0 we have an infinite number of solutions to the previous equation, until we impose
normalization.

2.3.1 Naive Approach

The straightforward approach is the following. We start at time t0 ≡ 0. From the probabilities
Πm, we build the cumulative probabilities. Then, we generate a random number Y ∼ U(0, 1)
(uniformly distributed between 0 and 1) and we pick the state whose cumulative probability is
immediately above the random number. This is implemented in Python by the function ran-
dom.choices(list,probabilities,N) which returns a list with N random elements from list distributed
according to probabilities.

Once we have the initial state m0 ≡ m(t0 = 0) we divide the time τ in small intervals, ti+1 =
ti+dt. Let mi ≡ m(ti). There are two possibilities. First, there can be no transition in the interval
dt. That has a probability Pstay = 1 − dt ·

∑
m′ ̸=mi

Wm′,mi
= 1 +Wmi,mi

· dt. Then, there can
be transitions to any other state m′ with probabilities P (m′|mi) =Wm′,mi

dt. So then we pick the
state at ti+1 according to these probabilities.

2.3.2 Gillespie Algorithm

For small dt the previous procedure is inefficient because at each step the most likely event is not
having a transition. This is solved by the Gillespie Algorithm [5], which was historically introduced
to simulate coupled chemical reactions.
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Let m be the state of the system at time t and let {α} be the possible transitions from state m
to any other state. The key is to consider the joint probability P (τ, α0)dt that the system remains
a time τ at the state m and then in a time dt experiences the transition α0 ∈ {α}. Let us divide τ
in K infinitesimal intervals, then we have:

P (τ, α0)dt =

(
1−

∑
α

Pα

)
. . .

(
1−

∑
α

Pα

)
︸ ︷︷ ︸

Ktimes

P (α0) = lim
K→∞

(
1− τ

K

∑
α

Wα

)K

Wαdt = exp

(
−τ
∑
α

Wα

)
Wαdt

(43)
Here Wα is the transition rate for the α transition and Pα = dtWα. Multiplying and dividing by
λ ≡

∑
αWα:

P (τ, α0)dt = λ exp (−λτ) · P (α0|{α}) (44)

Where P (α0|{α}) =
Wα0

λ is the probability that the transition that takes place is α0 given that
there was some transition taking place. From (44) we see how does the algorithm work. First, we
generate a random number Y ∼ Exp(λ) (following an exponential distribution). That gives us the
time τ required for the next transition to happen. Then, we pick the particular transition α0 with
probabilities Wα.

3 Results and discussion

3.1 A toy model

In this section we introduce a toy model that allows us to numerically test the theoretical results
introduced in section 2.1 with a code we prepared to implement Gillespie Algorithm.

The model consists of (see Figure 4) a system with three energy levels ϵi, i = 0,1,2 (with ϵ0 ≡ 0),
no external driving and coupled to three thermal baths at temperatures Ti, i = a, b, c. Each thermal
bath couples a different transition, Ta the transition ϵ0 ↔ ϵ1, Tb the transition ϵ1 ↔ ϵ2 and Tc the
transition ϵ0 ↔ ϵ2.

Figure 4: Schematic of our toy model.

We parameterize the transition rates W r
j,i as:

W r
j,i = Γ0 exp−

ϵj − ϵi
2Tr

(45)

Where r is the bath controlling the transition i ↔ j. It is easy to check that these rates verify
(4), where Γ0 is a characteristic time scale. This system is interesting, because for a suitable set
of parameters ϵi and Tj the system acts as a refrigerator, pulling heat from the cold bath and
transferring it to a hotter bath. Notice that this is allowed and it does not violate the Second Law
because we have three baths.

First, we check the validity of the IFT (equation (25)). In Figure 5 we plot the result of averaging
the exponential of minus the entropy production, exp (−STOT ), for different number of trajectories
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(Ntra). Note that here we have more than one bath, so we use the generalization of (21) (see [2]
for a detailed description of systems with multiple reservoirs):

STOT = ∆Ssys −
∑
r

Qr

Tr
(46)

Where Qr is the heat exchanged by bath r.

Figure 5: Blue Dots: numerical average value of exp (−STOT ) for different number of individual
trajectories. Orange line: ensemble analytical result (=1). Parameters: ϵ1 = 1, ϵ2 = 6, Ta = 1,
Tb = 2, Tc = 20, Γ0 = 1, dt = 0.01Γ0 (time interval between points in our simulation) with τ = 1000Γ0

(total time for a single trajectory).

Now (see Figures (6)-(8)), we check that the (as we start the simulation with the steady prob-
abilities Π given by WΠ = 0), the average heat rate exchanged by a bath is constant given a set
of parameters when a sufficiently large number of trajectories is taken, and that this rate coincides
with the emsemble ones, found by solving the eigenvalue equation for Π (either analytically or
numerically) and using that:

Q̇a = ϵ1 (W1,0Π0 −W0,1Π1) (47)

Q̇b = (ϵ2 − ϵ1) (W2,1Π1 −W1,2Π2) (48)

Q̇c = ϵ2 (W2,0Π0 −W0,2Π2) (49)

(a) Bath a (b) Bath b (c) Bath c

Figure 6: Parameters as in Figure 5. Results for Ntra = 101
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(a) Bath a (b) Bath b (c) Bath c

Figure 7: Parameters as in Figure 5. Results for Ntra = 103

(a) Bath a (b) Bath b (c) Bath c

Figure 8: Parameters as in Figure 5. Results for Ntra = 105

In all three Figures, the yellow line corresponds to the simulation over single trajectories, and
the purple line to the exact ensemble result (47)-(49). We clearly see that for Ntra ∼ 105 the
average over single trajectories coincides with the ensemble results.

Finally, we also plot in Figure 9 the distribution of the different values for the entropy production
STOT , by ploting the cumulative distribution F (S) ≡

∑
STOT≤S P (STOT ) as a function of STOT .

From (24) it can be shown (see [4]) that F (STOT ) ∼ exp(STOT ) for STOT ≤ 0:

Figure 9: We plot the cumulative probability distribution F (STOT ) of entropy production STOT .
Parameters as in Figure 5 and Ntra = 105. Yellow dots: Simulation results. Purple line: ∼ exp(STOT ).

We approximately see the expected behaviour. Note that P (STOT ) =
NSTOT

Ntra
where NSTOT

is
the number of trajectories with a entropy production STOT and that in our case STOT can only
take discrete values.
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3.2 Simulating the Maxwell’s demon model

In this section we present and discuss the results we obtained by simulating the model in section
2.2.2 at the trajectory level using the Gillespie Algorithm. In this simulation we start with an
arbitrary distribution for the incoming bits (parametrized by δ) and for the initial distribution of

the demon we chose the steady periodic one PD,ps
0 .

First, in Figures 10 and 11 we show the average heat exchanged by the cold bath as a function
of the number of individual trajectories taken into account for two different set of parameters.

Figure 10: Average heat exchanged (⟨Qc⟩) by the cold bath as a function of the number of individual
trajectories (Ntra) taken. Parameters: γ = 1.0, ω = 0.5, ϵ = 0.7, τ = 2.0 and δ = 0.2. The yellow dots
are the simulation results, whereas the purple line comes from equations (30) and (37).

Figure 11: Same as in the previous Figure but with the following Parameters: γ = 1.0, ω = 0.5, ϵ =
0.2, τ = 2.0 and δ = 0.7.

We clearly see that the simulation reproduces the ensemble result for the heat exchanged by the
cold bath whenever we take Ntra ≳ 103. We also recover that for δ < ϵ (Figure 10) the information
bias is not strong enough to overcome the thermodynamic bias and the cold bath absorbs heat from
the hot bath (in particular in that case the system acts an eraser). On the other hand, when δ > ϵ
(Figure 11) the information bias is strong enough so that the system acts as a refrigerator at the
cost of writting information on the memory.

As in the previous section, here we also check the validity of the Integral Fluctuation Theorem
for the model. The result is shown in Figure 12:
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Figure 12: Yellow Dots: numerical average value of exp (−STOT ) for different number of individual
trajectories. Purple line: analytical result (=1). Same parameters as in Figure 11.

STOT is calculate as follows. From section 2.1.2 we know that the total change in entropy in
the system ∆S along a trajectory is:

∆S = − ln pα + ln pα0
(50)

Where α is the final joint state, α0 the initial joint state of the demon and bit and pα are the
corresponding probabilities. STOT is then calculated as:

STOT = − ln pα + ln pα0 −
qc
Tc

− qh
Th

(51)

Where qc and qh are the heat exchange by the cold and hot bath during a single trajectory. We
stress that STOT has contributions from both the Shannon and Clausius entropy.

Finally, if we go back to (42), we see the entropy production is lower bounded by the mutual
information of the final probability distributions of the demon and bit. In Figure 13 we check how
much does this improve the usual well-known lower bound (equals to 0).

Figure 13: Yellow Dots: average values for different number of individual trajectories for the mutual
information. Purple line: exact result for the mutual information of the demon and bit. Same
parameters as in Figure 11

.

We clearly see the mutual information does not difer much from 0, so (at least for the particular
parameters we chose) we can forget about the mutual information term in (42). This in agreement

with the numerical findings in [9]. As we start from the periodic distribution for the demon, PD,ps
0 ,

after an interaction time τ (by construction) the distribution of the demon will be the same. For
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the outgoing distribution of the bits PB
τ we simply use (36) and for the joint final state Pτ we

simply use (33) with PD,ps
0 . For all three distributions we use the numerical results by finding the

autovectors and so numerically. Then the average mutual information is given by:

Iτ (D;B) =
∑
i=u,d

∑
j=0,1

pτ,ij ln
pτ,ij

pD,ps
0,i pBτ,j

(52)

The mutual information at the trajectory level is simply defined as ln
pτ,ij

pD,ps
0,i pB

τ,j

where i, j are the

states after an interaction of the Demon and bit.

4 Conclusions

We have learned how one can extend the classical Laws of Thermodynamics to microscopic systems
driven out of equilibrium. At the ensemble level, one retrieves laws analogous to the macroscopic
Classical Thermodynamics ones. However, at the individual trajectory level, one finds deviations
from those well known laws. For instance, a single trajectory can have a negative entropy produc-
tion. In addition to retrieve the ensemble results when averaging respect to several trajectories,
a series of Fluctuation Theorems emerge, which characterize these averages beyond the general
ensemble results and also impose restrictions on quantities as the probability of a certain entropy
being produced along a single trajectory.

One can check these theorems numerically by using the Gillespie Algorithm, which is optimized
to simulate stochastic trajectories. We have implemented such an algorithm, and used it to study
two systems. We have started with a ”toy model” consisting of three energy levels and three heat
baths. We have verified the IFT theorem, the heat rate production and the distribution of the
entropy production along single trajectories.

We have explained the idea of Maxwell Demons and a recent realization that appeared in an
article, that uses the equivalence between Clausius and Shannon entropy. We have simulated that
system at the trajectory level, verifying again the IFT, the analytical results for the heat exchange
and also studying quantitatively an improvement of the lower bound to the total entropy production
that appeared in the aforementioned article, finding, as stated there, that such a bound does not
really depart much from 0.

As a final conclusion, we have learned the fundamentals of Stochastic Thermodynamics, which
is a recent theory applicable to thermal machines and biological systems to name a few, and we have
focused on numerically studying an information system, using the Gillespie Algorithm. Some work
can be done beyond this introductory work. For instance, one idea can be to explore and quantify
in which cases (values for parameters such the interaction time τ and energy differences ϵ) does
the lower bound production to the total entropy given by the mutual information in the Maxwell
demon realization is optimal, in such a way that in those cases it represents a good improvement
respect to the positivity restriction.
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Abstract

This report presents a numerical investigation into the effects of diverse couplings between a
network of lasers with inhomogeneous elements. A comprehensive model, based on the connectiv-
ity matrix, is developed to analyze specific scenarios. The study focuses on the multinodal star
all-optical network topology. Notably, the results reveal the occurrence of spontaneous partial
synchronization for specific coupling values. By examining these phenomena, we aim to deepen
our understanding of semiconductor laser network dynamics and their behavior in the presence of
inhomogeneous elements. The results contribute to the advancement of optical network design and
synchronization analysis in complex systems.

1 Introduction

Chaotic signals have become integral components in various applications, including optical commu-
nication systems [1], high-speed photonic data processing [1, 2] amongst other applications. As the
study of network dynamics has gained momentum, the collective behavior of networks composed
of mutually coupled semiconductor lasers has become a subject of great interest. Understanding
the intricate dynamics of these networks, particularly in the presence of inhomogeneous elements
and diverse coupling mechanisms, offers new avenues for exploring complex dynamical systems
and their applications [3]. Previous research has paved the way for investigating the dynamics
of semiconductor laser networks. Notably, studies have examined the sensitivity analysis of star
optical networks based on mutually coupled semiconductor lasers [4]. By exploring the robustness
and stability of such systems, valuable insights have been gained regarding the effects of varying
parameters on network dynamics. Experimental investigations have also contributed to our under-
standing of semiconductor laser networks in coupled configurations. These studies have observed
synchrony in networks of coupled semiconductor lasers, shedding light on the underlying mecha-
nisms and opening up possibilities for synchronization-based systems [5].

The emergence of chimera states in coupled semiconductor laser networks has been a topic of
recent interest. These states, characterized by spatially localized coexistence of coherent and inco-
herent laser dynamics, have been observed without the presence of multistability [6]. This finding
challenges previous assumptions and deepens our understanding of the intricate spatiotemporal
patterns that arise in such networks. Motivated by these significant developments, our research
aims to further investigate the dynamics of semiconductor laser networks with inhomogeneous ele-
ments and diverse coupling schemes. By considering different coupling strategies, we aim to uncover
the rich behaviors exhibited by these networks. To accomplish this, we perform numerical simu-
lations and analyze in detail the obtained results. By systematically varying coupling strengths,
time delays, and network topology, we aim to elucidate the effects of inhomogeneities and diverse
coupling mechanisms on network dynamics. Our research endeavors to provide new insights into
the emergence of collective behaviors, identifying optimal coupling strategies that provide partial
or total synchronization that is needed for different applications.

In summary, this report presents an investigation into the dynamics of semiconductor laser networks
with inhomogeneous elements and diverse coupling schemes. Building upon previous studies, our
research aims to deepen our understanding of the collective behaviors exhibited by these networks.
Our findings are intended to contribute to the ongoing progress in the field of semiconductor laser
network dynamics.

1
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2 Theoretical model

Our model consists of a generalisation of previously studied network topologies. Due to computa-
tional limitations we have used N = 23 lasers varying the coupling strength and studying separately
two different topologies. The mathematical model that describes the behaviour of networks with an
arbitrary topology of the semiconductor lasers is based on the Lang Kobayashi equations [4]. Being
Ej and Nj the complex electrical field and the number of carriers of the j-th laser respectively,
these equations read as

dEj(t)

dt
= i∆ωjEj(t) +

1

2

(
Gj(t)−

1

tph

)
(1 + ia)Ej(t) +

n∑
i=1

kijEi(t− τij)e
−iω0τij +

√
Dξj(t) (1)

dNj(t)

dt
=
Ij
e

− Nj(t)

ts,j
Gj(t)|Ej(t)|2 (2)

being

Gj(t) =
gn(Nj(t)−N0)

1 + s|Ej(t)|2
(3)

where a = 3 is the linewidth enhancement factor, gn = 1.2 · 10−5 ns−1 is the differential gain
coefficient, tph is the photon lifetime, ts = 1.54 ns is the carrier lifetime, s = 5 · 10−7 is the
saturation gain coefficient, Ij is the injection current for each laser, ∆ωj is the detuning frequency
with respect to the free-running reference frequency ω0 = 2πcλ0, with λ0 = 1550 nm. ξj(t) is a
complex Gaussian white noise for each laser, with D = 5 · 10−5 ns−1 being the noise strength.
Through the connectivity matrix kij and the delay matrix τij we can implement the different
topologies we want to study.
The integration of the delayed differential equations is performed with a Runge-Kutta of 4th order
method using an integration step dt = 0.8 ps. For large values of the coupling strength k, this
method does not converge to a physical solution of the problem, so a detailed analysis of the data
was needed in order to guarantee the validity of the results.
In order to check the functioning of our model we study the particular case where 22 lasers are
connected to one single laser, the HUB laser, (Fig.1) through a connectivity matrix given by kiH = k
∀i ̸= H, kHj = βk ∀j ̸= H and rest of the elements 0.

