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Nanoconductors driven periodically by time-dependent temperature

Objectives
• to adapt the Luttinger’s trick to deal with the time-dependent temperature
• to formulate the general forms of the charge and heat currents in terms of QD

Green’s functions
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Temperature-driven systems

• limitation of Landuauer-Büttiker (LB) formalism

Iα =
∑
α′

∫
dϵ

2πℏ
Tαα′(ϵ)(fα(ϵ)− fα′(ϵ))

» the leads are assumed to be in (local) equilibrium with well-defined temperatures,
even though the leads are connected with each other

» the only place where the different temperatures of the leads enter is in the
occupation factor

» the LB formalism is not adequate for the case where the temperatures at the
nanoscale vary in time and space (time scales shorter than the typical equilibrium
time)

» even the Meir-Wingreen formalism, overcoming the mean-field nature of the LB
formalism, treats the temperature as a static thermodynamic variable.

• how to convert the temperature, originally defined as a statistical parameter
governing the equilibrium of energy exchanges between macroscopic systems, into
a dynamical field coupling to mechanical degrees of freedom driven strongly out of
equilibrium?
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Spatial and temporal resolution of temperature measurement

Scanning thermal microscopy

Menges, Riel, Stemmer, and Gotsmann (2012)

Time-resolved measurement
before the collection fiber to exclude emission bands and
collect H band photoluminescence signal. Next, the photo-
luminescence signal from S band was selected by a 540 nm
bandpass filter for the same amount of time. Because the
thermalization of H and S bands is stochastic processes and the
measurement of temperature is based on the ratio of peaks, the
subsequent collection of bands and small variation of
intensities does not affect the results. The emission from
UCNPs was collected through a 50 μm optical fiber. An
avalanche photodiode was used to count the photolumines-
cence signal from H and S emission bands. A time-to-pulse
height converter and a multichannel analyzer (ADC 8067)
with a negative shut off pulse of 40 μs (Stanford Research
Instrument DG 535) were used for the generation of final
histogram. The data generated by the multichannel analyzer
are a histogram of intensity versus channels. The time
component of the x axis was defined by changing the
collection windows built in time-to-pulse height converter
(467 Ortec) instrument.

■ RESULTS AND DISCUSSION
We prepared NaYF4:Yb3+:Er3+ ∼300 nm upconverting nano-
crystals using the thermal decomposition method as adopted
from the literature.80 NaYF4:Yb3+:Er3+ nanocrystals are
composed of a nanocrystalline structure β-NaYF4 that makes
up 80% of the NaYF4:Yb3+:Er3+ nanocrystals. These nano-
particles are embedded with a sensitizer (Yb3+) that absorbs
light at 980 nm and transfers electrons to Er3+ where a second
photon is absorbed to promote the electron to the 2H11/2 →
4I15/2 and 4S3/2 → 4I15/2 levels.

77,79,81−87 We further function-
alized nanocrystals using gold nanostructures that are
significantly smaller ∼10 nm according to the previous
report.81 In our case, it appears that the gold seed
nanoparticles act as a sensitizer and a strong light absorber
to promote extra electrons into the 2H11/2 → 4I15/2 and 4S3/2 →
4I15/2 energy levels.

80,81,83,88−90 Figure 1a depicts a representa-
tive TEM image of a single hexagonal NaYF4:Yb3+:Er3+

nanocrystal decorated with spherical GNPs. Figure 1b shows
a HRTEM image of spherical GNP attached to the corner of
the hexagonal shape NaYF4:Yb3+:Er3+ nanocrystal. Gold
nanospheres are synthesized separately and attached to the
nanocrystals with electrostatic interaction. Negatively charged
seed GNPs (average size ∼10 nm) are functionalized with a
citrate capping agent, and upconverting nanocrystals are coated
with polyallylamine hydrochloride.79,82,88 The decoration of
UCNPs by gold seed nanoparticles is tuned by changing the
ratio of gold seed nanoparticles to UCNPs. The elemental
analysis of NaYF4:Yb3+:Er3+ nanocrystal decorated with gold
nanospheres is shown in the Supporting Information (see
Figure S1).
We used two lasers (980 and 532 nm) to optically and

photothermally excite the nanostructures so that we can collect
temperature jump data from gold-decorated UCNPs. UCNPs
emit a strong photoluminescence signal upon irradiation by
980 nm laser. The emission signal from UCNPs excited by 532
nm is an order of magnitude weaker than that of 980 nm laser.
As a result, using two laser illumination does not affect the
temperature measurement. Continuous 980 nm laser provides
the constant and steady-state emission from Er3+ ions in the
nanostructures. When the particles were under steady-state
980 nm illumination, continuous and pulsed 532 nm were used
to excite small GNPs. When we used continuous 532 nm to

excite the gold nanostructures, we observed a linear temper-
ature increase of 60° as the intensity of 532 nm CW laser
increased for a ∼3 μm cluster of gold-decorated NaY-
F4:Yb3+:Er3+ nanocrystals (Figure 1c). We also looked at the
photothermal property of the same cluster when we modulated
532 nm and saw the effect of 532 nm pulse width for the same
cluster. The graph in Figure 1d shows a linear relationship
between the temperature of the cluster and laser power
applied. Figure 1d shows the temperature increase as a
function of pulsed 532 nm laser at 5 different pulse widths. The
temperature increase is shown in Figure 1c,d which is
calculated using luminescence ratio thermometry. The
extinction spectrum of gold-decorated UCNPs is shown in
Figure S3. The strong absorption peak at around ∼540 nm
indicates the photothermal properties of decorated UCNPs.
The long tail in both profiles is attributed to the scattering
effect because of the large size of UCNPs.
A typical green emission spectrum of UCNPs is shown in

the Supporting Information (Figure S4). The temperature of
UCNP nanostructures is determined using luminescence ratio
thermometry as reported in the literature.81,85,91 In brief, the
photoluminescence emission of UCNPs is collected via the
optical fiber of the microscope, and the luminescence emission
is recorded by a spectrometer. The temperature of the UCNPs
is calculated by measuring the relative peak areas of the 2H11/2
→ 4I15/2 and 4S3/2 → 4I15/2 bands from Er3+ ions. The
temperature is determined from temperature-dependent states

using the Boltzmann equation of states, = −Δ( )A expH
S

E
kT

,

where ΔE is an energy difference between the H band (2H11/2
→ 4I15/2 transition) and the S band (4S3/2 → 4I15/2 transition)
and A is the pre-exponential factor. The pre-exponential factor
A is determined by adjusting the parameter so that at very low
laser intensity, the calculated temperature is the same as room
temperature.

Figure 1. (a,b) TEM and HRTEM image of β-phase hexagonal
NaYF4:Yb3+:Er3+ nanocrystals decorated with ∼10 nm gold nano-
spheres; (c) photothermal response of UCNPs to the intensity of 532
nm laser under constant 980 nm illumination. (d) Photothermal
response of UCNPs to the pulse width of 532 nm laser under constant
980 nm illumination.
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In order to make time-resolved temperature measurement,
we used the same protocol as luminescence ratio thermometry
where we recorded the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2
photoluminescence signal through two narrow band filters and
an avalanche photodiode. The photodiode signal is then
converted to analogue pulses via a time-to-amplitude
converter. The pulses are then processed by a multichannel
analyzer to obtain a timing spectrum.
The schematic diagram of our time-resolved measurement is

shown in Figure 2a. A detailed description of the microscope
setup and instruments is given in the Methods section. In brief,
we used two laser beams of modulated 532 and 980 nm CW to
excite the UCNPs and generate optical heating via gold
nanospheres. The photoluminescence emission from UCNPs
is collected through the optical fiber of the microscope and is
recorded using an avalanche photodiode. The signal from the

avalanche photodiode is transformed to a histogram of
intensity as a function of time using a time-to-pulse height
converter and a multichannel analyzer. The time-resolved
intensity plots are further processed to calculate the temper-
ature using luminescence ratio thermometry.
Figure 2b shows the H bands and S emission bands when a

small cluster of ∼3 μm gold-decorated UCNP was irradiated
with modulated 532 nm laser with an intensity of 250 W/mm2.
Both H and S were selected by 520 and 540 nm bandpass
filters in the filter set of the microscope. Because the system is
under steady-state illumination by CW 980 nm laser, the H
and S bands show a flat line in the emission spectrum. When
the modulated 532 nm laser is applied along with the CW 980
nm laser, the irradiation of 532 nm pulses creates a
temperature spike in the GNPs. The heat generated in the
GNPs is transformed to UCNPs and the relative population of

Figure 2. (a) Schematic diagram of the technique used to obtain a time-resolved emission profiles for individual bands of gold-decorated UCNP
using 980 nm CW and modulated 532 nm lasers. (b) Change in the relative intensities of H and S bands indicated by dark and light green colors,
under 25 W/mm2 532 nm laser irradiation. (c) 532 nm laser profile (black) and calculated temperature from luminescence ratio thermometry
obtained from emission bands shown in (b).

Figure 3. (a) Thermal profiles for a ∼3 μm cluster under 980 nm CW under 5 different 532 nm excitation pulse widths and (b) energy balance
model fitted to the experimental decay thermal profile under 15 μs pulse width.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.8b11215
J. Phys. Chem. C 2019, 123, 3770−3780
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upconverting nanoparticles
(NaYF4:Yb3+:Er3+)

Rafiei Miandashti et al. (2019)
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Luttinger’s Trick

• a space- and time-varying field ψ(r, t) coupled to the energy density∫
d3r h(r)ψ(r, t)

ψ(r, t) = “gravitational field” (similarity to Einstein’s theory of gravity, only in a purely
formal sense)
cf) the electric coupling ∫

d3r ρ(r)ϕ(r, t)
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Luttinger’s Trick (cont.)

• electric and energy transport in the linear response regime

jcα(r) = L(1)
αγ

(
Eγ −

1

e
T∇γ

( µ
T

))
+ L(2)

αγ

(
T∇γ

(
1

T

)
−∇γψ

)
jhα(r) = L(3)

αγ

(
Eγ −

1

e
T∇γ

( µ
T

))
+ L(4)

αγ

(
T∇γ

(
1

T

)
−∇γψ

)
where L(i) are the Kubo-formula coefficients.

• thermal analogs of the Einstein relationship: in equilibrium

E =
1

e
T∇γ

( µ
T

)
and ∇γψ = −∇γT

T

• dynamical response to ψ(r, t) = response to (slowly varying) temperature gradient
• extend the concept of thermal response to situations in which the traditional notion

of temperature is no longer meaningful
• the gradient of the gravitational field drives the electric/thermal current,

just as the gradient of the electric potential drives the electric/thermal current.
• Luttinger’s trick requires only the assumption that the phenomenological equations

relating the gradient of fields and the corresponing current exist.
» ultimately, the validity of the Luttinger’s trick should be verified in experiments
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Thermal vector potential theory: bulk case

• electric analog

j =
e

m
⟨p⟩ − e2

m
neA = (paramagnetic current) + (diamagnetic current)

» in equilibrium, the two contributions cancel each other.
» gauge invariance

• thermal case: Using the energy conservation law

∂th(r, t) +∇ · jh(r, t) = 0 and ∇Ψ = −∇T/T

one finds ∫
d3r h(r)Ψ(r, t) = −

∫
d3r jh(r, t) ·AT (r, t)

with

∂tAT = −∇T

T

(
more generally,∇ψ + ∂tAT = −∇T

T

)
→ elimination of T = 0 divergence, incorporation of magnetic currents

Tatara (2015)
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Luttinger-field approach: nanoscale conductors

tt tt
V V

left lead right leadimpurity

• steady-state behavior: at t = t0, the gravitaional field ψα is turned on, or T → Tα
• change of temperature = scaling of lead dispersion∑

k

ϵαka
†
αkaαk →

∑
k

ϵ̃αka
†
αkaαk =

∑
k

(1 + ψα)(ϵαk + Uα)a
†
αkaαk

Eich, Principi, Ventra, and Vignale (2014)

B(t) = 1 + ψα(t)
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Luttinger-field approach: nanoscale conductors (cont.)

• gravitational field and temperature
» initially (t = −∞), at equilibrium at (base) temperature T∑

k

f

(
ϵαk
kBT

)
F (ϵαk)

» rescaling of contact energy: ϵαk → (1 + ψα(t))ϵαk∑
k

f

(
ϵαk
kBT

)
F (ϵαk)→

∑
k

f

(
ϵαk
kBT

)
F (ϵαk → (1 + ψα)ϵαk)

=
∑
k

f

(
(1 + ψα)ϵαk
kB(1 + ψα)T

)
F ((1 + ψα)ϵαk)

=
∑
k

f

(
ϵ̃αk
kBTα

)
F (ϵ̃αk)

→ Tα = (1 + ψα)T
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Luttinger-field approach: nanoscale conductors (cont.)

• two differences between LB and Luttinger formalism
» occupation factors: Tα = T (1 + ψα)

fLuttiner
α (ϵ) =

{
exp

[ ϵ
1+ψα

− Uα
kBT

]
+ 1

}−1

vs fLB
α (ϵ) =

{
exp

[
ϵ− Uα
kBTα

]
+ 1

}−1

» in the linear response regime, both formalisms give rise to the same result.

» beyond the linear response regime,
1. Uα → (1 + ψα)Uα
2. in the Luttinger’s trick, the transmission function Tαβ(ϵ) also depends on ψα

ǫǫ

ΓR

ΓL

fR

fL

kBTR

kBTL

U

LB ǫ
ǫ

ΓR

ΓL

fR
fL

kBTR

kBTL

U

TM

Eich, Principi, Ventra, and Vignale (2014)
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Luttinger-field approach: nanoscale conductors (cont.)