Figure 1: Schematic diagram of our network topology. Source: [4]

β is the asymmetry parameter representing an attenuation factor in the injected fields in the hub.
By employing this approach, the collective injection received by the hub laser becomes independent
of the number of lasers involved. For our purpose we take β = 0.5 and investigate the results for
different values of k ∈ [0, 70] ns−1, which is between the limits of the converging regime. For the
delay matrix we take τiH = τHj = τ = 2.9 ns ∀i, j ̸= H and rest of the elements are 0. Taking the
delay time smaller facilitates the surpassing of the transient state, so that the total integration time
can be smaller making it more viable computationally. Half of the non-HUB lasers have negative
detuning frequencies uniformly distributed in steps of 3 GHz and centered at -20 GHz, the other

2
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Laser # Detuning Frequency (GHz) Laser # Detuning Frequency (GHz)

1 -35 12 5

2 -32 13 8

3 -29 14 11

4 -26 15 14

5 -23 16 17

6 -20 17 20

7 -17 18 23

8 -14 19 26

9 -11 20 29

10 -8 21 32

11 -5 22 35

Table 1: Distribution of detuning frequencies for the different lasers.

half follow the same structure but centered at 20 GHz (see Tab.1).
We study separately the case where all lasers have the same photon lifetime tph = 2 ps and the
case where the photon lifetimes vary between tph ∈ [1.9, 2.1] ps. This variation affects significantly
the spontaneous synchronization of the lasers.

3 Results

3.1 Constant tph

The time evolution of |Ej(t)|2 presents a transient state before transitioning into a chaotic behavior,
which constitutes a significant subject of interest for our study. However, the integration of the
delayed differential equations encountered computational limitations, restricting the analysis to a
duration of only 300 ns. This timeframe allows us to observe the transient state and the fully
developed dynamics, as evidenced in Fig.2. Despite the relatively short length of the simulated
timeframe with respect to the length of the transient, the findings remain compelling.

Figure 2: Time evolution of the electrical field for the 4th laser for β = 0.5 and k = 50 ns−1 for
I = 25 mA

During the transient phase, a periodic state emerges with a period close to the delay time τ = 2.9 ns,
foreshadowing the subsequent appearance of a larger periodic cycle lasting approximately 80 ns.
The interplay between these periodicities and the ensuing chaotic behavior calls our attention,

3
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raising essential questions about the underlying dynamics. Furthermore, even within the tran-
sient regime, some elements of chaos are already discernible, indicating the presence of a complex
and intricate system. This observation provides a valuable opportunity to examine the underlying
mechanisms contributing to the emergence of chaos amidst the transient state.
Despite the challenges posed by the limited integration duration, the signals under study exhibit
characteristics that warrant further investigation. The coexistence of periodic and chaotic behavior
in |Ej(t)|2 highlights the intricacies of the system, underscoring the need for deeper analysis to
comprehend its behavior fully.
In order to comprehensively investigate the synchronization of the lasers, a critical step involves
computing the correlation matrix for each laser within a specific time interval, ensuring that the
transient state has already been surpassed. This essential data analysis technique enables us to
gauge the degree of coherence and alignment among the lasers. By quantifying the interrelation
between their emission patterns, we gain valuable insights into the collective behavior of the laser
array. The correlation matrix is obtained through a precise mathematical expression (4) tailored
to capture the intricate dynamics of the lasers. This matrix serves as a powerful tool in revealing
underlying patterns and synchrony within the system, aiding us in identifying any potential corre-
lations or dependencies that might exist. By delving into the synchronized behavior of the lasers,
we can pave the way for enhanced laser applications, advanced optical technologies, and deeper
understanding of complex dynamical systems.

Cij =

〈
(Pi(t)− < Pi(t) >) ·

(〈
Pi(t)− < Pi(t) >

) 〉√〈
(Pi(t)− < Pi(t) >)

2 · (Pi(t)− < Pi(t) >)
2 〉 (4)

where Pi(t) ∝ |Ei(t)|2 is the optical power.
We start by showing the zero-lag correlation matrix for some intermediate values of the coupling,
which exhibit partial synchronization. In Fig.3 we observe that the lasers with the most negative
detuning (lasers 1 to 10) are almost fully synchronized for k = 45 ns−1.

Figure 3: Cross-correlation mapping of the numerically built network with 22 lasers and 1 hub for
β = 0.5 and k = 45 ns−1

It becomes evident that the cross-correlation mapping displays two distinct regions with large corre-
lation values, precisely centered at the lasers that have -20 GHz and 20 GHz detuning, respectively.
A noticeable asymmetry is observed, predominantly favoring the synchronization of the negative
frequencies, which aligns with our expectations based on the system’s characteristics related to the
linewidth enhancement factor [7]. This asymmetrical pattern remains consistent across nearly all
values of k, underscoring its robustness and significance. Moreover, the compelling effect of this
asymmetry is not limited to the cross-mapping alone; it also prominently manifests in the optical
spectra depicted in Fig.5. These spectra offer further corroborative evidence of the phenomenon,
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emphasizing its presence and its potential impact on the overall laser dynamics. This compelling
discovery enhances our understanding of the intricacies at play in the system, shedding light on the
interplay between detuning frequency distributions and laser synchronization, thus opening new
avenues for research and applications in the realm of optical sciences. However, we cannot take
any strong conclusions from this point since for large k, t ∈ [280, 300] ns is still not far away in
time from the transient state. Despite this limitation, it is interesting to notice that spontaneous
synchronization may appear for certain coupling strengths (Fig.4), even though these states are
short-lived in the transient state.

Figure 4: Cross-correlation mapping of the numerically built network with 22 lasers and 1 hub for
β = 0.5 and k = 45 ns−1 at the transient state

Figure 5: Optical spectrum of the 4th laser for β = 0.5 and k = 50 ns−1

For k = 65 ns−1 we observe that all lasers have reached full synchronization (Fig.6).

5
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Figure 6: Cross-correlation mapping of the numerically built network with 22 lasers and 1 hub for
β = 0.5 and k = 65 ns−1

Under such strong coupling conditions the network emits chaotic dynamics. The high correlation
indicates chaotic synchronization, a very useful attribute for chaos-encrypted communications. An
effective indicator of chaos’ presence is the bifurcation diagram (Fig.7), which is obtained by taking
the relative maxima and minima of the optical emission’s amplitude, in a certain window of time.
The lasers’ amplitude oscillates rapidly, in multiple GHz. In order to unravel a possible periodic
oscillation with period ∼ 10 ps, we perform a smothering of the data up to this value and then look
for extremes of the time evolution of |E(t)|2. We observe an almost complete chaotic behaviour for
all values of k. We do notice a small periodic regime for some values of k, however, we would have
to look closer to this zone in order to analyze it properly, which is beyond the goals of the project.

Figure 7: Bifurcation diagram for the 22nd laser

6
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3.1.1 Threshold current

The threshold current, denoted as Ith, plays a pivotal role in semiconductor lasers’ emission as it
defines the minimum current necessary for generating coherent light through stimulated emission.
This fundamental value demarcates the transition from a non-lasing state to a lasing one, wherein
the laser emits coherent light. To delve deeper into the behavior of lasers near the threshold value,
which is approximately Ith = 17.6 mA, researchers find great interest in studying the transition
from the non-lasing to the lasing mode, alongside investigating the laser’s efficiency, stability, and
various other properties. Although this analysis does not constitute the primary focus of this par-
ticular paper, its relevance cannot be overlooked.
Examining Fig.8, we can readily distinguish that the behavior in proximity to the threshold current
differs significantly from the scenario where I = 25 mA > Ith, as depicted in Fig.2. Notably, at
t = 300 ns, it is evident that the emission is still bounded to transient states. This prolongation
can be attributed to the relatively low external injection of current, which requires more time to
disengage from the initial conditions. By meticulously investigating the laser’s performance close
to the threshold, we gain valuable insights into the intricate dynamics governing its transition from
a non-lasing to a lasing regime. Moreover, comprehending the efficiency and stability under these
conditions contributes to a comprehensive understanding of the semiconductor laser’s operational
principles and capabilities. The ability to precisely control the laser’s behavior near the threshold
current is of great importance for numerous cutting-edge technologies, such as optical communi-
cations, medical devices, and various industrial applications. In these aspects, further research is
needed, since this analysis is beyond the goals of our project.

Figure 8: Time evolution of the electrical field for 4-th laser for β = 0.5 and k = 50 ns−1 for
I = 17.8 mA

Comparing Fig.8 and Fig.2, we also observe a conspicuous difference in the typical value of |E(t)|2
when contrasted with that displayed in Fig.2. This variation is not surprising, as lower values were
expected in the vicinity of the threshold current.

3.2 Variation of tph

Upon delving further into the effects of changing the photon lifetime tph on the laser system,
intriguing insights emerge. As expected, the altered tph brings about an inherent inhomogeneity,

influencing the rate of energy loss in each laser with
dEj

dt ∝ − 1
tph

. This variation might naturally

lead one to anticipate a diminished level of partial synchronization compared to the homogeneous
tph scenario observed in Fig.3. The outcome depicted in Fig.9 showcases a more localized pattern
of partial synchronization.
To interpret this phenomenon, we consider the impact of varying tph values on individual lasers.
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Notably, those lasers endowed with smaller tph exhibit a faster rate of energy loss. Consequently,
these early stages of energy depletion seem to exert a more dominant influence on the overall
synchronization dynamics, leading to the observed pronounced focus of partial synchronization.
This observation presents an avenue for further exploration of the complex interplay between photon
lifetime and the emergence of partial synchronization. Understanding the mechanisms that govern
this behavior can potentially provide valuable insights into optimizing laser systems and harnessing
their synchronization properties for diverse applications, ranging from communication networks
to precision metrology and beyond. As we continue to unravel the intricacies of this dynamic
phenomenon, this study paves the way for advancements in laser technology and synchronization
dynamics, with implications extending across various fields of science and engineering.

Figure 9: Cross-correlation mapping of the numerically built network with 22 lasers and 1 hub for
β = 0.5 and k = 45 ns−1 for the variation of tph

4 Conclusions

We developed a comprehensive numerical investigation into the dynamics of semiconductor laser
networks with inhomogeneous elements and diverse coupling schemes. By studying the behavior of
a network of mutually coupled lasers, several observations can be made.
The behavior of the network strongly depends on the coupling strength k. For small k, the system
exhibits unsynchronized chaotic behavior due to the network’s size and complexity. As k increases,
the lasers undergo a progressive synchronization process, leading to coordinated chaotic behavior.
This synchronization phenomenon holds great promise for a multitude of applications [8].
The detuning frequency also plays a significant role in the synchronization process. We observed
that lasers with negative detuning converge faster towards synchronization compared to positively
detuned lasers, as evidenced by the cross-correlation mappings. This finding suggests the possibility
of tuning the detuning frequency to optimize the synchronization speed for specific applications.
The introduction of inhomogeneities, particularly varying the photon lifetime tph, poses challenges
to achieving synchronization. However, even in the presence of these inhomogeneities, for suffi-
ciently large k, synchronization is eventually attained. This resilience to inhomogeneities expands
the potential practicality of semiconductor laser networks.
These findings hold important implications for various applications in different fields. In commu-
nication systems, the observed chaotic behavior and synchronization phenomena in laser networks
offer opportunities for secure and efficient data transmission. Chaotic signals can enhance en-
cryption techniques, providing resistance to eavesdropping and improving the security of optical
communication systems. For high-speed data processing, the chaotic and synchronized behavior
of coupled lasers can be harnessed for tasks such as signal modulation and encryption. This can
lead to faster data processing and transmission rates, enabling advancements in high-speed data
communication. In sensing and metrology, the synchronized behavior of lasers in a network can
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enhance the sensitivity and accuracy of sensors. The coordinated response of the lasers to external
perturbations can enable precise measurements in fields like environmental monitoring, biomedical
sensing, and industrial metrology.
Moreover, the study of inhomogeneous elements and diverse coupling schemes in laser networks
contributes to the understanding of nonlinear dynamics and complex systems. The observed chaotic
behavior and synchronization phenomena provide valuable insights into the collective behaviors of
complex systems, aiding researchers in modeling and analyzing various real-world systems with
intricate dynamics.
Additionally, the findings of this research have implications for optical computing, where the syn-
chronized behavior of lasers in a network can be utilized for parallel computing and solving complex
computational tasks. Optical computing offers the potential for higher processing speeds and energy
efficiency compared to traditional electronic computing methods.
Furthermore, the study of synchronization in laser networks assists in network design and op-
timization. Understanding the effects of different network topologies and coupling strengths on
synchronization can lead to the development of more robust and efficient optical networks for
various applications.
In summary, the findings of this research open up possibilities for applying chaotic synchronization
and collective behaviors of semiconductor laser networks in a wide range of applications, including
communication systems, high-speed data processing, sensing, nonlinear dynamics, optical comput-
ing, and network optimization. As further investigations continue, the potential of laser networks in
complex systems and their real-world applications is expected to grow, paving the way for advance-
ments in technology and scientific understanding. The continuous exploration of semiconductor
laser networks and their behavior promises to revolutionize multiple industries and contribute to
the advancement of modern science and technology.
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Abstract
Pierce’s Disease (PD) poses a significant threat to global viticulture, particularly in coastal

and Mediterranean regions. Our study reveals the critical interplay of PD dynamics with climate
factors, highlighting the emergence of new risk areas as temperatures rise. Furthermore, we em-
phasise the pivotal role of vectors in disease transmission. To safeguard vineyards worldwide, our
research underscores the need for ongoing surveillance, adaptive strategies, and proactive measures
to mitigate the evolving challenges posed by PD, ensuring the resilience and sustainability of the
wine industry.

1 Introduction

Vector-borne diseases are caused by infectious agents transmitted by living organisms, called vec-
tors, frequently insects. These diseases pose a significant threat to global human health, giving rise
to illnesses such as malaria, yellow fever, and dengue, among others. Human diseases transmitted
by vectors account for over 17% of all human infectious diseases, resulting in millions of cases and
more than 700 000 deaths annually [1]. Besides humans, plants are also susceptible to bacterial
and viral diseases transmitted by vectors, a scenario that is central to our study.

Pierce’s Disease (PD) is a deadly vector-borne disease that originated in the Americas and was
firstly reported in the 1880s [2]. This devastating malady primarily affects grapevines, Fig. 1(a),
posing a significant threat to vineyards and wine production worldwide. It is caused by the bac-
terium Xylella fastidiosa (Xf), which infiltrates grapevines, gradually weakening them and often
leading to their demise. The transmission of PD is facilitated by the Philaenus spumarius (Ps),
a meadow spittlebug that feeds on xylem sap, unwittingly aiding in the disease’s proliferation
(Fig. 1(b)). Furthermore, PD is a thermal-sensitive disease, with temperature playing a pivotal
role in its development and spread.

(a) (b)

Figure 1: (a) Visible effects of the Pierce’s Disease in a grapevine leaf, caused by a strain of the bacteria
Xylella fastidiosa [5]; (b) The meadow spittlebug, Philaenus spumarius, vector of PD [6].

The narrative of Pierce’s Disease has transcended its American origins. In recent years, PD has
crossed oceans and established its presence in new territories. Despite the rigorous quarantine pro-
tocols meticulously crafted to safeguard the wine industry, it has encroached upon vineyards nestled
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on the Mediterranean isle of Majorca, Spain [2], especially noteworthy in our context. This finding,
alongside the detection of PD in Taiwan among others, has raised concerns about its possible spread
to continental Europe and other wine-producing regions worldwide. The consequences of such a
scenario would be far-reaching. The global wine industry, with a farm value of production exceed-
ing $3 billion annually, faces an existential threat. Moreover, the economic burden of PD is already
substantial, with an estimated cost of approximately $100 million annually in California alone [5].
The stakes are high, and the need to unravel and predict the complex dynamics of PD, its inter-
actions with Xf and Ps, and the role of temperature in its proliferation has never been more critical.