Non-linear response

ψL = δT/T = 1

−1.0 −0.5 0.0 0.5 1.0

U/t

−6

−4

−2

0

2

4

6

I
~ V

×10−2

TM+

LB+

−1.0 −0.5 0.0 0.5 1.0

U/t

−6

−4

−2

0

2

4

6

I
~ V

×10−2

TM−

LB−

ψL = δT/T = −0.5

UL − UR = 0
ψ = ψL − ψR

Eich, Principi, Ventra, and Vignale (2014)
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Luttinger-field approach: nanoscale conductors (cont.)

Transient behaviors

ψL = δT/T → 1

Eich, Ventra, and Vignale (2016)

12



Luttinger-field approach: nanoscale conductors (cont.)

• abrupt spatial change in ψ at the interface
→ the addtional scattering
→ discrepancy in the steady-state current (in the non-linear regime) and the initial
oscillation

• gradual transition of the Luttinger field

Lozej and Rejec (2018)
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Dynamic energy transfer in ac-driven quantum systems

• tight-binding model – energy is stored in the barrier

HT

• charge flux

0 =
dN
dt

= JC(t) + JD(t), Ji(t) =
i

ℏ
⟨[H,Ni]⟩ (i = C,D)

• energy flux〈
dH
dt

〉
=WC(t) +WT (t) +WD(t)︸ ︷︷ ︸

= 0

+

〈
∂H
∂t

〉
, Wi(t) =

i

ℏ
⟨[H,Hi]⟩ (i = C, T,D)

— energy reactance WT (t) ̸= 0 (WT = 0)
• what is correct definition of energy flux and heat current into the reservoir in the time

domain ?
Ludovico, Lim, Moskalets, Arrachea, and Sánchez (2014)
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Dynamic energy transfer in ac-driven quantum systems (cont.)

• time-dependent scattering-matrix formalism + Green’s function

WE(t) =
ℏ

4mi
[Ψ∗H∇Ψ−∇Ψ∗HΨ+ (h.c)]

=
∑
n,q

e−inΩt
∫
dϵ
ϵq + ϵn+q

2h
S∗(ϵq, ϵ)S(ϵn+q, ϵ)[f(ϵq)− f(ϵ)] (ϵn = ϵ+ nℏΩ)

← Fisher-Lee relation (S ↔ G)

=WC(t) +
1

2
WT (t)

and

Ih ≡ Q̇(t) =WE(t)− µIC(t)/e

Ludovico, Lim, Moskalets, Arrachea, and Sánchez (2014)
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Dynamic energy transfer in ac-driven quantum systems (cont.)

• satisfying 2nd law of thermodynamics: for ac current in the adiabatic limit

Q̇(t) =WC(t) +
1

2
WT (t)− µIC(t)/e vs ˙̃Q(t) =WC(t)− µIC(t)/e

Q̇(t) = P = Rq[IC(t)]
2 (Rq = RQ/2 = h/2e2)

Ludovico, Lim, Moskalets, Arrachea, and Sánchez (2014)
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Nanoconductor under time-periodic temperature driving: Luttinger’s trick
• unperturbed system: ℓ = L,R

HC =
∑
ℓ

HCℓ =
∑
ℓ

∑
kσ

ϵℓkc
†
kσckσ

HD =
∑
σ

ϵσd
†
σdσ + U(n↑, n↓)

HT =
∑
ℓ

HTℓ =
∑
ℓ

∑
kσ

(
tℓkd

†
σckσ + (h.c.)

)
• dot-contact coupling

Γℓ ≡
πρ0|tℓ|2

ℏ
and Γ ≡

∑
ℓ

Γℓ

• Luttinger’s trick: gravitational field Ψℓ(t) coupled to excess energy

HG(t) =
∑
ℓ

Ψℓ(t)
(
HCℓ + λHTℓ − ⟨HCℓ + λHTℓ⟩0

)
with

λ =
1

2
and Ψℓ(t) = Ψℓ cosΩt (τ = 2π/Ω)

• Contacts at the base temperature T : fℓ(ω) = f(ω)
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Nanoconductor under time-periodic temperature driving: Luttinger’s trick

• Total Hamiltonian

H = HC +HD +HT +HG(t)
= HC,Ψ(t) +HD +HT,Ψ(t)

with

HC,Ψ(t) ≡
∑
ℓ

HCℓ,Ψ(t) =
∑
ℓ

[
HCℓ +Ψℓ(t)(HCℓ − ⟨HCℓ⟩0)

]
=
∑
ℓ

(1 + Ψℓ(t))ϵℓk︸ ︷︷ ︸
= ϵℓk(t)

c†ℓkσcℓkσ −
∑
ℓ

Ψℓ(t) ⟨HCℓ⟩0 ,

HT,Ψ(t) ≡
∑
ℓ

HTℓ,Ψ(t) =
∑
ℓ

[
HTℓ + λΨℓ(t)(HTℓ − ⟨HTℓ⟩0)

]
=
∑
ℓ

∑
kσ

[
(1 + λΨℓ(t))tℓk︸ ︷︷ ︸

= tℓk(t)

d†σckσ + (h.c.)
]
−
∑
ℓ

λΨℓ(t) ⟨HTℓ⟩0
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QD-lead hybridization should be immune to the gravitational field

• Self energies

Σ
R/A/<
ℓσ (t, t′) ≡

∑
k

tℓk(t)

ℏ
g
R/A/<
ℓkσ (t, t′)

t∗ℓk(t
′)

ℏ

• Retarded/advanced self energies

Σ
R/A
ℓσ (t, t′) =

|tℓ|2

ℏ2
(1 + λΨℓ(t))(1 + λΨℓ(t

′))
∑
k

g
R/A
ℓkσ (t, t′)

= ∓iΓℓ
(1 + λΨℓ(t))

2

1 + Ψℓ(t)
δ(t− t′) ← QD-contact coupling

← contact density of states

• linear response regime

Σ
R/A
ℓσ (t, t′) ≈ ∓iΓℓ(1 + (2λ− 1)Ψℓ(t))δ(t− t′)

→ only when λ = 1/2, ΣR/Aℓσ is not affected by the gravitational field
• beyond the linear response regime

1 +
1

2
Ψℓ(t)→

√
1 + Ψℓ(t)

Hasegawa and Kato (2017), Hasegawa and Kato (2018)
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Charge Currents

• Charge current in terms of QD Green’s functions

Icℓ (t) = −e
〈
dNℓ
dt

〉
=
e

ℏ
∑
kσ

G<d,ℓkσ(t, t)t
∗
ℓk(t) + (c.c.),

= e
∑
σ

∫
dt′
(
GRdσ(t, t′)Σ<ℓσ(t

′, t) + G<dσ(t, t
′)ΣAℓσ(t

′, t)
)
+ (c.c.)