This work aims to shed light on these intricate factors. By employing dynamic epidemiologi-
cal models and incorporating climate variables, we seek to uncover the geographic regions where
PD could become endemic. Our goal is to assess the risk of its establishment, persistence, and
subsequent epidemic development. The models take into account the limited knowledge about PD
vectors in various wine-growing regions globally, offering a heuristic approach to understand the
situation previously described and provide valuable insights in order to help safeguarding the future
of the global wine industry.

2 Theoretical model

2.1 SIR compartmental model

The Susceptible-Infectious-Recovered (SIR) compartmental model is a classic, yet enduringly rele-
vant framework in epidemiology, which has extensively been employed to describe the dynamics of
infectious diseases and understand how they spread [4]. As the name suggests, this model divides
our population into three distinct classes:

− Susceptibles (S): individuals inside this compartment are susceptible to the disease because
they have not encountered the pathogen or have not yet been exposed to it; i.e., they are
capable of becoming infected.

− Infectives (I): this compartment includes subjects who are currently infected with the disease
and can potentially transmit it to the susceptibles.

− Removed class (R): individuals who have recovered from the disease and are assumed to have
developed immunity, as well as those who are isolated until recovery or death, and thus are
no longer susceptible to reinfection.

Figure 2: The progression of individuals among different compartments of the SIR model schematically rep-
resented [2].

The dynamics of the SIR model are governed by a set of ordinary differential equations (ODEs)
that describe how individuals transition between these compartments over time (Fig. 2). Key
parameters, such as the infection rate β and removal rate of infectives γ, influence the flow of the
subjects through these sections:

Ṡ = −βSI
N
,

İ = β
SI

N
− γI,

Ṙ = γI,

(1)

where 1
β and 1

γ represent the characteristic time inside the compartment (being β, γ = cte > 0).
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The assumptions made about the transmission of the infection and incubation period are crucial
in any model; these are reflected in the terms in the equations and the parameters [4]. Here, in the
SIR model, we are assuming that: (i) The incubation period is short enough to be negligible; e.i.,
a susceptible who contracts the disease is infective right away. (ii) We consider the various classes
as uniformly mixed; that is, each pair of individuals has equal probability of coming into contact
with one another. This is an important assumption and in many situations does not hold as in
most sexually transmitted diseases (STDs). (iii) We assume that the total size of the population,
N , is taken to be constant. This fact can easily be seen by adding all terms in Eq. (1):

Ṡ + İ + Ṙ = 0 ⇒ S + I +R = N. (2)

Nevertheless, the SIR compartmental model can be adapted to study a wide range of infectious
illnesses, including vector-borne diseases, by incorporating additional compartments to represent
hosts and vectors. This extension allows researchers to investigate the interplay between these
populations and the disease’s propagation. Moreover, this type of model is valuable for exploring
various factors affecting disease dynamics, such as temperature, vector behaviour, and host suscep-
tibility; as we will discuss in the following subsections.

On the other hand, a key question in any epidemic situation is, given β and γ, whether the
infection will spread or not [4]. From the second expression in Eq. (1):

İ(0) = I(0)(β S(0)
N − γ)

 > 0

< 0
if S(0)

N

 > ρ

< ρ
, ρ = γ

β . (3)

And since, from the first expression in Eq. (1), Ṡ ≤ 0, S ≤ S(0) we have, if S(0)
N ≤ ρ,

İ = I(β S
N − γ) ≤ 0 ∀t ≥ 0, (4)

in which case I(0) > I(t) → 0 as t → ∞ and so the infection dies out; that is, no epidemic can

occur. Conversely, if S(0)
N > ρ then I(t) initially increases and we have an epidemic (meaning that

I(t) > I(0) for some t > 0). We thus have a threshold phenomenon, and taking into consideration
that generally the population at the initial instant is made up mostly of susceptible individuals,
S(0)
N ≈ 1: if 1 > ρ there is an epidemic while if 1 < ρ there is not, being ρ the critical parameter.

Henceforth, we will write:

R0 =
β

γ
=

1

ρ
, (5)

where R0 is the basic reproduction rate of the infection, that is, the number of secondary infections
produced by one primary infection in a wholly susceptible population. If more than one secondary
infection is produced from one primary infection, that is, R0 > 1, clearly an epidemic ensues. The
whole question of thresholds in epidemics is obviously important. The definition and derivation or
computation of the basic reproduction rate is crucial, but it can be quite complicated, as we can
see exemplified in Eq. (12) of Sec. 2.3.

Finally, the maximum growth rate of the epidemic, relevant for an estimation of the risk of
establishment [1], occurs when S(0) ≈ N (just as we have previously assumed), and is approximated
by the (linearised) differential equation from (1):

İ ≈ βI − γI = γI

(
β

γ
− 1

)
= γI(R0 − 1), (6)

where we have assumed the initial conditions: S(0) ≈ N , I(0) ≈ 0 and R(0) = 0. This linear
differential equation can be integrated exactly:

I(t) = I(0)eγ(R0−1)t, (7)

which will be of great help in a future when we try to introduce the climatic factor to our model.
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2.2 Thermal-sensitive compartmental model

As presented in [2], this particular model addresses the intricate relationship between climatic con-
ditions and the risk of PD establishment in vineyards. Although the biological reality involves
vector-mediated transmission from host to host, for practical modelling purposes, we employ a
SIR framework, Eq. (1), representing direct host-to-host communication. However, to capture the
influence of temperature on disease dynamics, we introduce critical elements derived from direct
measurements.

On the one hand, experimental data reveals that the probability of plant infection post-inoculation
is temperature-dependent. Specifically, as temperature accumulates, there exists a threshold be-
yond which the likelihood of plant infection significantly increases (red curve, Fig. 3). On the other
hand, a complementary temperature-related phenomenon comes into play – this is the so-called
winter curing. In colder temperatures, the bacteria residing within infected plants are adversely
affected, resulting in a probability of recovery. This healing likelihood is influenced by the cumula-
tive cold exposure experienced by the plants during the winter months (blue curve, Fig. 3).

Figure 3: Nonlinear relationship between F(MGDD) (red line) and G(CDD) (blue line) and the likelihood
of developing chronic infections [2].

The temperature-dependent infection probability and the winter curing effect are essential for
understanding the seasonal dynamics of PD and play a pivotal role in our model. In fact, mul-
tiplied together, they give place to the cumulative probability of chronic infection, a crucial term
represented as:

Π(t) = F(MGDD)G(CDD). (8)

So, having built up an initial SIR framework using the exponential approximation, Eq. (7),
and taking into account the thermal-sensitive dependence, we can depict the number of infected
plants at time t as the product of two crucial terms, Eq. (9). Firstly, I(t − 1) encompasses the
previous infected plant population, serving as a foundation, and we multiply it by an exponential
factor, which represents the new inoculations. And secondly, we introduce the climatic factor Π,
which is inherently temperature-dependent. Together, the transmission and climatic layers offer a
comprehensive depiction of disease dynamics, combining historical infections, new introductions,
and the profound influence of temperature on the system.

I(t) = I(t− 1)eγ(R0−1)Π(t). (9)

It is worth highlighting the term R0 within the Eq. (9), i.e., the basic reproduction number, to
which we all are familiar after COVID-19. As stated previously, the value of this element, Eq. (5),
is fundamental in epidemiology, as it helps ascertain whether an epidemic is likely to occur. If R0

is less than 1, an epidemic is improbable, while an R0 greater than 1 indicates the potential for an
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epidemic.

In addition, we also obtained the PD risk index, r, in order to compute the epidemic-risk maps,
Eq. (10). In this equation, r implicitly delimits three different cases: (i) non-risk zones where r ≤
≤ −0.1, and the number of infected plants decreases; (ii) transition areas where −0.1 < r ≤ 0.1,
and (iii) an epidemic risk-zone where r > 0.1 and PD can theoretically become established and
produce an outbreak — the number of infected plants increases exponentially (see [2] for further
details).

r = max

{
log(I(T ))/I(t0)

γ(R0 − 1)T
,−1

}
, (10)

where T represents the period of time in which our simulation takes place, e.g., 5 years.

2.3 In-depth compartmental model

To address the issue of temperature dependency in disease dynamics, the previous model utilised
some approximations in order to obtain Eq. (9). The aim of doing this is to simplify the model
because, in the context of analyzing disease spread on a global scale, considering temperature-
dependent parameters like β becomes exceedingly complex. Given that the values of these parame-
ters can vary significantly with temperature, the approximation was employed to facilitate broader
epidemiological investigations. It’s important to note that when applying these approximations, the
model offers an overview of disease potential on a global scale without requiring precise parameter
values for specific locations.

Figure 4: The progression of individuals among different compartments of the host-vector model schematically
represented [3].

However, in the current model [3], our objective is to construct a highly precise representation
of the disease dynamics at a local level. To achieve this, we incorporate various critical processes
known to play a significant role in the disease propagation (Fig. 4). These include the introduction of
vectors (in addition to an exposed compartment for the hosts, which represent individuals infected
but not yet infectious), vector-to-host and host-to-vector transmission processes, as well as realistic
vector dynamics that account for their birth and death rates. All these factors are taken into
consideration by the following set of differential equations:
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ṠH = −βSHIv
NH

,

İH =
βSHIv
NH

− κEH ,

ĖH = κEH − γIH ,

ṘH = γIH ,

Ṡv = Nv(0)

∞∑
n=1

δ(t− nT )− αSvIH
NH

− µSv,

İv =
αSvIH
NH

− µIv.

(11)

Regarding the seasonal dynamics of vectors, we assume that new adults emerge synchronously
each year in fields being all susceptible. This is represented by the term Nv(0)

∑∞
n=1 δ(t − nT ),

where T = 1 year is the period and δ(t− nT ) is the Dirac delta function and basically implements
a yearly pulse of new vectors at a certain moment in the year. Vectors are removed (die, move to
herbaceous vegetation and other non-host trees, exit the field, etc.) at a given rate µ, which we
consider identical for susceptible and infected vectors.

Finally, the basic reproduction number of this new model is given by [1]:

R0 =
βα

µγ

SH(0)

N2
H

Nv(0)

µτ
(1− e−µτ ). (12)

2.4 In-depth thermal-sensitive compartmental model

To reconcile the two modelling approaches, we aim to merge them effectively. While the previous
temperature dependent model served as a useful approximation for global-level assessments, the
in-depth epidemiological model offers a comprehensive framework for local-level analyses. By com-
bining these approaches, we seek to incorporate the temperature-dependency of disease dynamics
into our precise local model.

It is essential to highlight that the thermal-sensitive model primarily predicts the risk of disease
establishment (r). This means it can indicate whether an outbreak is likely to occur but may not
provide precise insights into the extent of the outbreak’s impact (R∞ = RH/NH). In contrast, the
model described in Sec. 2.3 is highly precise and capable of quantifying impacts.

In this endeavour, we are merging these two methodologies to leverage the temperature-dependent
aspects for global assessments while quantifying the disease’s impact on a local scale. The differ-
ential equations used to accomplish this aim are the following ones:

ṠH = −βSHIv
NH

,

İH =
βSHIv
NH

,

ĖH = −γIH ,
ṘH = γIH ,

Ṡv = −αSvIH
NH

− µSv,

İv =
αSvIH
NH

− µIv.

(13)

Where it is crucial to apply new initial conditions at the beginning of each year of our simulation
in order to capture the seasonal dynamics of vectors and the thermal dependence of PD. This is
the so called annual reset, given by the four expressions above:
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SH(t∗) = SH(tf ) + EH(tf )[1−Π(t)],

IH(t∗) = IH(tf ) + EH(tf )Π(t),

EH(t∗) = 0,

Sv(t
∗) = Nv(0),

(14)

being t∗ the initial condition of each year. In essence, we effectively restore the susceptible vec-
tor population to its initial numbers. This is because Ps have an annual generational life cycle,
meaning they are born and die within a year. Additionally, we reassign exposed hosts to either the
susceptible or infective categories based on the prevailing climatic conditions that either facilitate
the proliferation or recovery of PD.

3 Results and discussion

During the Julia and Python simulations of our theoretical model (2.4), we have configured the
parameter values, which are expressed as daily rates, as follows: α = 0.076, β = 0.013 γ = 0.0005,
µ = 0.022. These parameter settings were used in conjunction with our specified initial conditions:

Populations ⇒ NH(0) = 1000, Nv(0) = fNH(0);

Vectors ⇒ Sv(0) = Nv(0), Iv(0) = 0;

Hosts ⇒ EH(0) = RH(0) = 0, IH(0) = 0.01NH(0), SH(0) = NH(0)− IH(0).

Being f the Ps suitability in a certain location.

3.1 Phase diagram

Our initial outcome was the phase diagram depicted in Fig. 5, which served as a valuable tool for
verifying the proper functioning of our simulation, but also for myself in order to become familiar
with the programming language. In this image, we illustrate the impact of a PD outbreak, R∞,
concerning the climatic conditions that influence the infection probability, Π, and the Ps suitability,
f , which in our case (due to the initial conditions), is proportional to its population.

Figure 5: Phase diagram, showing the final size of the epidemic, R∞, obtained from our simulation given 0 to
1 and 0 to 3 values of the Xf and Ps suitability, Π and f respectively, both with 0.01 steps.

The presented results follow an intuitive pattern: as Xf suitability increases, the deaths at-
tributable to PD also rise, and likewise, with higher Ps suitabilities, the impact is more pronounced.
However, what adds an intriguing dimension to this logical observation is the presence of a thresh-
old (highlighted in blue), which suggests that, initially, we need not be overly concerned about a
PD outbreak due to a very low R∞.
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3.2 PD impact and risk maps

Now that we have successfully tested our simulation, our main goal is to assess the real-world
impact on a global scale and compare it with the PD risk as described in [2]. To accomplish this
objective, we will utilise existing values of the Ps and Xf time-dependent suitability corresponding
to different geographical coordinates, f and Π, with the latter one being a result of the climatic
factor.

3.2.1 Historical data

In Fig. 6 we depict the outcomes derived from historical data. Notably, in both impact and PD
risk assessments, coastal areas (such as Greece, Italy, and southern Spain) as well as Mediterranean
islands (including Majorca, Sardinia, and Sicily) emerge as the most heavily affected regions.

Figure 6: PD impact, R∞, and risk, r, global maps acquired from historical data.

Moreover, given the striking resemblance between the behaviours of R∞ and r, we conducted
a comprehensive scatter plot analysis, as illustrated in Fig. 7, to delve into the potential corre-
lation between these two variables. The results of this graphical representation unveil a distinct
pattern: when the risk index assumes a negative value (indicating either an inconsequential risk or
an exceedingly low likelihood of outbreaks), the resulting impact tends to be minimal. Conversely,
as the risk index becomes positive, indicating an increasing probability of outbreaks, the impact
escalates accordingly. Furthermore, it is worth noting that within the delineated ”transition zone”
demarcated by red dotted lines, encompassing risk values ranging from -0.1 to 0.1, the associated
uncertainty is notably elevated, clearly evident through the presence of larger error bars, aligning
with our expectations.

Last but not least, we can discern two distinct trends among the blue data points in the scatter
plot, one positioned higher and the other lower. This intriguing observation may be linked to the
geographical distribution of these points, potentially influenced by varying climatic conditions or
other factors that warrant further investigation.
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Figure 7: Average final size of the epidemic, R∞, extracted from the scatter plot analysis (depicted in
blue) is represented with black triangles and accompanied by its corresponding uncertainty, versus the risk of
establishment of PD, r; the ”transition zone” demarcated by red dotted lines.

3.2.2 Warming scenarios

Finally, we carried out a similar analysis to the one in the previous section, but this time under
various Climate Change scenarios, in particular involving temperatures surpassing those observed
during the pre-industrial era.

Remarkably, our findings mirror those derived from the historical data (Fig. 8 and 9), with
coastal regions and Mediterranean islands consistently exhibiting the highest values for both R∞
and r across all four scenarios. However, a distinct trend emerged in central regions, where the
potential for a PD outbreak became increasingly evident, particularly in scenarios characterized by
higher temperatures. This last observation is inherently intuitive, as it follows logical reasoning.
In warming scenarios, the Xf suitability, represented by Π, naturally tends to increase, amplifying
the likelihood of disease development within the vineyard after an inoculation event.

Figure 8: PD impact, R∞, global maps acquired from different warming scenarios, where the starting tem-
perature is the one corresponding to the pre-industrial period (+0.0℃).
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Figure 9: PD risk, r, global maps acquired from different warming scenarios, where the starting temperature
is the one corresponding to the pre-industrial period (+0.0℃).

On the other hand, the results extracted from the scatter plot analysis between R∞ and r
across the four warming scenarios continue to exhibit the same pattern observed in the previous
section. In essence, when the risk stays into negative territory (indicating a low likelihood of a PD
outbreak), the corresponding impact remains consistently minimal, and vice versa. Furthermore,
as anticipated, there is a discernible uptick in associated uncertainty within the ”transition zone”,
in this case demarcated by black dotted lines. To streamline the presentation and prevent undue
repetition, we have amalgamated all the findings into a unified graphic, depicting solely the average
impact at 0.1 risk intervals (Fig. 10). This representation unmistakably underscores the previously
mentioned trends and the striking similarity in the relationship between the final size of the epi-
demic, R∞, versus the risk of espablishment of PD, r, among all four scenarios.

Figure 10: Average final size of the epidemic, R∞, extracted from the scatter plot analysis is represented for
the four climatic scenarios with their corresponding uncertainty versus the risk of establishment of PD, r; the
”transition zone” is demarcated by black dotted lines.
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4 Conclusions

In this study, we delved into the complex dynamics of Pierce’s Disease (PD), shedding light on its
potential implications for the global wine industry. Our research has unraveled critical insights:

PD stands as a formidable threat to viticulture on a global scale, with coastal and Mediter-
ranean regions emerging as particularly vulnerable areas. The disease’s propensity to thrive in
these regions underscores the need for vigilant monitoring and proactive management strategies to
safeguard vineyards.

Temperature, as our analysis has emphasized, plays a pivotal role in shaping the dynamics of
PD. Under the spectre of climate change, regions previously considered low-risk may face an ele-
vated threat. This emphasizes the urgency of implementing adaptive measures to curtail disease
spread.

Furthermore, our findings have underscored the profound influence of vectors in disease trans-
mission. Understanding vector behaviour is of paramount importance for crafting effective control
strategies and mitigating the impact of PD outbreaks.

Last but not least, we have unveiled a significant direct connection between the risk of PD
establishment, r, and the ultimate epidemic’s size, R∞, bridging the abstract and tangible realms
of the disease dynamics.

In conclusion, our study underscores the vital necessity for ongoing research, vigilant surveil-
lance, and climate-adaptive initiatives within the wine industry. Proactive measures are indis-
pensable in fortifying vineyards against the evolving challenges posed by Pierce’s Disease, thereby
ensuring the resilience and sustainability of viticulture worldwide.

Future work

Taking the research forward, a logical extension would be a comprehensive modeling of Pierce’s
Disease to evaluate its potential economic repercussions at a global scale, leveraging our research as
a cornerstone. This economic analysis would serve as a vital resource for stakeholders in the wine
industry, enabling them to quantify the financial implications of PD’s geographical prevalence and
severity.

Furthermore, delving deeper into the different two behaviours identified in the previously shown
scatter plots represents an exciting avenue for exploration. These two trends, which manifest as
distinct clusters of data points, may hold valuable insights into the influences of specific geographical
regions characterized by unique climates or other pertinent factors. Investigating these connections
could unravel the intricate dynamics of PD across different locales, ultimately contributing to the
development of region-specific strategies for disease management and prevention.
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Abstract

In the context of Stochastic Thermodynamics, a series of recently discovered inequalities known
as Thermodynamic Uncertainty Relations (TURs), have shown that high precision of non-equilibrium
currents comes with an entropy cost. Demonstrations for these results are not valid for some im-
portant classes of dynamics. In this work, we analyze a simple example of those systems that can
violate the original form of TUR: the electronic transport through a quantum dot connecting two
metal leads. To do so, we apply Landauer-Büttiker formalism and make use of analytical calcula-
tions as well as numerical tools to find how TUR bound can be overcome. We then study how we
could seize the properties of these system to build a quantum thermal machine.

1 Introduction

Thermodynamic Uncertainty Relations (TURs) have been generally proved under a variety of
different assumptions, and checked in many processes for wich demonstration has not been done
yet. The study of biomolecular processes, such as molecular motors, transcription and translation
machinery and other enzymatic reactions motivated the analysis made in [2]. The authors propose
a random walk model to describe a non-equilibrium chemical reaction catalyzed by an enzyme, and
consider the number X of enzymatic cycles completed. Assuming an external environment of fixed
temperature T , they demonstrate that after a time t, the relative uncertainty of X

ϵ2 :=
< X2 > − < X >2

< X >2

and the entropy prodction rate, σ, which gives a total energy dissipation Tσt, verify

Q := Tσtϵ2 ≥ 2kBT (1.1)

After that, they show that the relation (1.1) holds for any network of states within linear response
theory. For non-linear regime, they prove it analytically for unicyclic networks and give numerical
examples for multicyclic cases. They finally conjecture this is a fundamental limit for nonequilib-
rium stationary states.

In [4], a stochastic model of a non-equilibrium system based on random jumps between discrete
states is proposed. The system is supposed to interact with individual thermodynamic reservoirs
with well-defined equilibrium propertes that mediate its transitions, which imposes the local detailed
balance condition. The system relaxes into a non-equilibrium steady state characterized during a
time window τ by an average entropy generation produced Στ and irreversible currents, like a
generic one Jτ . These currents fluctuate when comparing different trajectories due to the inherent
noise in the dynamics, and it can be shown that

Var(Jτ )

< Jτ >2
≥ 2kB

Στ
(1.2)

This relation was proved within the framework of large deviation theory for jump processes. It
can also be applied to more general situations (see [4] for details), but there are some interesting
systems in which it is not valid. Here, we will study one of such processes, the electronic transport
through a quantum dot connecting two metal leads linked to reservoirs.

Further investigations have generalised relations like the original form of TUR, (1.2), replacing
the right-hand side of the equation by an arbitrary function of Στ/kB , but still, analysing how the
first form can be violated is interesting due to the wide range of applicabitilty of this formula: In
general, it is true for every Markovian process that verifies the local detailed balance condition.



Proceedings of the SURF@IFISC (2023) 2

2 Theoretical model

In this work, we study the flow of electrons between two metal leads connected by a quantum
dot. Although it may seem a simple system, it presents many non-trivial problems, can work as
a quantum thermal machine, and gives us the possibility to show how (1.2) can be violated in
Quantum Mechanics.

2.1 Landauer-Büttiker formalism

We will make use of Landauer-Büttiker formalism, which is described in detail in [6]. We will
take without demonstration some of the expressions that are derived there, especially in its first
two chapters. This model of electronic transport is sometimes called scattering approach because
it consists in studying the propagation of electrons as a quantum-mechanical scattering problem:
A mesoscopic system, which we will call scatterer connects Nr macroscopic contacts that are
considered to be equilibrium electrons reservoirs with fixed temperatures.

Figure 1: Scatterer and leads diagram. Figure taken from [6].

The main objective in Landauer-Büttiker formalism is to relate wave functions of scattered
particles with those of incident ones. Instead of solving Schrödinger equation in general, it is

enough to do it for the states of an orthonormal basis, ψ
(in)
α , ψ

(out)
α

Ψ(in) =
∑
α

aαψ
(in)
α Ψ(out) =

∑
β

bβψ
(out)
β

Solving the propagation problem for those states we get

Ψ(out)
γ =

∑
β

Sβγψ
(out)
β

where Ŝ = (Sµν)µν is the so-called scattering matrix, which allows us to write bβ =
∑

α Sβαaα.
Scattering matrix has some important properties whose derivation can be found in [6]. Here we
will make use of

unitarity: Ŝ†Ŝ = ŜŜ† = Î =⇒
∑
α

|Sα,β |2 =
∑
β

|Sα,β |2 = 1 (2.1)

symmetry: Ŝ = ŜT ⇐⇒ Sαβ = Sβα (2.2)

where symmetry property changes in presence of a magnetic field, but we will not have to consider
that situation. Instead of using a discrete basis, it is also possible apply this formalism to a
continuous spectrum of states dependent of energy E, and so, from this point we will use the
subscripts to mark the lead where the electron is.

In order to calculate the current flowing between the scatterer and the reservoirs, it is nec-
essary to introduce the operators of Second Quantization, which create and annihilate particles
â†α(E)/âα(E) b̂†α(E)/b̂α(E). With them, it is possible to define the current operator

Îα(t, x) =
iℏe
2m

∫ {
∂Ψ̂†

α(t, r)

∂x
Ψ̂α(t, r)− Ψ̂†

α(t, r)
∂Ψ̂α(t, r)

∂x

}
dr⊥ (2.3)
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where Ψ̂†
α and Ψ̂†

α represent the field operators. It can be shown that creation and destruction
operators for incoming and scattered electrons are also related via the scattering matrix:

b̂α =

Nr∑
β=1

Sαβ âβ b̂†α =

Nr∑
β=1

S∗
αβ â

†
β

Making use of these relations, scattering matrix properties, and the assumption that incoming elec-
trons have equilibrium properties, a quantum-statistical average calculation leads to the measurable
current

Iα =< Îα >=
e

h

∫ ∞

−∞

{
ϕ(out)α (E)− ϕ(in)α (E)

}
dE (2.4)

with

ϕ(in)α (E) = fα(E) ≡ 1

1 + e
E−µα
kBTα

µα = µ0 + eVα (Fermi function) (2.5)

ϕ(out)α (E) =

Nr∑
β=1

|Sαβ(E)|2fβ(E) (2.6)

where µ0 is the (common) Fermi energy of all leads and Vα the electrical potential of lead α, so
that µα = µ0 + eVα is its electro-chemical potential.

Finally, substituting (2.5) and (2.6) in (2.4) and using (2.1) we can write

Iα =< Îα >=
e

h

∫ ∞

−∞

Nr∑
β=1

|Sαβ(E)|2
{
fβ(E)− fα(E)

}
dE (2.7)

which, together with the properties of Ŝ, (2.1) and (2.2), allows to prove a current conservation
law

Nr∑
α

Iα = 0 (2.8)

In short, Landauer-Büttiker formalism allows us to calculate the currents between the scatterer
and the leads once we know the scattering matrix. For the two-contact case, the scattering matrix
can be written as

Ŝ = eiγ
(√

Re−iθ i
√
T e−iϕ

i
√
T eiϕ

√
Reiθ

)
(2.9)

where R+T = 1 and ϕ is an odd function of the magnetic field H, and so vanishes if H = 0, which
will be our case. Now, using (2.9), (2.7) reads

Iα =< Îα >=
e

h

∫ ∞

−∞
T
{
fβ(E)− fα(E)

}
dE (β ̸= α) (2.10)

2.2 Currents through a quatum dot

The first step to calculate the scattering matrix is describing the system that connects the leads.
In this work, we chose a quantum dot because these structures present interesting features: their
transmission probability curve is highly dependent on the energy and it has been demonstrated
that they have important thermoelectric properties, as well as quantum coherence.

A wide analysis of quantum dots can be found in [5]. For our purposes, see (2.10), we only need
to know the transmission probability through the dot. Propagation of electrons can be described,
in full analogy to a Fabry-Perot interferometer, as the interference of partial waves reflecting back
and forth between the tunneling barriers of the dot. We encourage the reader to check in [5], section
18.3, the beautiful derivation of the formula

T (E) =
Γ1Γ2

(E − ϵ)2 + (Γ/2)2
(2.11)

where Γ1 and Γ2 are positive energies whose sum is Γ and ϵ is the energy of the level that the
dot has available for electronic transport. This is actually a simplification of the expression in [5],
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where a sum over resonances is performed. Equation (2.11) gives us a lorentzian-form transmission
probability that can also be written as

T (E) =
γ1γ2Γ

2

(E − ϵ)2 + Γ2/4
=

4γ1γ2

1 +
(
2E−ϵ

Γ

)2 where γ1 =
Γ1

Γ
, γ2 =

Γ2

Γ
∈ [0, 1] (2.12)

Now we can finally write the complete expression to calculate, for example, the charge current
through lead 1. We will change the sign of the integrand because from now on we will follow the
same sign convention as in [1], instead of [6]. With this convention, we will consider positive those
currents and energy flows towards the system, and negative those coming from the system. Then,
we will write

I1 =
e

h

∫ ∞

−∞
T (E)[f1(E)− f2(E)] dE =

e

h

∫ ∞

−∞

Γ1Γ2

(E − ϵ)2 + (Γ/2)2
[f1(E)− f2(E)] dE (2.13)

where we recall that fα represents the Fermi function of contact α.
A similar discussion (see [3]) allows us to define and give an expression to calculate the energy

current from lead α towards the scatterer

Eα =
1

h

∫ ∞

−∞
E
{
ϕ(out)α (E)− ϕ(in)α (E)

}
dE =

1

h

∫ ∞

−∞
E

Nr∑
β=1

|Sαβ(E)|2
{
fβ(E)− fα(E)

}
dE (2.14)

and the heat current,

Jα = Eα − µα

e
Iα =

1

h

∫ ∞

−∞
(E − µα)

{
ϕ(out)α (E)− ϕ(in)α (E)

}
dE =

=
1

h

∫ ∞

−∞
(E − µα)

Nr∑
β=1

|Sαβ(E)|2
{
fβ(E)− fα(E)

}
dE (2.15)

which for the two-terminal case and lead 1 reads

J1 =
1

h

∫ ∞

−∞
(E−µ1)T (E)[f1(E)−f2(E)] dE =

1

h

∫ ∞

−∞
(E−µ1)

Γ1Γ2

(E − ϵ)2 + (Γ/2)2
[f1(E)−f2(E)] dE

(2.16)
Integrals (2.13) and (2.16) were solved analytically in [1] using digamma function, Ψ, to rewrite

fermi functions and then use residue theorem. The results are

I1 = −2e

h

Γ1Γ2

Γ
Im
[
Ψ
(
z+1
)
−Ψ

(
z+2
)]

(2.17)

J1 = −2Γ1Γ2

hΓ
(ϵ− µ1) Im

[
Ψ
(
z+1
)
−Ψ

(
z+2
)]

+
Γ1Γ2

h
Re
[
Ψ
(
z+1
)
−Ψ

(
z+2
)]

− Γ1Γ2

h
ln

(
T2
T1

)
(2.18)

where z±j =

(
1

2
+

Γ

4πkBTj
± i

ϵ− µj

2πkBTj

)
This analytical expressions are hard to work with, due to the presence of digamma function.

However, they will be very useful to save time in our calculations, and avoid precision problems,
because Mathematica is able to quickly compute Ψ and with high accuracy.

TUR inequality also features entropy increase. For our experiment, we can use heat currents to
easily calculate the entropy generation rate by means of Clausius theorem. Since the scatterer has
fixed properties in time and entropy is a state function, its entropy is constant in time. Meanwhile,
the leads do change their entropy, due to the heat flow between them and the scatterer. Conse-
quently, and taking into account that according to our sign convention reservoir α receives a heat
current −Jα, we may write that the entropy generation rate for the thermodynamic universe is

K = −J1

T1
− J2

T2

(2.15)
=

kB
h

∫ ∞

−∞
T (E)(f1(E)− f2(E))

[
E − µ2

kBT2
− E − µ1

kBT1

]
dE (2.19)

The last ingredient we need to check the TUR is the magnitude of the fluctuations of I1,
also known as noise. It is characterized by the mean square fluctuations of the current, and its
calculation is explained in detail in [6]. A generalisation of the result derived there leads to

S1 =
e2

h

∫ ∞

−∞

{
T [f1(1− f1) + f2(1− f2)] + T (1− T )(f2 − f1)

2
}
dE (2.20)
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where the energy dependency has been omitted for simplicity.
Finally, if we choose the current flowing from lead 1 to the scatterer, I1 as observable, TUR

would be formulated as
S1

I2
1

≥ 2kB
K

(2.21)

3 Results and discussion

The main objective of this paper is to study the original form of Thermodynamic Uncertainty
Relation for an experiment of electronic transport through a quantum dot. Let us summarize the
situation. The inequality we are considering is (2.21)

S1

I2
1

≥ 2kB
K

where

• I1 is the current flowing from lead 1 towards the scatterer.