IcD(t) = −e
〈
dND

dt

〉
= e

∑
σ

i
d

dt
G<dσ(t, t)

• Charge conservation:

[H,
∑
ℓ

Nℓ +ND] = 0 →
∑
ℓ

Icℓ (t) + IcD(t) = 0
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Heat Currents

• Heat current and contact energy for lead ℓ

Ihℓ (t) =
dQℓ(t)

dt

with

Qℓ(t) = ⟨HCℓ + λHTℓ⟩

or

Qℓ(t) = ⟨HCℓ,Ψ(t) + λHTℓ,Ψ(t)⟩

The difference between the two definitions,

Ψℓ(t)
[
HCℓ − ⟨HCℓ⟩0 + λ2(HTℓ − ⟨HTℓ⟩0)

]
,

is of the second order in Ψℓ
→ the two definitions give rise to the same result in the linear response regime.
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Heat Currents (cont.)

• Heat currents in terms of QD Green’s functions

⟨HCℓ⟩ = −i
∑
kσ

ϵℓkG<ℓk,ℓkσ(t, t)

= ECℓ0 +
∑
σ

∫
dt′
∫
dt′′
(
ΞRAℓσ (t, t′, t′′)G<dσ(t

′, t′′)

+ ΞR<ℓσ (t, t′, t′′)GRdσ(t′, t′′) + Ξ<Aℓσ (t, t′, t′′)GAdσ(t′, t′′)
)

⟨HTℓ⟩ = −i
∑
kσ

G<d,ℓkσ(t, t)t
∗
ℓk + (c.c.)

= − iℏ
1 + λΨℓ(t)

∑
σ

∫
dt′
(
GRdσ(t, t′)Σ<ℓσ(t

′, t) + G<dσ(t, t
′)ΣAℓσ(t

′, t)
)
+ (c.c.)

with

Ξabℓσ(t, t
′, t′′) ≡ −i

∑
k

ϵℓkg
a
ℓkσ(t, t

′)
t∗ℓk(t

′)

ℏ
tℓk(t

′′)

ℏ
gbℓkσ(t

′′, t)

for a, b = R,A,<.
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Heat Currents (cont.)

• Sum rule:

[H(t),H(t)] = 0 →
∑
ℓ

(WCℓ(t) +WTℓ(t)) +WD(t) = 0

where the energy change rates are defined as

WCℓ(t) ≡
i

ℏ
[H(t),HCℓ,Ψ(t)] = (1 + Ψℓ(t))

d⟨HCℓ⟩
dt

WTℓ(t) ≡
i

ℏ
[H(t),HTℓ,Ψ(t)] = (1 + λΨℓ(t))

d⟨HTℓ⟩
dt

WD(t) ≡
i

ℏ
[H(t),HD].

Note that this sum rule can be applied only when the QD Hamiltonian, HD is known.
• power supplied by the time-dependent thermal source or the power dissipated

P (t) =

〈
∂H
∂t

〉
=
∑
ℓ

Ψ̇ℓ
(
⟨HCℓ + λHTℓ⟩ − ⟨HCℓ + λHTℓ⟩0

)
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Linear Response Regime

• We focus on the linear response regime

• Fouerier transformation: using the periodicity G(t, t′) = G(t+ τ, t′ + τ)

G(t, t′) =
∫ ∞

−∞

dω

2π
e−iω(t−t

′)G(t, ω),

G(t, ω) =
∞∑

n=−∞

G(n, ω)e−inΩt.

• Expansion of the QD Green’s functions: only n = 0,±1 components are relevant

GR/A/<dσ (n = 0, ω) ≈ GR/A/<dσ,eq (ω)

GR/A/<dσ (n = ±1, ω) ∝ Ψℓ

and

I
c/h

ℓ/D(t) = I
c/h

ℓ/D(Ω)e
−iΩt + I

c/h

ℓ/D(−Ω)e
+iΩt
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Linear Response Regime: Charge Currents

• Charge currents

IcD(Ω) = e
∑
σ

ω

∫
dω

2π
G<dσ(1, ω)

Icℓ (Ω) = e
∑
σ

∫
dω

2π

[
Σ<ℓσ(1, ω)

(
GRdσ,eq(ω +Ω)− GAdσ,eq(ω)

)
+ f(ω +Ω)(2iΓℓ)

(
GRdσ(1, ω +Ω)− GAdσ(1, ω)

)
+ (2iΓℓ)G<dσ(1, ω)

]
• The charge currents depend not only on the equilibrium QD Green’s functions but

also on the dynamical ones, GR/A/<dσ (1, ω), even though the linear response
(Ψℓ → 0) is taken. It is obviously because our perturbations are dynamical and the
dynamical excitations of the system, even though being small, cannot be described
solely in terms of the equilibrium Green’s functions.
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Linear Response Regime: Charge Currents (cont.)

• Elimination of
∫
dω G<dσ(1, ω) from the charge conservation∑
ℓ

Icℓ (t) + IcD(t) = 0 →
∫
dω G<dσ(1, ω) = · · ·

• Charge currents, free of G<dσ(1, ω)

Icℓ (Ω) = e
∑
σ

∫
dω

2π

[(∑
ℓ′

Ψℓ′

2

2iΓℓ′

2iΓ + Ω
− Ψℓ

2

)
∆f (ω +Ω, ω)

(
ω +

Ω

2

)
(2iΓℓ)

×
(
GRdσ,eq(ω +Ω)− GAdσ,eq(ω)

)
+

Ω

2iΓ + Ω
f(ω +Ω)(2iΓℓ)

(
GRdσ(1, ω +Ω)− GAdσ(1, ω)

)]
with

∆f (ω, ω
′) ≡ f(ω)− f(ω′)

ω − ω′
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Linear Response Regime: Heat Currents

• Heat currents

Ihℓ (Ω) =
∑
σ

ℏ
∫
dω

2π

[
Ψℓ
2
∆f (ω +Ω, ω)

(
ω +

Ω

2

)2

(2iΓℓ)
(
GRdσ,eq(ω +Ω)− GAdσ,eq(ω)

)
−
(
ω +

Ω

2

)
(2iΓℓ)

(
f(ω)GRdσ(1, ω)− f(ω +Ω)GAdσ(1, ω)

)]
−
(
ω +

Ω

2

)
(2iΓℓ)G<dσ(1, ω)

]
• Elimination of

∫
dω
(
ω + Ω

2

)
G<dσ(1, ω) from the sum rule

∑
ℓ

(WCℓ(Ω) +WTℓ(Ω)) +WD(Ω) = 0 →
∫
dω

(
ω +

Ω

2

)
G<dσ(1, ω) = · · ·

but, aplplicable only after HQD or WD(Ω) is specified.

• Time-averaged power

P = −
∑
ℓ

ΨℓRe[Ihℓ (Ω)]
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Linear Response Regime: Heat Currents (cont.)