• K is the time derivative of the entropy of the thermodynamic universe.

• S1 is the noise of I1.
In order to be able to study whether and “how much” TUR inequality is verified or not, we

can rewrite (2.21) by multiplying both sides by K/2kB, which is positive, so the inequality sign
does not change. It must be true that K/2kB > 0, because otherwise this system would violate
the Second Law of Thermodynamics. It will be proved later (see section 3.3.1) that indeed, this
quantity is positive. Then, if we call the left-hand side of the resulting inequality as Θ, we have
that TUR can be reformulated as

Θ :=
K
2kB

S1

I2
1

≥ 1 (3.1)

In conclusion, our main mission will be to determine whether it is possible to find a configuration
in our experiment that yields Θ < 1, how we can get it, and if we can take advantage of this situation
to build more efficient thermal machines.

3.1 Analysis of parameters

There are several parameters in our electronic transport model. If we are able to understand, at
least in a qualitative approach, how they affect the charge and entropy currents and noise, it will
be easier to study the TUR and the “thermodynamic behaviour” of our system. Hopefully, this
study will enable us to choose appropriate values for parameters to make a thermal machine out of
it.

Since the mathematical expressions, both the integrals (2.13) and (2.16) and analytical solutions
for currents, are hard to work with, we believe that the simplest way to deal with them is by a
qualitative inspection. To do so, representations of the functions that appear in the integrands and
those integrals themselves are extremely useful. That is why we made a Manipulate in Mathematica
to plot together Fermi functions f1(E) and f2(E) and the transmission probability T (E). The
instructions to implement it are provided in the appendix.

Let us set electrical potentials as V1 = V/2, V2 = −V/2, so that V = V1−V2. Since γ1+γ2 = 1,
we can consider a single parameter g = γ1 so that γ2 = 1 − g. It will be convenient to work only
with adimensional quantities and energies, so we will usually consider eV and kBTα instead of V
and Tα. We have 7 different parameters to consider (kBT1, kBT2, µ0, eV,Γ, g, ϵ), which is one of the
main difficulties of this model, because it is impossible to study them simultaneously in graphics
and it makes analysis quite tedious. This fact, added to the difficulty of expressions we have for
our magnitudes, led us to start approaching the problem with two different strategies: simplifying
our set of variables and programming a flexible optimization function.

3.1.1 Simplifying the set of parameters

Some simple observations can help us to reduce the number of degrees of freedom in our experiment.
At first sight, they may seem unimportant or even childish, but eliminating coordinates will make
all the analysis much easier.

First of all, we can replace µ0 and ϵ by a single parameter. This two quantities only appear
subtracting from the energy E in the Fermi functions and the transmission coefficient, respectively.
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Since E is the integration variable to calculate currents and noise, we can simply make a change
of variable E → E + µ0 to make the Fermi energy vanish in Fermi functions and transform the
transmission coefficient into

T (E) =
Γ1Γ2

[E − (ϵ− µ0)]2 + (Γ/2)2

so that now, the only quantity that matters is the difference ϵ − µ0. Equivalently, we can simply
assume µ0 = 0 from now on, which is, in fact, a way to choose the zero of our energies. That is
why unless otherwise stated µ0 = 0.

Now we will show that the symmetric barrier, Γ1 = Γ2 = Γ/2 or equivalently γ1 = γ2 = 1/2 or
g = 1/2, is always the optimal situation to make Θ smaller. Given that Γ1Γ2 = g(1− g)Γ2 appears
as a factor in T , we can take g(1 − g) out of the integral in (2.13) and (2.16). Now if we rewrite
the integrand of the noise expression (2.20)

T [f1(1−f1)+f2(1−f2)]+T (1−T )(f2−f1)2 = T {f1(1−f1)+f2(1−f2)+(f2−f1)2−T (f2 − f1)
2︸ ︷︷ ︸

<0

}

(3.2)
we can see that another factor g(1− g) can get out of the integral of S1, and join the one coming
from K to cancel, in (2.21), the squared one from I1. Then, g disappears everywhere except for the
negative term in (3.2). Since we want reduce S1, we can pick the value of g ∈ [0, 1] that maximizes
g(1− g), which is g = 1/2, i.e. the symmetric barrier case. Then, from this time on, g will be 1/2
when omitted.

Last, but not least, we can also “get rid of” Γ by using it as our energy scale, dividing all
energies by it. That is precisely what we did in (2.12) for T , and we can also write

E − µα

kBTα
=
E/Γ− µα/Γ

kBTα/Γ

and make a change of variable E = Γw, which gives a Γ factor that can be taken out of the
integrals. In the end, we can replace our original parameters by their adimensional rates over Γ.
This is especially interesting when computing the integrals with Mathematica.

Although we could let Γ take negative values, we will assume Γ ≥ 0, unless otherwise stated,
because negative values are in general unnecessary and more difficult to interpret. Note that, appart
from being used as our energy scale, Γ has a “geometrical” meaning as a mesure of the area under
the transmission probability curve. This is because the integral of the lorentzian is∫ ∞

−∞
T (E) dE

(2.12)
= 4γ1γ2

∫ ∞

−∞

1

1 +
(
2E−ϵ

Γ

)2 dE x=2E−ϵ
Γ= 4γ1γ2

Γ

2

∫ ∞

−∞

1

1 + x2
dx = 4γ1γ2

πΓ

2
(3.3)

and for every E ̸= 0, T (E) grows with |Γ|, as can be demonstrated by observing the sign of

∂T

∂Γ
=

∂

∂Γ

γ1γ2Γ
2

(E − ϵ)2 + Γ2/4
=

32γ1γ2(w − ϵ)2Γ

[(E − ϵ)2 + Γ2/4]2
(3.4)

Figure 2 illustrates how transmission probability and the area under the curve depend on Γ. We
can see that T (ϵ) = 4γ1γ2 for all Γ ̸= 0, but for the rest of energies, the T (E) → 0 when Γ → 0, so
that the lorentzian gets sharper.
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(c) Γ = 10

Figure 2: Geometrical meaning of Γ. To make this plots, we took g = 1/2.

3.1.2 minimACE

As we do not have simple analytical expressions for our magnitudes of interest, numerical calcula-
tions and graphics appear to be an interesting alternative to the standard analytical optimization
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techniques. However, the high number of degrees of freedom makes it impossible to study how
magnitudes depend on all of them together. Moreover, depending on the particular functions we
wish to study, their number of variables will be different. This is what motivated us to build a tool
in Mathematica to minimize functions with the most general conditions possible: minimACE.

This function takes as an argument a function F of n variables. The second argument is a matrix
with n rows, each one of which contains the lower and higher values that a variable will take, and a
positive integer to indicate how many evenly separated values, including the extremes, that variable
must take. Next argument is a positive integer to choose the number of values of F that will be
returned, and another positive integer to mark the maximum number of computations minimACE
must make. This number is a manual limit for the loop minimACE uses and is also the reference
for the progress messages it can print. The last two arguments are a couple of Boolean values to
control whether the initial verifications of minimACE are to be done, and to ask minimACE to
print progress messages when calculating. The output is a list of lists, each one formed by a list of
values for the variables and the result of F applied to those values. Those values of F are the m
lowest among the calculated ones. Figure 3 shows an example of how minimACE works, and the
code of the function is provided in the appendix.

Figure 3: Example of minimACE use.

The advantage of minimACE is its flexibility. It can minimize functions depending on an
arbitrary number of variables and it lets the user easily choose how many values they want to see,
the region of the n−dimensional parameter space they want to explore, and the number of points
where the function is to be calculated, this way controlling the degree of detail of that exploration.
Instead of using Mathematica’s Table function, we programmed a system of counters to sequentially
generate all the combinations of values for the variables according to the user’s instructions, while
comparing and saving only the number of lists {variables, function} requested, in order to save
memory and computation time.

We found minimACE was very helpful to find appropriate values of the parameters in our
experiment to reduce Θ. It allowed us to make wide range explorations to cover big regions of our
space of parameters to find zones of interest. After that, we made more detailed analysis of those
zones again with minimACE or applied other techniques, such as using Mathematica’s optimization
functions like FindMinimum or fixing some variables to make plots varying the rest of them. We
would also like to comment that minimACE helped us to find patterns or make observations that
guided us to some other results in our experiment. For example, even before realising that it was
only the difference ϵ − µ0, instead of separately ϵ and µ0, what mattered in our experiment, we
were able to see that by observing the results of minimACE.

3.1.3 Interesting cases

There is a couple of particular situations that we believe to be worth a brief independent analysis.

Equal temperatures case. This is the first situation we studied because in this case Θ gets
a particularly simple form. However, we will later show that this may not be the only reason why
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this is an interesting case. If we set T1 = T2 ≡ T0, then from equation (2.19) we get

K =
kB
h

∫ ∞

−∞
T (E)(f1(E)− f2(E))

[
�E − µ2

kBT0
−�E − µ1

kBT0

]
dE =

=
eV

hT0

∫ ∞

−∞
T (E)(f1(E)− f2(E)) dE

(2.13)
=

I1V
T0

(3.5)

where we have used µ1 − µ2 = eV . Substituting this into (3.1) yields

Θ =
eV

2ekBT0

S1

I1
=: θ (3.6)

where we do not cancel e in the fraction to keep energy dimensions in our parameters.

Small Γ limit. As we mentioned above, Γ determines the sharpness of the transmission prob-
ability curve. Let us consider the integral over R of a function F (E) multiplied by T (E). If F is
continuous at ϵ and has a global “good behaviour” (which all our functions have), provided Γ is
small enough, we may approximate F (E) ≈ F (ϵ) for E ≈ ϵ and write∫ ∞

−∞
T (E)F (E) dE ≈

∫ ∞

−∞
T (E)F (ϵ) dE

(3.3)
= 4γ1γ2

πΓ

2
F (ϵ)

g=1/2
=

πΓ

2
F (ϵ) (3.7)

If we apply this approximation to estimate the integrals in (2.13) and (2.16), already for g = 1/2,
we find

I1 ≈ πΓ

2

e

h
(f1(ϵ)− f2(ϵ)) (3.8)

K ≈ πΓ

2

kB
h
(f1(ϵ)− f2(ϵ))

[
ϵ− µ2

kBT2
− ϵ− µ1

kBT1

]
(3.9)

The case of S1 is slightly different, because since the second term in the integrand of (2.20) the
factor is not T but T (1− T ) we need to split the integral in two before applying (3.7):

S1 =
e2

h

∫ ∞

−∞
T [f2(1− f2) + f1(1− f1)] dE +

e2

h

∫ ∞

−∞
T (1− T )(f2 − f1)

2 dE ≈

≈ e2

h
[f2(ϵ)(1−f2(ϵ))+f1(ϵ)(1−f1(ϵ))]

∫ ∞

−∞
T (E) dE+

e2

h
(f2(ϵ)−f1(ϵ))2

∫ ∞

−∞
T (E)(1−T (E)) dE =

=
e2

h
[f2(ϵ)(1− f2(ϵ)) + f1(ϵ)(1− f1(ϵ))]

πΓ

2
+
e2

h
(f2(ϵ)− f1(ϵ))

2πΓ

4
=

=
πΓ

2

e2

h

[
f2(ϵ)(1− f2(ϵ)) + f1(ϵ)(1− f1(ϵ)) +

(f2(ϵ)− f1(ϵ))
2

2

]
(3.10)

Using (3.8), (3.9) and (3.10) in (3.1), recalling that µ1 = ��*
0

µ0 + eV/2 and µ2 = ��*
0

µ0 − eV/2 and
operating, we find

Θ ≈ 1

2

[
ϵ+ eV/2

kBT2
− ϵ− eV/2

kBT1

] (f1(ϵ) + f2(ϵ))
(
1− f1(ϵ)+f2(ϵ)

2

)
(f1(ϵ)− f2(ϵ))

=: ξ (3.11)

Apart from giving an analytical expression, the approximation in (3.11) has an important ad-
vantage. Despite still having 4 degrees of freedom (kBT1, kBT2, eV and ϵ), we can think ξ as a
function with only two arguments. This is because since the fractions in the left bracket are pre-
cisely the arguments of Fermi functions, it is only the value of those fractions what determines ξ.
Since those fractions can take any real value when we let our parameters free, we can consider them
as our new coordinates, varying in all R. In other words, we can replace (3.11) by

ξ(x1, x2) =
1

2
[x2 − x1]

(f(x1) + f(x2))
(
1− f(x1)+f(x2)

2

)
(f(x1)− f(x2))

where (x1, x2) ∈ R2, f(x) =
1

1 + ex

(3.12)
and even more, taking into account that f is a diffeomorphism between R and the interval (0, 1),
we can use it to make change of coordinates

R2 ∼ // (0, 1)× (0, 1)

(x1, x2)
� // (y1 = f(x1), y2 = f(x2))

(3.13)
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which transforms (3.12) into

ξ(y1, y2) =
ln
(

1
y2

− 1
)
− ln

(
1
y1

− 1
)

2

(y1 + y2)
(
1− y1+y2

2

)
y1 − y2

=

=
1

4
ln

(
1
y2

− 1
1
y1

− 1

)
(y1 + y2)(2− y1 − y2)

y1 − y2
where (y1, y2) ∈ (0, 1)× (0, 1) (3.14)

In spite of being analytical, the expression in (3.14) is not easy to study at all, due to the
transcendental equations that arise from almost any manipulation we can try with it. It is not
that difficult to prove that when y1 and y2 tend to the same value, ξ tends to 1. However,
this approximation has an obvious advantage, which is that it allows us to visualize all possible
configurations with a simple Plot3D in Mathematica, which is shown in 4.

Figure 4: Plot3D of ξ(y1, y2) from two different angles. The blue plane is the graph of constant 1
function.

In view of the representation of ξ(y1, y2) we conclude that in the small Γ limit, our TUR cannot
be violated.

The last result has another important consequence due to a certain equivalence between small
Γ and high temperatures. After making a change of variable E = Γw, it is easy to check that for Θ,
multiplying T1 and T2 by the same positive quantity λ gives the same result as dividing Γ, eV and
ϵ by λ. This means that increasing both temperatures takes us to a small Γ configuration, in which
we have already checked that violating TUR is not possible. In conclusion, high temperatures
regime also prevent us from escaping TUR.

3.2 Escaping TUR

After the previous discussion, we will now seize our results and tools to explore the possibility to
violate TUR in its original form. Unless otherwise mentioned, we will use Γ as our reference for
energies. Since Γ factors comming out of the integrals cancel in Θ, we do not need to worry about
them. Consequently, from now on, any energy quantity without units must be understood as its
rate over Γ.

Investigating the low temperatures region of our space of parameters, and guided by mini-
mACE, we found a TUR violation. The minimum of Θ was found, with the help of FindMin-
imum, close to the point (kBT1 = 0.0866667, kBT2 = 0.0866667, eV = 0.23, ϵ = 0), for which
Θ(0.0866667, 0.0866667, 0.23, 0) = 0.997092. To get an idea of what happens there with Θ, we
make a Plot3D fixing the temperatures and find what we show in figure 5. To get it, we used a
function to calculate θ, (see equation (3.6)) instead of the general Θ, to simplify calculations.
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Figure 5: Plot3D of Θ close to the minimum.

In order to explore the influence of the common temperature, we repeat this Plot3D for different
values of kBT0 and get 6.

(a) kBT0 = 0.01 (b) kBT0 = 0.05 (c) kBT0 = 0.1 (d) kBT0 = 0.5

Figure 6: Plot3D of θ(kBT0, eV, ϵ) for different temperatures.