• artefact of Luttinger’s trick: an additional unphysical term in Ihℓ (t)

d

dt
((1− λ)Ψℓ(t)ETℓ0)

← an effective energy capacitor which is dynamically driven by the field difference
Ψℓ(t)− λΨℓ(t) between the contact ℓ and the adjacent tunneling barrier.
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Application of Luttinger’s scheme: Non-interacting case

• QD Hamitlonian

HQD =
∑
σ

ϵσd
†
σdσ

• QD Green’s functions

GR/Adσ,eq(ω) =
1

ω − ϵσ/ℏ± iΓ
and GR/Adσ (1, ω) = 0

Note that

G<dσ(1, ω) ̸= 0

• For the sum rule for energy change rates,

WD(t) =
d

dt

∑
σ

ϵσ ⟨nσ(t)⟩ → WD(Ω) = −
∑
σ

ϵσ

∫
dω

2π
ΩG<dσ(1, ω)
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Application of Luttinger’s scheme: Non-interacting case (cont.)

• Thermoelectric and thermal admittances[
IcL(Ω)
IcR(Ω)

]
=

[
LL(Ω)− LLR(Ω) LLR(Ω)

LRL(Ω) LR(Ω)− LLR(Ω)

] [
ΨL/2
ΨR/2

]
and [

IhL(Ω)

IhR(Ω)

]
=

[
KL(Ω)−KLR(Ω) KLR(Ω)

KRL(Ω) KR(Ω)−KLR(Ω)

] [
ΨL/2
ΨR/2

]
with

Lℓ(Ω) = (2iΓℓ)Ωe
∑
σ

P1σ(Ω), LLR(Ω) = 4ΓLΓRe
∑
σ

P1σ(Ω)

Kℓ(Ω) = (2iΓℓ)Ω(−ℏ)
∑
σ

P2σ(Ω), KLR(Ω) = 4ΓLΓR(−ℏ)
∑
σ

P2σ(Ω)

and

Pnσ(ω) ≡
∫
dω

2π
∆f (ω +Ω, ω)

(
ω +

Ω

2

)n
GRdσ,eq(ω +Ω)GAdσ,eq(ω)
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Application of Luttinger’s scheme: Non-interacting case (cont.)

• Onsager reciprocity (micro-reversibility) in the linear-response
regime

L(Ω) =
δIc(Ω)

δΨ(Ω)
∝ ⟨[dN

dt
,Q]⟩

M(Ω) =
δIh(Ω)

δV (Ω)
∝ ⟨[dQ

dt
,N ]⟩

→ M(Ω) = L(Ω)

Both works use the same contact energy

Q = HC +
1

2
HT

(Rosselló, López, and Lim, 2015)
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Application of Luttinger’s scheme: Non-interacting case (cont.)

• Low-frequency (ℏΩ≪ kBT ) equivalent RC circuit

L/KLR(Ω) =
1

ZL/K,LR(Ω)
=

1

RL/K,LR

+
1

1/iΩCL/K,LR

L/Kℓ(Ω) =
1

ZL/K,ℓ(Ω)
=

1

RL/K,ℓ +
1

iΩCL/K,ℓ
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Application of Luttinger’s scheme: Non-interacting case (cont.)

• fluctuation-dissipation theorem + Kubo formulas +
scattering theory

K(Ω) =
1

ℏΩT

∫ ∞

0

dt ei(Ω+i0+)t⟨[Îh(t), Îh(0)]⟩

L(Ω) =
1

ℏΩT

∫ ∞

0

dt ei(Ω+i0+)t⟨[Îc(t), Îh(0)]⟩ = M(Ω)

T

— in good agreement with our results
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We discuss the low-frequency response of charge and heat transport to oscillatory voltage and temperature shifts
in mesoscopic capacitors. We obtain, within scattering theory, generic expressions for the quantum admittances
up to second order in the ac frequencies in terms of electric, thermoelectric, and heat capacitances and relaxation
resistances. Remarkably, we find that the thermocurrent can lead or lag the applied temperature depending on
the gate voltage applied to a quantum RC circuit. Furthermore, the relaxation resistance for cross terms becomes
nonuniversal as opposed to the purely electric or thermal cases.
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Introduction. Time-dependent charge transport in quantum
conductors subject to ac electric fields provides insight
into electronic dynamics at nanoscale dimensions.1 For low
frequencies, the dynamics of a mesoscopic conductor is
characterized by the RGCG time, where CG is the quantum
capacitance and RG is the charge relaxation resistance.2

Whereas the former generally depends on energy, the latter
unexpectedly attains the constant value of h/2e2 in a single-
channel quantum capacitor.1 These predictions are confirmed
by ac measurements in mesoscopic RC circuits.3 Further
developments have led to the experimental demonstration
of coherent single-electron emitters.4 This achievement has
spurred an enormous interest in both the fundamentals of
time-resolved electronic transport (both experimentally5–7 and
theoretically8–15) and its applications to, e.g., metrology16

and quantum information processing,17 just to mention
a few.

Electronic current, however, can also be driven by thermal
gradients. In the stationary case, the Seebeck effect leads to
the generation of thermovoltages in response to applied tem-
perature differences in open circuits.18 While dc thermopower
has been extensively investigated in nanostructures,19–23 the ac
Seebeck effect has received little attention to date. The subject
is interesting for several reasons. First, treating voltage and
thermal driving fields on an equal footing opens up the door to
not only electrical but also thermodynamic characterizations of
mesoscopic systems. In fact, ac calorimetry techniques have
been successfully applied to superconducting loops.24 What
can be learned from an analogous experiment with normal
conductors? Second, quantum refrigeration devices based on
the Peltier effect (reciprocal to Seebeck) typically use static
currents.25 What can we expect in the ac regime of transport?
Third, how does Coulomb interaction renormalize the RC
parameters in a thermoelectric device? These are the kind of
questions we want to address in this work.

Consider a multichannel mesoscopic conductor coupled
to a single terminal as in Fig. 1(a). The sample is driven
out of equilibrium with oscillating voltages3 δV (ω) and
temperatures26 δT (ω) applied to the reservoir. The driving
fields operate with regard to an equilibrium state described by
the chemical potential µ and the base temperature T0. Hence,
the linear-response electric δI and heat δJ currents are given

FIG. 1. (Color online) (a) Sketch of a mesoscopic capacitor: a
large dot attached to a reservoir with time-dependent (oscillatory)
temperature T (t) and voltage V (t) with respect to the base temper-
ature T0 and chemical potential µ " EF . The coupling region is a
single-mode quantum point contact with transmission t and reflection
r amplitudes modulated with external gates (dark shaded areas). Inter-
actions are modeled with a homogeneous potential δU0 that reacts to a
change in a nearby gate contact coupled via a geometrical capacitance
C. Electric, thermoelectric, and heat properties of the capacitor are
described at low-frequency ω with an equivalent RC circuit, where
RA and CA depend on the transport type (charge, energy, or both).
(b) Energy diagram of the mesoscopic capacitor. The Fermi
distribution function in the reservoir changes with the oscillatory
voltages. The dot contains many levels with mean spacing #. φ is
the electronic accumulated phase in a single turn around the dot.