In order to understand why in this region we find a minimum in Θ, let us go back to the
T1 = T2 = T0 case. Here we had a simpler expression for out TUR indicator:

θ =
eV

2ekBT0

S1

I1

and if we recall the integral expression for noise, (2.20), we find that it is composed by two terms,
known respectively as thermal noise and shot noise

S1 =
e2

h

∫ ∞

−∞
T {[f1(1− f1) + f2(1− f2)]} dE +

e2

h

∫ ∞

−∞
T (1− T )(f2 − f1)

2 dE (3.15)

We have found a combination of our parameters in which:

• Charge current is high because the maximum of transmission probability is in the middle of
the interval of energies in which f1 > f2, and the fast fall of Fermi functions places almost
the whole area under T inside of the region between them.

• Thermal noise is low because low temperatures make f1(1 − f1) and f2(1 − f2) be near 0
almost everywhere due to the fast decay of Fermi functions.

• Shot noise is low too thanks to the fact that T (1−T ) is small in most of the interval in which
(f2 − f1)

2 is high.

This observations can be easily ilustrated by means of plots like those in figure 7.
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Figure 7: Behaviour of functions in the integrands for the parameters that let us escape the TUR.

This special conditions quickly disappear when we introduce a temperature gradient, and as a
result, it is difficult to escape the TUR when T1 ̸= T2. This is what we show in figure 8, in which
we fix kBT1 to plot Θ for varying eV and kBT2.

Figure 8: Temperature gradient makes TUR hold.

3.3 Thermodynamic description of the experiment

After the quantum description of our two-terminal scattering experiment, we can now investigate
its “thermodynamic behaviour” and its possible applications. In order to avoid confusion, let us
review our sign convention:

• Currents towards the system (scatterer) are positive, and currents towards the leads are
negative.
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• The voltage V between leads 1 and 2 is V = V1−V2, and so, it will be positive when reservoir
1 has a higher potential than 2.

3.3.1 Verification of First and Second Laws of Thermodynamics

We can start our thermodynamic analysis of our experiment by checking that it obeys the First
Law of Thermodynamics. Following our criteria, the total heat rate it takes from the reservoirs
must be the sum of the heat currents flowing from both terminals, which can be calculated as

J1 + J2
(2.16)
=

1

h

∫ ∞

−∞
(E − µ1)T (f1 − f2) dE +

1

h

∫ ∞

−∞
(E − µ2)T (f2 − f1) dE =

=
1

h

∞

−∞
(µ2 − µ1)T (f1 − f2) dE =

−eV
h

∫ ∞

−∞
(f1 − f2)T dE

(2.13)
= −I1V (3.16)

or equivalently
J1 + J2 + I1V = 0 (3.17)

which is simply the mathematical expression of the First Law of Thermodynamics. Indeed, in a
time lapse ∆t, a charge I1∆t flows from lead 1 to the scartterer, and thanks to the DC current
conservation (2.8), I1 + I2 = 0, the same charge passes from the scatterer to lead 2, which results
in a electrical potential energy loss of I1∆tV . Then, I1V is the electrical power dissipated into
the system. Thus, equation (3.17) may be obtained by derivating Q + W = ∆U with respect
time, because since the scatterer has fixed properties, its internal energy is constant. This result
is an important verification, and will also be useful when considering this experiment as a thermal
machine.

We can as well check that our results are consistent with the Second Law of Thermodynamics,
by proving that the entropy generation rate for our thermodynamic universe, K, is always positive.
To do this, let us rewrite its integral expression (2.19):

K = −J1

T1
− J2

T2

(2.15)
=

kB
h

∫ ∞

−∞
T (E)(f1(E)− f2(E))

[
E − µ2

kBT2
− E − µ1

kBT1

]
dE =

=
kB
h

∫ ∞

−∞
T (E)

(
f

(
E − µ1

kBT1

)
− f

(
E − µ2

kBT2

))[
E − µ2

kBT2
− E − µ1

kBT1

]
dE (3.18)

where again f(x) = (1 + expx)−1. Since f is a monotone decreasing function, we have

E − µ2

kBT2
>
E − µ1

kBT1
⇔ f

(
E − µ2

kBT2

)
< f

(
E − µ1

kBT1

)
and as T (E) > 0 for all E, the integrand in (3.18) is always positive, and therefore K.

3.3.2 Engine

We now would like to explore the possibility to make a quantum thermal machine out of this
experiment. In particular, we wish to extract some work of it. This can be achieved by making
electrical current flow from the low-potential contact to the high-potential one, as it is a way of
generating profitable electrical energy.

Let us assume for example (the opposite situation is equivalent) that V > 0, so contact 1 has a
higher voltage than contact 2 and we want to make current flow from 2 to 1. Then, according to
our sign convention, we wish I1 to be negative (and automatically I2 > 0). This will make I1V < 0
and, owing to equation (3.17), J1 + J2 > 0, which means that the system is absorbing heat and
using that energy to do work, this is, acting as an engine.

However, getting that behaviour is not easy. If we calculate the current I1 for the parameters
that let us violate the TUR we find

I1(kBT1 = 0.0867, kBT2 = 0.0867, eV = 0.23, ϵ = 0) ≈ 0.21
eΓ

h
> 0 (3.19)

so it is not working as an engine, but as an electric warmer. If we go back to the first plot in figure
7, it is obvious that the integral (2.13) will be positive, since the integrand is positive for all E.
The only way to get an negative current is by introducing a gradient of temperatures T1 > T2 and
adjusting ϵ to place and adequate region between Fermi functions under the central part of the
curve of T (E), as we show in 9.
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On the other hand, the mentioned temperature gradient prevents us from escaping TUR. Figure
shows that the engine condition does not occur where TUR is violated. Until now, we have not
found a configuration to meet both objectives at the same time.

Figure 9: Fermi functions and transmission probability in an engine configuration.

Figure 10: Engine condition and violation of TUR do not occur at the same points in our parameter
space. In this plot, blue plane marks 1, the yellow graph is Θ and the green graph is I1 + 1, so that
the objective would be finding a point in which both graphs are under the blue plane. However, we
see this does not happen, at least in this region of our parameter space. The red cross marks the point
where TUR was previously violated.

4 Conclusions

In this work, we have applied the so-called Landauer-Büttiker formalism to study the electronic
transport through a quantum dot. Its quantum approach, after manipulations and statistics, lead
to expressions for charge current and thermodynamic magnitudes that offer a model of the problem
that, while based in Quantum Mechanics, involve measurable macroscopic properties of electrons
reservoirs. The reason why this phenomenon is interesting is that, by virtue of its quantum nature,
it makes it possible to violate some limitations that appear in classical systems. This kind of
phenomena offer us an opportunity to, by seizing this sort of “quantum advantages”, devise new
thermal machines that may be able in the future to surpass current ones.

The main difficulties of our problem are the amount of degrees of freedom we have to consider
and that the expressions we had to work with are problematic when applying analytical techniques
of calculation and optimization. That is the reason why we had to search for alternative techniques
to study our system, specially through computing tools and graphical methods.

Although we have tried to exploit the possibilities of our system to the most, it still has many
aspects to study and open questions, some of which we are still investigating:

• The possibility to try more complex and effective calculation, exploration and optimization
methods (either analytical, numerical, graphical...) may give us a deeper understanding of
the behaviour of our system, which we could use to search for more possibilities to break the
TUR.
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• Even without violating TUR, searching for ways to build an engine that approaches the Θ = 1
may yield important theoretical or practical results. Analysing the efficiency of this engines,
may give interesting implications too.

• Here we have explored the way to turn our system into an engine, but we could try to build
different types of thermal machines, such as refrigerators and heat pumps.

• In this work, we have only considered Clausius definition of entropy. However, Statistical
Physics and Information Theory provide alternative definitions for entropy. We have already
investigated the relations between those definitions in this experiment, but we still have not
completed that analysis. The importance of this question lies in the information it may give
us about the reasons why TUR can be violated by this system.

Moreover, this is just a possible approach to the problem of violating TUR. Changing parts of
our system can yield better results when trying to escape from it. For example, metal contacts can
be replaced by semiconductors, or the quantum dot may be substituted by some kinds of quantum
potentials or different objects. If more complicated systems allow to reach lower values for Θ or to
violate TUR in more general conditions, our difficulties to build a TUR-breaking engine might be
overcome.
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5 Mathematica code

5.1 Manipulate

This code creates a Manipulate that plots together the Fermi functions and the transmission proba-
bility. It is possible to introduce an electrical energy gradient, with contact 1 with a higher voltage.
The maximum of the transmission probability can be changed with ϵ and M controls the range of
energies to represent. It is advisable to reduce M when any of the temperatures is very low, in
order to avoid precision problems.

(*Definitions*)

f1[kT1_, \[Mu]0_, eV_, w_] := 1/(1 + Exp[(w - \[Mu]0 - eV/2)/kT1]);

f2[kT2_, \[Mu]0_, eV_, w_] := 1/(1 + Exp[(w - \[Mu]0 + eV/2)/kT2]);

Ts[\[Epsilon]_, w_] := 1/(4 (w - \[Epsilon])^2 + 1);

(*Plot*)

Manipulate[

Plot[{f1[kT1, 0, eV, w], f2[kT2, 0, eV, w], Ts[\[Epsilon], w],

1/2}, {w, -M, M},

PlotStyle -> {Red, Green, Purple, Directive[Gray, Dashed]},

Filling -> {{1 -> {{2}, {Directive[Green, Opacity[0.3]],

Directive[Red, Opacity[0.3]]}}}, {3 -> {Axis,

Directive[Purple, Opacity[0.3]]}}},

PlotLegends -> {\!\(TraditionalForm\‘

SubscriptBox[

StyleBox["f", "TI"], "1"]\), \!\(TraditionalForm\‘

SubscriptBox[

StyleBox["f", "TI"], "2"]\), \[ScriptCapitalT], "1/2"},

AxesLabel -> {"E", None}],

{{M, 50}, 0.1, 100}, {eV, 0, 10}, {{kT1, 2}, 0.01, 10}, {{kT2, 2},

0.01, 10}, {\[Epsilon], -20, 20}

]

Figure 11: Example of the Manipulate execution.
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5.2 minimACE code

minimACE[F_, AA_, m_, tope_, comprob_ : True, marcas_ : False] :=

Module[

(*** LOCAL VARIABLES ***)

{A = AA, At, actucont, actulista, continuarActualizacion = True, n,

X, X0, Xm, J, j, k, S, R, V, w, RV, iter = 0, parc, r},

(*** FUNCTION BODY ***)

If[comprob,(** Some verifications **)

(*Checking AA is a real matrix*)

If[TrueQ[MatrixQ[AA]], At = Transpose[AA],

Print["Second argument of minimACE must be a Matrix"];

Return["minimACE::MatrixError"]];

If[TrueQ[Dimensions[AA][[2]] == 3], ,

Print["The matrix must have 3 columns"];

Return["minimACE::MatrixError"]];

If[TrueQ[MatrixQ[AA, RealValuedNumberQ]], ,

Print["Second argument of minimACE must be a matrix of real \

numbers"]; Return["minimACE::errorMatriz"]];

(*We need last column of A to have positive integers*)

At[[3]] = Floor[At[[3]]];

A = Transpose[At];(*We need those integers to be 1 or greater*)

j = At[[3]]; n = Length[A];

For[k = 1, k <= n, k++,

If[TrueQ[j[[k]] >= 1], , Print["Error con número de puntos"];

Return["minimACE::errorNumPuntos"]]];

(*Lets check that applying F to the arguments yields a real number*)

If[TrueQ[RealValuedNumberQ[F @@ At[[1]]]] &&

TrueQ[RealValuedNumberQ[F @@ At[[2]]]], ,

Print[

"The function applied to initial or final values of variables \

did’t yield a real number"];

Return["minimACE::errorArgsFuncion"]];

(** Verifications complete **),

At = Transpose[AA]; A = Transpose[At]; j = At[[3]]; n = Length[A];];

(** Auxiliary functions definitions **)

(*Function for updating counters*)

actucont[L_, l_] := Module[{X1 = L, i = 1, m1 = Length[l]},

While[i <= m1 && X1[[i]] == l[[i]], X1[[i]] = 0; i++;];

If[i <= m1, X1[[i]]++, continuarActualizacion = False];

Return[X1]];

(*Function for updating the list with lower values of F found*)

actulista[L_, V1_, vbles_, f_, n1_] := Module[{i = 1, L2, V2},

While[i <= n1 && f < V1[[i]], i++];

If[i == 1, Return[{L, V1}], V2 = Drop[Insert[V1, f, i], 1];

L2 = Drop[Insert[L, {vbles, f}, i], 1]; Return[{L2, V2}]]];

(** End of auxiliary functions definitions **)

(*n=number of variables, X= variables values vector,J=

counter vector actualised until j, S=jump vector*)

X0 = At[[1]]; X = At[[1]]; Xm = At[[2]]; j = At[[3]] - 1;

J = Table[0, n];(*Now we’ll build the jump vector*)S = Table[0, n];

For[k = 1, k <= n, k++,

If[j[[k]] == 0, , S[[k]] = (Xm[[k]] - X[[k]])/j[[k]];];];

(*Initializing the vector of F values and the results list*)

V = Table[Infinity, m]; R = Table[{0, Infinity}, m];

(* COMMENCING CALCULATIONS*)

Print["Commencing minimization"];

If[\[Not] TrueQ[marcas],

While[iter < tope && continuarActualizacion, w = F @@ X;

RV = actulista[R, V, X, w, m]; R = RV[[1]]; V = RV[[2]];

J = actucont[J, j]; X = X0 + J*S;

iter++;];,(*Alternative with progress marks*)

For[r = 1, r <= 10, r++, parc = tope*r/10;

While[iter < parc && continuarActualizacion, w = F @@ X;

RV = actulista[R, V, X, w, m]; R = RV[[1]]; V = RV[[2]];

J = actucont[J, j]; X = X0 + J*S; iter++;];

Print[10*r, "% of the maximum of operations completed"];];

]; If[iter == tope, Print["¡¡Maximum of operations reached!!"]];

Return[R]]

minimACE0::usage = "minimACE[F_,AA_,m_,tope_] returns the m lower values of F from those calculated. AA is a real matrix.

In each row, it stores, for a variable of F, its starting value, its ending value and the number of values that

variable must take (counting initial an ending ones). The output is a list of lists, each one formed by a list of

values of the variables and the value of F calculated with them, so that those values of F are the m lowest ones,

ordered from the highest to the lowest.

tope is the maximum number of iterations for the loop used by minimACE. It is given by the user to serve as a safety

mechanism and to enable to show the progress of the calculations. minimACE admits two optional logical

arguments. The first one is True by default, and decides whether or not the initial verifications of the function will

be done. The second one is False by default, and if True, the loop for calculation is broken into 10 parts, showing a

progress message after completing each part."
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Abstract

With the continuously increasing presence of renewable energy sources, it is necessary to study
how they affect power grids. Since the generated power must be balanced with the demand in
real-time, the intermittent and variable nature of these new sources can compromise the stability
of the network. We present a simple model applicable to grids with enough inertia and use the
Balearic power grid as a test. We explore the time evolution of the grid in case one line fails and
present four representative cases of individual line failures. It will be shown that the model can
handle sudden, significant perturbations and reproduces a time evolution of the system which is
consistent with reality.

1 Introduction

In the ineludible scenario of climate change, renewable sources have increased in importance due
to the necessity of reducing dependence on conventional energy sources. In particular, the energy
transition accentuates in islands, given their subservience to external sources (importation, links
to the mainland, etc.).

On the other hand, the stability of the power grid can be compromised in a framework in which
renewable sources predominate over conventional ones. This is because this stability relies on the
requisite of the grid to operate around a given reference frequency, which has to be maintained
in real-time given the lack of large-scale energy storage capacity. This is achieved by adjusting
generation to the power demand. Using traditional power plants, this is relatively easy owing to
their controllable nature. When the demand increases (decreases), the frequency of the grid slows
(runs above the nominal frequency), so plants with rotating generators rise (reduce) their output.

In contrast, VRES (Variable Renewable Energy Sources) are far more unpredictable, intermit-
tent and uncontrollable, which makes more difficult the challenge of balancing the power demand
with the available generation in real-time.

Another key aspect that has to be taken into account when talking about the stability of the
network is inertia. Conventional power plants have a considerable amount of inertia, which helps to
significantly reduce the amplitude of frequency fluctuations. On the contrary, VRES (mainly solar
and wind power) have very low or even null inertia, a problem that introduces frequency fluctuations
at different timescales. This added to the large fraction of VRES, their limited interconnectivity and
their reduced scale make islands’ grids more vulnerable to high demand variations and, therefore,
more frequent failures. In a situation, thus, in which VRES progressively increase their presence,
especially in per se more fragile networks, the global flexibility of the grid decreases.

2 Theoretical model

In the numerical model that has been used for the simulations shown in this report, the power
grid is constructed as a set of nodes linked by transmission lines [1]. These nodes are treated as
interacting, non-linear oscillators that should be synchronized at the same frequency. We will choose
a reference frame rotating to the reference frequency of the grid, which will be, thus, normalized
to zero. We will also work within the lossless line approximation.

Furthermore, we distinguish between two classes of nodes: conventional generators and con-
sumers. Consumers correspond to substations, which include their attached load. Conventional
generators obey the swing equation (1), which considers their inertial response.
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θ̇i = ωi

ω̇i =
ω2
R

2Ĥi (ωi + ωR)
(Pm

i − P e
i )

(1)

Power plants are thus modeled as generators with a rotor spinning at the reference frequency of
the grid ωR plus a small deviation ωi. In (1), θi is the voltage phase of the node i, ωi is the angular
frequency, Ĥi = HiP

G
i with Hi and PG

i the inertia per unit power and nominal power generation.
Pm
i is the supplied mechanical power, and P e

i is the electric power at the node.
Power plants also have two frequency fluctuation control mechanisms that act at different

timescales. The primary control (2) performs a change of the frequency drift in a few seconds,
which stabilises its value progressively to the reference frequency. The secondary control (3) then
reduces the deviation ωi by activating the spinning reserve power. It acts in a timescale of minutes.

Ṗm
i =

1

τi

(
P s
i − Pm

i − P c
i

Ri

ωi

ωR

)
(2)

Ṗ s
i = −κi

ωi

ωR
− 1

τ refi

(
P s
i − P ref

i

)
, (3)

Here, τi is the turbine time constant, P s
i the spinning reserve power, Ri the governor speed

regulation parameter, P c
i the primary control power, and κi the secondary control gain parameter.

The second term in (3) is added in order to break a degeneracy. Without this addend, grids
with a single power plant would be capable of adjusting the generation to cover the demand using
secondary control. On the contrary, if there were several generators involved, there would be a
degeneracy and it would not be possible to define what fraction of generation corresponds to each
plant. In this way, plants are forced to operate near a set point P ref

i , and generation dispatch data

is allowed into the model. τ refi is then the timescale of the forcing. Based on demand data, grid
operators are capable of establishing a reference power for each plant in the network.

Consumers, on their side, do not have generation nor frequency fluctuation control mechanisms,
but they do present inertia (very low compared to the nodes with power plants). As a consequence,
we set in this case Pm

i = 0 in (2) and (3), and Ĥcons
i << Ĥgen

i . Lastly, VRES are described as
negative, frequency-independent demand given their essentially null inertia. The connection to the
mainland is modeled as an extra power in the corresponding node and it does not depend on the
frequency of the grid.

P e
i =

(
1 +Di

ωi

ωr

)
P l
i +

∑
j

Bij sin (θi − θj)− PV R
i (4)

In any node, the electric power is given by (4). The first term accounts for the load in the
node, and the fraction Diωi/ωr introduces a frequency-dependent damping. The second addend
represents the power transmitted from node i to node(s) j. Bij = V 2

ij/Zij is called the susceptance
parameter: Vij is the voltage of the line that connects node i to node j, while Zij is its impedance,
estimated by the longitude of the link. PV R

i is the energy generated by renewable sources if any.

As mentioned in previous sections, the main objective of the project is to study possible line
failures and the potentially resulting cascade collapses of other links due to the first malfunction.
This situation can be described by setting Bij = 0, being i and j the nodes connected by the
nonfunctional line. A new part has been added to the original code in order to make a line fail
with a given probability rate if it runs over its voltage capacity. This probability rate is introduced
in order to delay individual line failures in time and observe how their stress increases along cas-
cade events. The possibility of reducing the capacity of the lines is also included in this new version.

This model can be applied to grids of any size. As a test, we will use the Balearic power grid,
which is a paradigmatic case of a network with both an insularity condition and renewable energy
sources constituting 3.5% of the total power of the system in 2015 [2].
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3 Results and discussion

To begin with, parameters appearing in equations (1), (2), (3) and (4), the power supplied by the
connection to the mainland, dispatch and demand data have been provided by Pere Colet and
Maŕıa Mart́ınez.

In this section, we will explore four distinct cases of line failures and the consequent time
evolution of the grid. First, it is necessary to clarify that we have reduced the global capacity of
the lines to 80%. This is because links are built to have standard voltage capacities and power grids
in islands are constructed with lines with much larger voltage limits than the maximum predicted
demand. As a consequence, it is very unlikely that a line will run over its capacity. To illustrate,
thus, cascade events similar to the ones that would occur on the mainland, these capacities have
been lowered.

Also, we set the probability rate to 0.01; which means that, in each step of integration, a line
carrying a larger voltage than it is capable of has a probability of 0.01 of failing. The integration
step is 0.1s, so the overstressed lines will have faild in approximately 10s.

3.1 Cas Tresorer - Son Orland́ıs

Here, we present the resulting time evolution of the grid when the line connecting Cas Tresorer to
Son Orland́ıs fails at t = 10s.

As shown in Fig. 1, four other lines fail as a consequence of the initial collapse. At t = 10s,
when Cas Tresorer - Son Orland́ıs fails, all other lines (that will later collapse too) get more stressed
and, after a transient, stabilise to a stationary value of voltage. The link between Colisseu and Son
Molines (which is a particularly fragile line, since it has a large tendency to fail when other links
collapse) runs largely over its capacity and it is the second line to break down. After this second
collapse, the other lines stress again and consecutevly fail.

Figure 1: Relative carried capacity of the lines as a function of time. Initial failure: Cas Tresorer -
Son Orland́ıs.

In Fig. 2, we plot the frequency of the grid over time. We can observe three transients as
consequences of the first three failures at t = 10s (Fig. 3a), t ≈ 32s (Fig. 3b) and t ≈ 34s (Fig.
3c). At these times, other links fail (cascade event), so the grid experiments frequency fluctuations
that increase in amplitude as more lines collapse, but it is still capable of recovering the nominal
value of the frequency within seconds. When the line connecting Sa Pobla and Sant Mart́ı fails, the
frequency drops to almost -1.4Hz, indicating a large decrease of generation in the nodes for which
we have represented the frequency. In this case, it will take minutes to drive the frequency back to
the reference value.

Finally, in Fig. 4, we show the lines that have failed in this cascade event. We can observe that
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Figure 2: Frequency of different nodes as a function of time. Initial failure: Cas Tresorer - Son
Orland́ıs.

(a) Initial frequency transient. (b) Second frequency transient.

(c) Final frequency transient and posterior fre-
quency drop.

Figure 3: Frequency transients over time for the initial malfunction of Cas Tresorer - Son Orland́ıs.

the collapsed links are not necessarily consecutive, which means that a failure in a particular line
affects not only its surroundings but the whole grid.
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Figure 4: Balearic grid. The collapsed lines are drawn in red. Initial failure: Cas Tresorer - Son
Orland́ıs.

3.2 Son Reus CCGT - Son Reus main node

In this case, we will explore the reaction of the grid and its time evolution when the line that
connects the main node of Son Reus (power plant) with the combined cycle gas turbine (CCGT)
collapses.

Figure 5: Relative carried capacity of the lines as a function of time. Initial failure: Son Reus CCGT
- main node.

In Fig. 5, we can see that, at the breakdown time (t = 10s), the stress of the other two lines
that will later collapse increases. The link between Colisseu and Son Molines (which also failed in
the previously shown cascade event) runs over its capacity and collapses after a transient and a
stabilisation. At that instant, Son Orland́ıs - S’Arenal also exceeds its limit and fails after approx-
imately 35s.

On the other hand, we can see in Fig. 6 that, when the initial malfunction occurs, the frequency
of the grid drops to ∼ −2Hz. This is because the starting nonfunctional line connects one of the
turbines of the power plant of Son Reus to its main node. With the failure, its generation is lost,
leading to the observed frequency decrease.

With the third line breakdown, some nodes experiment a lower frequency drop (t ≈ 50s), but,
after that, the whole grid is synchronized to the same frequency and slowly returns to its nominal
value, which will occur in a timescale of minutes as a result of the action of secondary controls.
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Figure 6: Frequency of different nodes as a function of time. Initial failure: Son Reus CCGT - main
node.

3.3 Grid splitting

In this scenario, the initial nonfunctional line connects Mallorca with Menorca, leaving two sep-
arated networks evolving independently from one another (see Fig. 7). This is a prticularly in-
teresting case since the frequency in Menorca will be different from the rest of the network as a
consequence of this splitting.

Figure 7: Grid splitting

As seen in the introduction, a frequency decrease is a synonym for a disbalance between the
generation and the demand, the last one larger than the first. Consistently, the simulation shows
a frequency drop in Ciutadella (to approximately -1.1 Hz) when the line failure occurs (t = 10
s). The reason is that a significant fraction of the generation in Ciutadella comes from Mallorca.
When the line connecting the two islands fails, this generation is lost in Menorca, producing this
frequency decrease.

On the other hand, the frequency in the rest of the grid has a less pronounced positive peak at
the breakdown time. This is a sign of the demand reduction caused by the detachment of Menorca,
which introduces, as a whole, more consumption than generation into the system.

As shown in Fig. 8, the primary control acts within the first seconds of the failure and stops the
frequency drift, while, in a timescale of minutes, the secondary control (in both now independent
systems) redirects the frequency to its nominal value. Letting the system evolve in time, no other
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Figure 8: Grid splitting

line failures are observed.

3.4 Sta. Ponça - EC Sta. Ponça

In this last example, the line that initially fails links Santa Ponça with a nearby node, EC Sta.
Ponça, which is connected, in turn, to the continent. EC Santa Ponça has a second connection
with Eivissa. Therefore, the node that receives the power from the mainland has only two links:
one that goes to Mallorca and another one that goes to Eivissa. In this case, the first line collapses,
so all the electricity provided by the Peninsula goes to Eivissa and Formentera.

Figure 9: Grid splitting

In Fig. 9, we can see that, at the breakdown time (t = 10s), the frequency in Eivissa and
Formentera has a high positive peak as a consequence of all the power supplied by the continent
beign driven to these islands. In contrast, Mallorca and Menorca experiment a frequency decrease
(much less in absolute value than in Eivissa and Formentera) because of the lack of generation.
Also it stabilises back to its nominal value significantly earlier than the Pitiüses.

Letting the system evolve in time, just one other line fais due to the initial malfunction (Fig.
10). The link between Colisseu and Son Molines, as in previous cases, runs over its capacity at the
breakdown time and fails after approximately 2s.
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Figure 10: Grid splitting

4 Conclusions

We have presented a simple model for power grids with large renewable penetration in order to
simulate the time evolution of the network under line failures. We have used the Balearic power
grid as a test and it has been shown that this model allows high, sudden perturbations. It gives
results consistent with reality such as cascade failures due to one inital line collapse.

We have seen that the model can correctly handle individual line failures and reproduce the
resulting frequency fluctuations in any node of the grid. The time evolution of the carried power
of the lines shows how, as other links fail, the system as a whole adjusts and redistributes the
generated power to recover the nominal value of the frequency.

A further extension of this model could include a low probability of failure even though a line
does not run over its capacity in order to account for external factors that could make a link
collapse. Also, if two nodes are connected by two or more lines, the model uses just one link with
an effective voltage capacity and an effective impedance. It would be useful to include multiple
links to obtain more realistic results.
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[TÍTULO DEL DOCUMENTO] 

Proceedings of the SURF@IFISC (2023) 
  

 

Quantifying higher-order interactions in social systems and their temporal 

evolution  
Leyla Gómez, Beatriz Arregui & Sandro Meloni 

Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB) 

Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain 

 

   

Today there is a large number of data that can be modeled or reconstructed through 

networks. Such networks can represent complex systems that until recently were 

intensively studied as connections between pairs of nodes or entities. Recent research 

shows that a more advanced representation is needed to understand group 

interactions and better encode the information that is transmitted in this type of 

network, giving way to what have been defined as Higher-Order-Interactions (HOI). In 

this work, the results obtained for a data set will be countered when considering only 

classical pairwise interactions, also called pairwise, and a second method based on 

the analysis of motifs, defined as small connected subgraphs. Additionally, the 

quantitative formation of a special structure of subgraphs, called cliques, will be 

studied throughout different aggregation times, thus evidencing how the 

characteristic scale of the data under study varies.  
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It is important to note, in an introductory way, that 

the science of networks is composed essentially of 

two parts; the structural part that seeks to 

understand how networks are formed, and the 

dynamics, corresponding to the part in charge of 

processing the information, controlling with it, what 

goes in and out of the nodes, that is, everything that 

is fundamentally wanted to know. Following the line 

of the previous description, graphs are presented as 

the first concept. Graphs are a mathematical tool and 

are defined as a set of nodes and links that usually 

encode interactions between pairs of units, also 

known as dyadic or pairwise interactions. This 

concept is a tool commonly used since its inception, 

as a way of describing complex systems. 

 

Although it is true that network science has been 

developing for many years with the traditional or 

pairwise approach, the recent empirical evidence that 

has emerged since the turn of the millennium, 

indicates that interactions also occur with larger 

groups, that is, in interactions with more than two 

nodes, which are known as higher order interactions 

[1-2]. There are several examples of this class of 

interactions, such as face-to-face human 

relationships [3], collaboration networks [4], 

structural and functional brain networks [5-6], etc. 

  

Understanding the effect of this class of higher-order 

interactions, beyond a pairwise approach, is essential 

when it comes to understanding how information is 

processed in systems with high-order interactions 

and also their consequences, since they can 

contribute significantly more information that is 

extracted from the traditional method. In addition, an 

incorrect reading of that information, by not 

considering the simultaneous interaction that can 

occur between more than two nodes, can 

considerably limit the ability to characterize the local 

structure of systems with group interactions [7-8]. 

 

To properly encode this new type of higher order 

interactions [1-2], new mathematical tools are 

needed that can describe these more complex 

structures. One of them is hypergraphs [9]. The 

hypergraphs correspond to a generalization of a 

graph, whose edges are called hyperedges, 

hyperlinks or hyperborders, which relate, unlike the 

graph, more than two nodes or vertices. These 

hyperlinks are responsible for encoding or describing 

higher order interactions between nodes.  

 

Considering a new analysis using hypergraphs, will 

allow the construction of models based on more 

accurate data, which despite being a relatively recent 

approach, today has already led to the discovery of 

new collective phenomena and dynamic behaviors, 

such as social contagions, human cooperation, 

diffusion models and synchronization [10-11]. 

  

But there is a big problem with higher order 

interactions, which refers to how difficult it is usually 

to empirically model these hypergraphs because of 

the eminent lack of key data, such as the context [12]. 

Until today, many databases used for this analysis 

have been built with only pairwise interactions in 

mind, ignoring that reality is often much more 

complex, since the local density of these networks 

can well be explained because the entities involved 

usually have a shared context, that is, a higher order 

interaction that would allow generating this class of 

dense connections [13]. There is in many cases a lack 

of data such as data obtained from the brain [14], 

ecological competition data [15] and data from typical 

social interactions [16]. 

 

A simple example is conducting a survey of 

individuals to learn about their network of friends as 

part of the AddHealth study, carried out by the US 

National Longitudinal Study of Adolescent to Adult 

Health [17], although it is known that people usually 

interact naturally between groups of friends, the 

survey cannot reveal them since it only inquiries into 

relationships, without being able to represent in this 

way, the social dynamics between people. 