by
(

δI
δJ

)
=

(
G(ω) L(ω)
M(ω) K(ω)

)(
δV
δT

)
, (1)

where the 2 × 2 Onsager matrix includes diagonal elements
[electric G(ω) and thermal K(ω) admittances] and nondiago-
nal coefficients [thermoelectric L(ω) and electrothermal M(ω)
admittances]. The latter are related by reciprocity.27

In a low-frequency expansion, G(ω) = −iωCG +
ω2C2

GRG, the imaginary part of the electric admittance
provides information on the electric capacitance or emittance
of the system, whereas its real part is directly related to
the dissipation in the conductor. When transport is phase
coherent, RG = h/2e2 takes a universal value independently
of the transmission value and it scales with N the number

201304-11098-0121/2013/88(20)/201304(5) ©2013 American Physical Society

• comparison with previous results
1. two agreement with previous results → validity of our Luttinger scheme

2. the fluctuation-dissipation theorem holds for the thermoelectric and thermal transport for
non-interacting + linear response

Lim, López, and Sánchez (2013)
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Application of Luttinger’s scheme: Non-interacting case (cont.)

cross thermoelectric admittace LLR(Ω) (ϵ↑ = ϵ↓)
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1.

At low temperatures (kBT ≪ ℏΓ)

1

RL,LR
= (−e)hGthT

2ΓLΓR

Γ

∑
σ

ρ′σ(0)

CL,LR = (−e)h2GthT
2ΓLΓR

Γ

∑
σ

ρ′σ(0)ρσ(0) (Gth =
π2

3

k2BT

h
)

→ the thermodelectric admittance reflects the particle-hole symmetry
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Application of Luttinger’s scheme: Non-interacting case (cont.)

cross thermal admittance KLR(Ω)
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At low temperatures (kBT ≪ ℏΓ)

1

RK,LR
= hGthT

2ΓLΓR

Γ

∑
σ

ρσ(0), CK,LR =
h2GthT

2

2ΓLΓR

Γ

∑
σ

[ρσ(0)]
2

• at low temperatures, 1/RK,LR is proportional to the electric conductance
• at high temperatures, large-energy carriers are dominant in the heat transport.
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Application of Luttinger’s scheme: Non-interacting case (cont.)

RC times or response times
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For all temperatures,

τL,ℓ = τL,LR (← P1σ(Ω)) and τK,ℓ = τK,LR (← P2σ(Ω))

At low temperatures,

τL,LR = h

∑
σ[ρσ(0)]

2∑
σ ρσ(0)

= 2τK,LR
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Application of Luttinger’s scheme: Interacting case

• QD Hamitlonian

HQD =
∑
σ

ϵσd
†
σdσ + Un↑n↓

• Hartree approximation

⟨⟨nσ̄dσ, d†σ⟩⟩(t, t′) ≈ ⟨nσ̄(t)⟩ ⟨⟨dσ, d†σ⟩⟩(t, t′) = ⟨nσ̄(t)⟩ Gdσ(t, t′)

• QD Green’s functions

GR/Adσ,eq(ω) =
1

ω − ϵHF,σ/ℏ± iΓ
with ϵHF,σ = ϵσ + Unσ̄,eq

GR/Adσ,eq(1, ω) =
U

ℏ
GR/Adσ (ω ± Ω)nσ̄(1,Ω)GR/Adσ (ω)

• For the sum rule for energy change rates,

WD(t) =
d

dt

(∑
σ

ϵσ ⟨nσ(t)⟩+ U ⟨n↑(t)⟩ ⟨n↓(t)⟩

)
→ WD(Ω) = −

∑
σ

ϵHF,σ

∫
dω

2π
ΩG<dσ(1, ω)
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Application of Luttinger’s scheme: Interacting case (cont.)

• Thermoelectric and thermal admittances[
IcL(Ω)
IcR(Ω)

]
=

[
LL(Ω)− LLR(Ω) LLR(Ω)

LRL(Ω) LR(Ω)− LLR(Ω)

] [
ΨL/2
ΨR/2

]
[
IhL(Ω)

IhR(Ω)

]
=

[
KL(Ω)−KLR(Ω) KLR(Ω)

KRL(Ω) KR(Ω)−KLR(Ω)

] [
ΨL/2
ΨR/2

]
with

Lℓ(Ω) = (2iΓℓ)Ωe
∑
σ

[
P1σ(Ω) +

2ΓU

ℏ
P0σ(Ω)Xσ̄(Ω)

]
LLR(Ω) = 4ΓLΓRe

∑
σ

[
P1σ(Ω) +

iΩU

ℏ
P0σ(Ω)Xσ̄(Ω)

]
Kℓ(Ω) = (2iΓℓ)Ω(−ℏ)

∑
σ

[
P2σ(Ω) +

2ΓU

ℏ
P1σ(Ω)Xσ̄(Ω)

]
KLR(Ω) = 4ΓLΓR(−ℏ)

∑
σ

[
P2σ(Ω) +

iΩU

ℏ
P1σ(Ω)Xσ̄(Ω)

]
and

Xσ(Ω) =
P1σ(Ω) +

2ΓU
ℏ P0σ(Ω)P1σ̄(Ω)

1−
(
2ΓU
ℏ
)2
P0σ(Ω)P0σ̄(Ω)

≈ P1σ(Ω)
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Application of Luttinger’s scheme: Interacting case (cont.)

cross thermoelectric admittances
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thermal admittances
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Application of Luttinger’s scheme: Interacting case (cont.)

RC times or response times

τL,ℓ ̸= τL,LR and τK,ℓ ̸= τK,LR
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Further applications of Luttinger scheme

• Non-interacting case
» multi-levels in QD

» spin-orbit interaction

» non-trivial geometry: Aharnonov-Bohm interferometer

• Interacting case
» equation-of-motion method: Coulomb blockade (Meir-Wingreen approximation)

» time-dependent numerical renormalization group (td-NRG)

We take Γ≡πρð0ÞV2 ¼ 0.001 throughout and consider two
types of quench [referred to subsequently as quench (A)
or quench (B)]: (A), from a symmetric Kondo regime
with εi ¼ −15Γ, Ui ¼ 30Γ and a vanishingly small Kondo
scale Ti

K ¼ 3 × 10−8 [71] to a symmetric Kondo regime
with εf ¼ −6Γ, Uf ¼ 12Γ and a larger Kondo scale
TK ¼ 2.5 × 10−5, and, (B), from a mixed valence regime
with εi ¼ −Γ, Ui ¼ 8Γ to a symmetric Kondo regime with
εf ¼ −4Γ, Uf ¼ 8Γ and a Kondo scale TK ¼ 1.0 × 10−4.
Spectral function Aðω; tÞ.—Weobtain the time-dependent

spectral function via Aðω; tÞ ¼ −ð1=πÞIm½Gðω þ iη; tÞ&,
where Gðω þ iη;tÞ, with infinitesimal η > 0, is the Fourier
transform of Gðt þ t0; tÞ≡ −iθðt0Þh½dσðt þ t0Þ; d†σðtÞ&þ iρ̂
with respect to the relative time t0 and ρ̂ denotes the full
density matrix of the initial state [73–75]. In the notation of
Ref. [61], we find for the case of positive times [76]

Gðω þ iη; tÞ ¼
XN

m¼ m0

X∉KK0K00

rsq

ρi→f
sr ðmÞe−iðEm

s −Em
r Þt

×
!