  

The following image (figure 1) shows how friendships 

are measured between pairs of participants (nodes 

and links), even though the fundamental unit should 

be the groups of friends (colored areas). This reveals 

that there are many different representations of a 

higher order interaction compatible with the same 

data network, making it very difficult to choose its 

best representation [18]. 
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Figure 1. Diagram showing the extended network of a group 

of friends of the respondent (square node) of the AddHealth 

study [17]. The set of nodes and links shows the friendship 

between pairs of participants, even though the fundamental 

unit are friends [16]. 

  

This work seeks to obtain the higher order 

interactions between different groups of data with 

different existing methods. The first method will get 

and list all possible cliques that can be generated 

from the dataset to be studied. The second method 

will dig into motif analysis to find statistically 

validated cliques. In this way, it will be possible to 

counteract both results, as well as to find out how 

much a correct statistical validation can influence the 

total number of cliques of different orders. Likewise, 

an analysis will be made showing the variation of the 

results over time, thus evidencing how the different 

sizes of cliques evolve according to the aggregation 

time, with which it will be possible to appreciate the 

behavior of the groups. Likewise, the characteristic 

scale of the size of the groups will be found. 

 

Hypergraphs 

 

A hypergraph is a generalization of a graph, where 

the edges can connect more than two vertices. In 

graph theory, hypergraphs are represented by sets of 

vertices (nodes) and sets of edges (hyperlinks), where 

each edge is a subset of vertices. For example, a 

hypergraph with three nodes {a,b,c} and two 

hyperlinks {a,b} and {b,c} can be represented as (V,E), 

where V = {a,b,c} and E = {{a,b},{b,c}}. 

  

Although hypergraphs are useful in modeling 

relationships between elements, as in set theory or in 

database theory, its use remains very open to detect 

hyperlinks since the network contains encoded 

information from which it is difficult to reconstruct. A 

practical example is the case of a scandal that 

compromises a government and its main political 

party. These politicians formed foundations very 

quickly with which millionaire projects were awarded 

instantly to help the community. But, even if the 

network of relationships between them could be 

correctly drawn or traced, there would still be 

questions that cannot be answered, that is, it would 

not be possible to arrive at the necessary and 

transcendental information, such as: Who exactly are 

the participants behind a foundation?, How many 

foundations will a specific group of individuals have 

created?. 

 

 
Figure 2. Network showing an alleged corruption scheme 

within Chilean politics. Despite knowing in advance the 

relationship between the participants (yellow figure), there 

are still certain questions to be answered that cannot be 

seen with a simple view. 

 

To address the ill-posed nature of the problem and to 

understand how these networks are formed, various 

approaches have been used to reconstruct the 

information. 

  

• Cliques Analysis: Finds and enumerates the 

minimum set of cliques that cover the network. 

• Motifs analysis: they appeal to notions of 

randomness and generative modeling to regularize 

the problem. 

  

Both methods work explicitly with the data, inferring 

them and reconstructing the networks, in this way, a 

probability can be assigned to possible higher-order 

data representations, which allows selecting the most 

appropriate one to understand their real community 

structure. 

  

There are also other methods that do not fall into the 

previous category, that is, within the explicit analysis 
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of the data, such as the Bayesian Approach. This 

method works with an input network, which then 

identifies the parts of the network best explained by 

higher-order latent interactions. The method makes 

use of a Bayesian generative model to deduce the 

hypergraph. 

 

Analysis of cliques 

   

For the discovery and identification of higher order 

interactions, previous work experiences have often 

employed clique identification and enumeration [19-

20]. Cliques are fully connected subgraphs, that is, 

sets of nodes that are fully interconnected.  Although 

it is easy to count the cliques, to know their possible 

real representation within a hypergraph is necessary 

its decomposition, which does not turn out to be a 

satisfactory solution for the problem of information 

recovery, since a clique admits many possible 

decompositions, thus, difficult to know which one to 

choose. For example, from figure 1, the triangle 

admits a single 2-clique and three 1-clique [18]. In 

summary, the multiplicity of possible solutions 

implies that the recovery of higher order interactions 

is a poorly stated inverse problem [18]. 

 

 
Figure 3. Data matrix and hypergraph from a database of 10 

organizations concerned about social well-being in a city in 

the United States. Here the participating nodes in the blue 

shaded figure make up a clique of order 2 (3 nodes 

involved), while it is not possible to get a clique of order 4 

(blue shaded figure plus green shaded figure, with 4 nodes 

involved), since a connection between node 1 and 3 is 

missing. 

 

Analysis of network motifs 

  

The second method under study mentions the motif. 

Motifs are the basic components of networks, also 

known as building blocks. They are defined as 

connected subgraphs of a given number of nodes. If 

motifs are studied, the general dynamic behavior is 

understood, because it provides the fingerprints of 

local network structures [21-22]. 

 

The objective of this method is to develop an efficient 

algorithm to evaluate the statistical weight of each 

motif in higher order interactions, in this way, the 

micro-scale fingerprints of the networks will be kept, 

enabling the identification of their structural and 

functional components by focusing on the 

characteristic patterns of higher-order interactions 

between small groups of nodes [23]. 

  

For this analysis, the heterogeneity of the system is 

taken into account, so it is interesting to evaluate if 

the weight of a hyperlink is compatible with a null 

model in which all the nodes randomly select their 

partners. In this way, it will be possible to see if they 

are statistically over-expressed or not with respect to 

a null model, that is, if within an observed network 

the motifs appear at a higher or lower frequency in 

relation to a random model [24]. In complex 

networks the null model is a random version of an 

original graph (G) with edges that are randomly 

wired, its only restriction is that the degree of each 

vertex coincides with the degree of the original 

vertex. 

  

In summary, the statistically validated hypergraph is 

obtained by putting together all the hyperlinks of 

different sizes that are validated against a null 

hypothesis. 

  

The steps required to analyze in data-base motifs 

with higher order interactions are: 

1. Count the frequency of each higher-order 

interaction motif in the network (isomorphism 

problem). 

2. Compare said frequency with that of a null model 

network. 

3. Statistically evaluate its over or under-expression 

in a hypergraph, according to abundance (∆) with 

respect to a null model. 

 

∆𝑖=
𝑁𝑟𝑒𝑎𝑙𝑖 − (𝑁𝑟𝑒𝑎𝑙𝑖)

𝑁𝑟𝑒𝑎𝑙𝑖 + (𝑁𝑟𝑒𝑎𝑙𝑖) + 𝜖
 

where ϵ ensures that |Δ| is not misleadingly large 

when the subgraph appears very few times in both the 

real and random networks (here ϵ = 4) [31]. 
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4. The above is concatenated/computed into a 

Significance Profile (SP), which is similar to a 

fingerprint of the local network structure. 

 

𝑆𝑃 =
∆𝑖

√∑∆𝑖
2

 

  

One of the problems presented is that it can be 

difficult to observe higher order interactions in some 

systems or only data are recorded in pairs, moreover, 

algorithms for traditionally counting motifs fail to 

capture information in group interactions, as they 

cannot consider hyperarist patterns [23]. This newly 

developed solution uses a Bayesian framework to 

reconstruct connections in higher order interactions 

following the principle of parsimony. 

 

When comparing the frequency of each motif with a 

null model, also called reshuffling, in which a network 

containing the same number of nodes is randomized 

several times, but with different links, a probability 

can be calculated to infer whether the cliques are 

statistically relevant or not, that is, whether they were 

formed by mere chance. In this way, motif analysis 

provides much more accurate information than the 

traditional peer-to-peer method. 

 

 
Figure 4. Representation of a 3-node motif with its possible 

decompositions. Those shaded represent higher order 

interactions, while those with black lines represent pairwise 

interactions [23]. 

 

The next graph (figure 5) shows another major 

problem presented when studying higher order 

interactions. When 3 nodes connected under the 

pairwise approach are studied in non-directed 

interactions, there are only two possible patterns 

(figure 4), however, when non-directed higher-order 

interactions are considered, the possible 

combinations increase to 6. This shows that there is 

an over-exponential growth of the motifs depending 

on the order of the motifs, that is, depending on the 

number of nodes that composes a motif. This 

combinatorial explosion is evident when going from a 

motif of order 3 (with 6 possible combinations) to a 

motif of order 4, which reaches up to 171 

combinations [0,2]. All these calculations must 

necessarily be stored in memory, which is why 

computationally it becomes very demanding, thus 

normally reaching an analysis that does not exceed 

order 4 or 5 of the motifs. 

 

 
Figure 5. Number of possible decompositions of the motifs 

according to the order of the motifs. The upper and lower 

bounds of k nodes should be computed analytically to easily 

encode the dependence of the number of higher-order 

motifs according to the order of the motif [23]. 

  

 

Likewise, the motifs are especially helpful in 

differentiating networks. A network has preferential 

connectivity patterns at the microscale. This causes a 

characteristic fingerprint to be encoded, which is 

relevant according to the functions of the system (eg 

transport network, whose function is to simplify the 

flow of traffic; neural networks, which have a function 

related to information processing) [23]. These 

patterns are possible to quantify with the network 

motifs. Thanks to their studies, it is possible to detect 

early structural changes that, for example, could 

cause a crisis in the financial network [25], or study 

direct or indirect interaction networks between 

species in ecology [26-27]. 
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Differentiation of hypergraphs with different domains 

according to their SP 

 

 
Figure 6. Significance profiles (SP) of different domains for 

different motif decompositions up to order 3, according to 

the abundance of each motif in a random network. The 

average for each motif profile is represented with the solid 

line, and the standard error of the average is represented 

with the shaded area [23]. 

  

The graph in figure 6 shows the significance profiles 

(SP) for different higher order motifs of up to 3 nodes 

in different networks of the same domain, which is 

calculated by concatenating the over or under-

expression of each motif decomposition, leading to 

the formation of local footprints of the network 

structure [23]. The result shows that it is possible to 

identify different families of hypergraphs, 

characterized by different patterns of higher order 

connections at a local scale. This analysis in the 

different domains highlights the relative structural 

importance of these patterns. 

  

The over-expressed reasons are associated with 

different functionalities of the system, with which 

certain behaviors can be generalized for each specific 

domain, such as: 

  

• Image 2 shows a highly overexpressed motif in all 

domains. 

• In motifs with a hyperedge of 3 and at least one 

dyadic link, the greatest differences between 

domains occur. 

• In the social and technological domain, the last 

motif is highly overexpressed, which suggests that 

entities that interact in groups tend to also interact 

strongly in pairs. 

• In co-authorship networks, the most over-expressed 

reason corresponds to images 4 and 5, which 

indicates that there is surely a hierarchical structure, 

which prevents all nodes from interacting equally 

between peers, (eg research leader who is co-author 

of articles with students and postdocs, the latter are 

not co-authors of articles without the former). 

• One can also analyze anti-motifs, that is, under-

expressed motifs. Image 3 shows that it is very likely 

that in the social and technological domains within a 

group interaction, there are no interactions in pairs 

either before or after. 

  

Results 

 

For the analysis of both methods in higher-order real-

world interactions, freely available network databases 

were taken. Both databases studied here come from 

the same sociological domain, that is, from the close 

contact between the participants. The first database 

to be analyzed corresponds to the SFHH conference 

with face-to-face interactions of 405 participants 

during two days in Nice, France, in 2009. RFID sensors 

(radio frequency sensors that identified and tracked 

people located close enough) were used to collect the 

data. The second database used corresponds to 

contacts and friendly relations between students at a 

secondary school in Marseille, France, in December 

2013 for 5 consecutive days. The measurement was 

done with portable sensors. Both data groups 

correspond to a non-directed network. 

 

Characteristic scale 

 

A program was created to analyze the number of 

cliques of different order. In the program, the 

database was grouped into specific time periods. 

Figure 7 shows the evolution of the number of cliques 

of order 3 from one-minute intervals to one-hour 

periods throughout the entire database at the SFHH 

conference. It can be evidenced a clear grouping that 

is increasing in number of cliques as the aggregation 

time passes, with three peaks that remain in time. 
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Figure 7. Order 3 clique numbers found in the database at the SFHH conference, for different aggregation times. 

 

Figure 8. Analysis for different aggregation times (columns) and different clique sizes (rows) for the SFHH conference database (a) 

and for the secondary school in Marseille (b). In this way, the data are grouped according to the period of time under study, which 

correspond to 1 minute, 30 minutes and 1 hour. 
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For the data obtained from a conference (figure 8a), 

in which the different rows of graphs in the image 

show the increasing orders of the cliques, and each 

column shows the increased aggregation times, it is 

evident that by increasing the interaction, that is, by 

going down the graphs through the different orders 

of cliques, it shows that the number of groups with 

more members is gradually decreasing (higher order 

cliques), which suggests that there is a temporal 

evolution in which for an infinite time, will not 

necessarily occur more close proximity interactions. 

 

This is attributed to the fact that there is a 

characteristic scale of the size of the groups in each 

stage under study. The conference shows that the 

number of cliques above size 5 is no longer 

significantly in the number of periods, so it could be 

inferred that it is no longer relevant. 

 

A similar case can be seen with the other database in 

figure 8b, which corresponds to the interactions 

obtained in 5 consecutive days. As the analysis of 

clique’s size progresses, there is a certain limit, also 

close to the order of 5, in which if exceeded, number 

of interactions ceases to be relevant if correlated with 

the number of periods existing between row of 

cliques of order 5 and row of cliques of order 6. The 

behavior described above remains stable across the 

different time intervals. 

 

 

Figure 9. Contrast of the database analysis with the traditional pairwise method and the motif analysis method in higher order 

interactions. 

 

Figure 9 shows that using a higher order interaction 

motif analysis approach, more statistically validated 

hyperlinks can be found than using the pairwise 

method for lower order cliques. As the order of 

cliques grows, the pairwise method slightly 

outnumbers the motifs approach for statistically 

validated hyperlinks against a random network. 

 

If we only count the number of cliques with the 

traditional pairwise approach, without doing the 

subsequent step that consists of the statistical 

validation process, it can be seen in figure 8 that 

despite the fact that the longest period of time 

considered is one hour (whose time is less than that 

considered in figure 9), it can be seen that the 

analysis of cliques without statistical validation finds a 

much larger number of cliques than the one that 

considers statistical validation, thus accounting for 

the relevance it has the process also called 

reshuffling to filter out cliques that are not real. 

 

Conclusion 

 

If a network is studied using a traditional pairwise 

approach, there is a risk that even if a species is 

known in detail in its individual scope, it is very likely 

that a failure may arise when trying to understand 

the population dynamics of said species. The failure 

is given because this type of approach does not 

consider the rich pattern of non-linear interactions 

between the components of the system, a 
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fundamental ingredient to meaningfully understand a 

complex system [28]. 

 

After years of reductionism, science has left behind 

the idea that a complex system can be understood by 

considering only the units as an isolated system [29], 

the introduction of higher order interactions has 

begun to shape most of the relational data sets, even 

if they are not explicitly coded. With the new studies 

it is possible to recover these interactions from a 

database, even when that information is delivered 

following a pair structure. 

 

On the other hand, the analysis of the variation in the 

size of the cliques as time passes, revealed that 

although the data can be grouped in larger periods, 

in both cases studied, people will not necessarily tend 

to interact in groups of more members. Therefore, a 

limit is reached, also called characteristic scale, in 

which cliques of higher order are no longer formed. 

To find statistically validated cliques against a random 

network, the motif approach turned out to be much 

more advantageous than a pairwise approach. 

Likewise, carrying out the statistical validation 

process, also called reshuffling, eliminates an 

important portion of the noise in the networks, that 

is, those cliques that are not real and therefore do 

not provide valuable information about the group's 

dynamic behavior. 

 

Additionally, the study and analysis of the 

hypergraphs show that there are superfamilies of 

networks, that is, groups of networks with similar 

local structure that tend to behave in the same way.  

This allows us to build models based on more 

accurate data using network motifs. 

 

With the effort of the scientific community to develop 

and formalize tools that allow not only the study of 

higher order interactions, but also, include the 

temporal variable, giving way to the analysis of non-

static interactions [30] has succeeded in making this 

multidisciplinary field a flourishing discipline, with 

applications covering a wide range of sciences from 

fundamental physics to the social sciences [28]. 
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