Bm
rqCm

qs

ω þ Em
r −Em

q þ iη
þ

Cm
rqBm

qs

ω þ Em
q −Em

s þ iη

"
;

ð1Þ

where B ¼ dσ, C ¼ d†σ , and ρ
i→f
sr ðmÞ ¼

P
efhsemjρ̂jremif

is the full reduced density matrix projected onto the final
states [61]. A somewhat more complicated expression can be
derived for negative times [76]. From Eq. (1), we see that the
spectral function can be calculated highly efficiently at all
times and frequencies froma knowledge ofρi→f

sr ðmÞ, the final
state matrix elements, and excitations at each shell m. Our
expressions for Aðω; tÞ in the two time domains t < 0 and
t > 0 recover the initial and final state spectral functions for
t → −∞ and t → þ ∞, respectively, and satisfy the spectral
sum rule

R þ ∞
−∞ dωAðω; tÞ ¼ 1 exactly [76]. Below, we shall

first focus on positive times,where themain time evolution of
the Kondo resonance occurs, then on negative to positive
times, showing how the high energy final state features in
Aðω; tÞ evolve from their initial state counterparts already at
negative times.
Results for positive times.—Consider quench (A), i.e.,

switching between symmetric Kondo regimes with
Ti
K ≪ TK. Figure 1(a) shows the overall time dependence

of the spectral function Aðω > 0; t > 0Þ ¼ Að−ω; t > 0Þ.
Two structures, associated with two energy scales, are
visible at all times t > 0: the satellite peak at ω ¼
εf þ Uf ≈240TK and a structure on the scale of TK around
the Fermi level. The former has negligible time depend-
ence, indicating that the satellite peak in the spectral
function has already formed by time t ¼ 0 (its evolution
at negative times from the initial state satellite peak at ω ¼
εi þ Ui > εf þ Uf is discussed below). In contrast to this,
the structure around the Fermi level has significant time
dependence at t > 0 and evolves into the fully formed final

state Kondo resonance only on time scales t≳ 1=TK
[Figs. 1(c) and 1(d)] in agreement with Ref. [26] for the
U ¼ ∞ Anderson model. For tTK ≫ 1, the height of the
Kondo resonance at the Fermi level approaches its unitary
value given by the Friedel sum rule πΓAðω ¼ 0; t → ∞Þ ¼
1 to within 15% [Fig. 1(d)]. The small deviation from the
expected value is a result of incomplete thermalization due
to the discretized Wilson chain used within the TDNRG
approach [67,69,76]. Consequently, evaluating Aðω;t→∞Þ
via the self-energy [80] does not improve the Friedel sum
rule further in this limit [59]. In the opposite limit, t → −∞,
where thermalization is not an issue, we recover the Friedel
sum rule to within 3% (discussed below). The use of a
discrete Wilson chain is also the origin of the small
substructures at jωj ≲ TK in Figs. 1(b)–1(d), effects seen
in the time evolution of other quantities, such as the local
occupation, and explained in terms of the discrete Wilson
chain [81]. On shorter time scales, tTK ≲ 1, states in the
region Ti

K ≪ jωj < TK , initially missing [Fig. 1(b)], are
gradually filled in by a transfer of spectral weight from
higher energies [Fig. 1(c)] to form the final state Kondo
resonance at long times [Fig. 1(d)]. The presence of a
structure on the final state Kondo scale TK at short times
t → 0þ is understood as follows: the Fourier transform with
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FIG. 1. (a) Time evolution of the normalized spectral function
πΓAðω > 0; tÞ for the symmetric Anderson model at positive
times, following a quench at t ¼ 0 specified by εi ¼ −15Γ,
Ui ¼ 30Γ, and εf ¼ −6Γ, Uf ¼ 12Γ with final state Kondo
temperature TK ¼ 2.5 × 10−5. A structure on the scale of TK
evolves into the Kondo resonance at long times t≳ 1=TK , while a
structure at ω ¼ εf þ Uf ≈240TK with negligible time depend-
ence corresponds to the final state satellite peak. Panels (b)–(d)
show the spectral function at times tTK ¼ 0.001, 1, and 1000,
respectively. The TDNRG calculations used a discretization
parameter Λ ¼ 4, zaveraging [78,79] with Nz¼ 32 and a cutoff
energy Ecut ¼ 24.
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FIG. 1. A system driven from an initial to a final state via
a sequence of quantum quenches at times τ̃0 = 0,τ̃1, . . . ,τ̃n with
evolution according to HQp in the time step τ̃p > t! τ̃p−1. Such a
sequence of multiple quantum quenches could also be used to describe
periodic switching, i.e., a periodic train of pulses, or, to approximate
any general continuous pulse (e.g., as indicated by the smooth solid
line). For the case shown here, where initial and final states are the
same, the switch-on time corresponds to the pulse duration.

general continuous pulses and periodic switching by a suitable
discretization of the time domain as illustrated in Fig. 1. While
the formalism for the multiple-quench case is considerably
more complicated than that for the single-quench case, we
showed in paper I that it is nevertheless numerically feasible. In
particular, we showed that the computational time should scale
approximately linearly with the number nquench of quenches.
In this paper, we implement this approach numerically for the
Anderson impurity model and its noninteracting counterpart,
the resonant level model (RLM), and present results for two
interesting situations: (i) general pulses acting over a finite time
interval, the so-called called switch-on time τ̃n [see Fig. 1],
and (ii) periodic driving where a system parameter, such as the
local level position, is modulated periodically in time. Periodic
driving has also been studied for the interacting resonant
level model in Ref. [20], by using a hybrid TDNRG method,
combining the TDNRG at short times with the Chebyshev
expansion technique [63] for longer times. In contrast to the
TDNRG approach used in Ref. [20], which involved additional
approximations beyond the NRG approximation, our TDNRG
formalism rests solely on the latter approximation (see Sec. II C
and paper I for details).

The paper is organized as follows. In Sec. II, we outline
the model and the notation for describing multiple quenches,
provide a brief description of the NRG, the complete basis set
and the FDM, and recapitulate the multiple quench TDNRG
formalism from paper I. For full details of the derivation
of the multiple-quench TDNRG, we refer the reader to the
previous publication. In Sec. III, we discuss exact results and
limiting cases, the conservation of the trace of the projected
density matrices in each time interval, and the continuity of
observables at the boundaries of these time intervals, and
how these are affected by the use of the NRG approximation.

We argue in Sec. III that the NRG approximation introduces
a cumulative error in the trace of the projected density
matrices after all but the first quantum quench, and discuss
the size of this finite time error as well as its influence on
the continuity of observables. In Sec. IV, we present our
numerical results of the multiple-quench formalism, applied
to general pulses for the Anderson impurity model (Sec. IV A)
and to periodic driving for the RLM and Anderson impurity
models (Sec. IV B). In the former, we analyze the error in
the long-time limit of observables, both as a function of
the switch-on time for a fixed pulse shape (a linear ramp),
and also its dependence on different pulse shapes, such as
linear, trigonometric, and logistic, for a fixed switch-on time.
In the latter, periodic driving is investigated for square and
triangular pulses, comparing with analytical continuum results
for the case of the RLM, which allows us to demonstrate
the accuracy and limitations of the method. In addition,
periodic driving is applied to the strong correlation limit of
the Anderson impurity model in a wide range of temperatures,
thereby demonstrating the application of the formalism to
finite temperatures. Conclusions and an outlook are given in
Sec. V.

II. PRELIMINARIES

A. Model, multiple quenches, and time evolution

We shall apply the TDNRG method for multiple quenches
and general pulses to the model defined by

H = Himp + Hbath + Hint, (1)

Himp =
∑

σ

εd (t)ndσ + U (t)nd↑nd↓, (2)

Hbath =
∑

kσ

ϵkc
†
kσ ckσ , (3)

Hint =
∑

kσ

V (t)c†
kσdσ + H.c. (4)

Here, ndσ = d†
σ dσ is the number operator for electrons with

spin σ in a local level with energy εd (t). The Coulomb
repulsion between two electrons in the local level is U (t),
ϵk is the kinetic energy of the conduction electrons with wave
number k, and V (t) is the hybridization matrix element of
the local d state with the conduction states. For U (t) ̸= 0, this
model corresponds to the Anderson impurity model, which for
U (t) = 0 reduces to the noninteracting resonant level model
(RLM). In this paper, we consider a switching protocol in
which only the local level position is allowed to have a
time-dependence εd (t), with V (t) = V and U (t) = U being
kept constant.

Both the Anderson model and its noninteracting counter-
part, the RLM, are characterized by the bare energy scales εd

and the hybridization strength % = πρV 2, where ρ = 1/W
is the density of state for a flat band of width W = 2D = 2,
and D = 1 is the half-bandwidth. In the case of the Anderson
model in the strong correlation limit, U ≫ %, and for −εd ≫
%, an additional low-energy scale emerges, the Kondo scale
TK =

√
U%/2eπεd (εd+U )/2%U . We shall express the temperature
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as follows:

nd (τ̃p+1 > t! τ̃p) = ρF

∫ +∞

−∞
f (ε)|A(ε,t)|2dε, (22)

A(ε,τ̃p+1 > t! τ̃p)

=
VQp+1e

−iεt

i
(
ε

Qp+1

d − ε
)
+ $Qp+1

− e−i(ε
Qp+1
d +$Qp+1 )(t−τ̃p)

×
[

VQp+1e
−iετ̃p

i
(
ε

Qp+1

d − ε
)
+ $Qp+1

− A(ε,τ̃p)

]

, (23)

in which A(ε,τ̃p+1 > t! τ̃p) is calculated recursively with
A(ε,τ̃0) = Vi

i(εi
d−ε)+$i

corresponding to the initial state. ρF

is the density of states of the fermionic bath, f (ε) is the
Fermi distribution, $Qp

= πρF |VQp
|2, and {VQp

,ε
Qp

d } are the
hybridization and local level associated with the quench
Hamiltonian HQp . In both the analytic and the TDNRG
calculations, we approximate a smooth pulse, or here, a train
of pulses, by exactly the same sequence of small quenches.
Thus we can compare directly the exact continuum results
with those of the TDNRG approach.

In Fig. 6 (lower panel), we show the time evolution of
the occupation number, following the periodic switching,
represented in the upper panel of Fig. 6. One sees that the
occupation numbers calculated with the TDNRG and the
analytical Eqs. (22) and (23) both oscillate in time with the
same frequency as the driving. The two results agree very well
with each other up to t$ < 3 and deviate for longer times. The
discontinuity in the time evolution of the occupation number
in the TDNRG calculation can be observed here with visible
gaps &nd (t) at the boundaries of the time steps, t$ = 4.5,5.5,
and 6.5, while the analytical result is obviously continuous.
The difference between the results of the two calculations
comes partly from the fact that the TDNRG calculation is
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FIG. 6. (Color online) Application of the multiple-quench TD-
NRG to the RLM with the square periodic switching εd (t) as in
the upper panel figure. The lower panel shows the time evolution
of the occupation number at the low temperature T ≈ 10−4$. The
other parameters are U = 0 $ and $ = 10−3D. The calculations
are for ' = 4, z averaging with Nz = 16, and keeping states below
Ecut = 24.
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FIG. 7. (Color online) As in Fig. 6, but with triangular periodic
switching approximated by the sequence of small quenches shown
in the upper panel. The lower panel shows the time evolution of the
occupation number nd (t) for this case and the parameters are as in
Fig. 6.

based on the logarithmic discretization of the conduction band,
while the analytic calculation is carried out in the continuum
limit. However, the NRG approximation also contributes to
this difference, resulting in the observed discontinuities which
increase in size with increasing time. We expect, in general,
following the discussion of pulse shapes on cumulative errors
in Sec. IV A, that smoother driving will show reduced errors
at longer times, a topic we discuss next.

Figure 7 shows the time evolution of the occupation number
(lower panel) in response to a triangular periodic driving,
which is approximately replaced by a sequence of small
quenches, represented in the upper panel of Fig. 7. We set
the square and triangular periodic drivings in Figs. 6 and 7 to
have the same frequency and phase, therefore the oscillations
of the occupation numbers calculated by either the TDNRG or
the analytical expression in these two figures are period and
phase matching. In contrast, the amplitude of the oscillations in
the occupation numbers in the two cases differ, with triangular
switching resulting in a smaller amplitude. In the TDNRG
calculations for the square and triangular drivings, we have
used the same discretization parameter ' = 4. However, in
comparison to the case of square switching in Fig. 6, we
see that the TDNRG result for the time evolution of the
occupation number with triangular periodic driving exhibits
better agreement to the analytical result, and less significant
gaps at the boundaries of the time steps. This suggests that
the TDNRG calculation for multiple quenches gives the time
evolution of a local observable in closer agreement to the exact
result if each quench size is small enough and for sufficiently
smooth trains of pulses.

2. Periodically driven Anderson model: temperature dependence

So far, we have only shown results for very low (essentially
zero) temperature. However, the multiple-quench TDNRG
formalism is also applicable to arbitrary finite temperatures
since it is based on the FDM approach. Temperature effects
are particularly important for interacting systems, such as
the Kondo or Anderson impurity models. To illustrate the
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