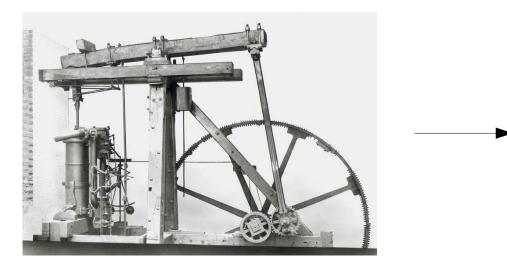
Quantum-enhanced performance in superconducting Andreev-reflection engines

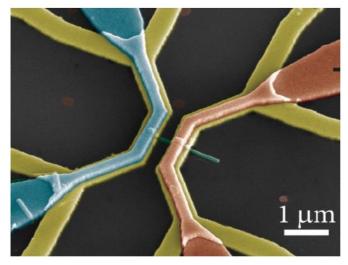
<u>Gonzalo Manzano</u> and Rosa López

Institute for Cross-Disciplinary Physics and Complex Systems IFISC (UIB-CSIC), Palma de Mallorca (Spain)

6 June 2023

5-6/06 @ IFISC (UIB-CSIC) Novel trends in topological systems and quantum thermodynamics



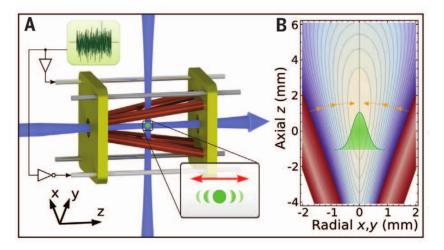


Macroscopic (classical) heat engines

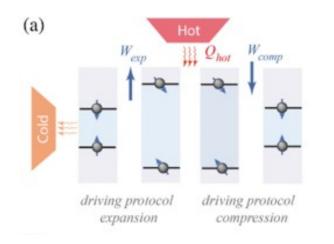
(Watt's steam engine, 1769)

Microscopic (quantum) heat engines

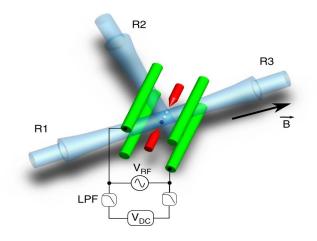
(Quantum-dot engine, 2018 H. Linke group, Sweden)


- + Large number of degrees of freedom
- + Fluctuations become negligible
- + Classical thermodynamics

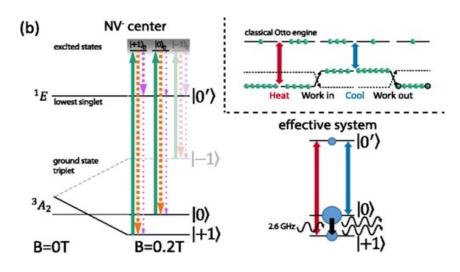
- + Small systems (micro or nanoscale)
- + Fluctuations are important
- + Stochastic and quantum thermodynamics



Single-ion cyclic quantum engine


Roßnagel et al. Science (2016)

Spin Otto cycle with NMR techniques



Peterson et al. Phys. Rev. Lett 123 (2019)

Quantum absorption refrigerator

Maslennikov et al. Nat Commun. (2019)

Continuous engine with NV centers

Klatzow et al. Phys. Rev. Lett 122 (2019)

Many models of engines are **based on quantum effects** (e.g. tunneling) or even show an **intrinsic quantum dynamics**, leading e.g. to entanglement in multipartite systems, but...

Quantum-thermodynamic advantage?

+ Define and compare to classical analogs, introduce extra dephasing ...

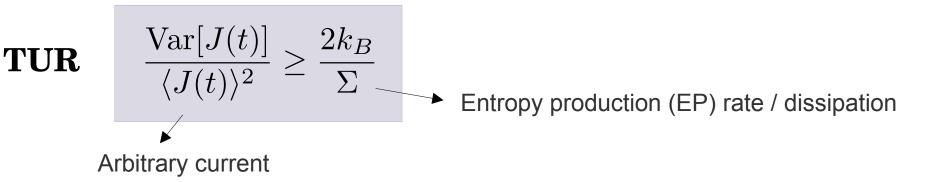
R. Uzdin, et al. PRX (2015), J.O. González, et al. PRE (2019), ...

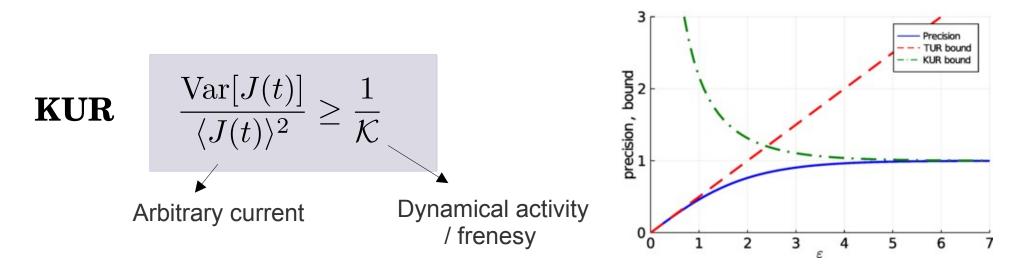
Some problems of classical analogs:

+ model dependent

+ definition of "analog"

+ Breaking of classical nonequilibrium inequalities such as TUR as a witness \rightarrow *model independent*


Agarwalla & Segal PRB (2018), Ptaszyński PRB (2018), Kalaee et al. PRE (2021), ...

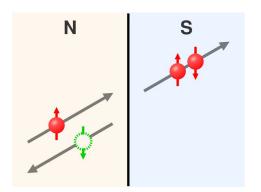


Thermodynamic and Kinetic Uncertainty Relations

Classical Markovian processes in nonequilibrium steady states

Barato and Seifert, PRL (2015), Gingrich et al. PRL (2016), ...

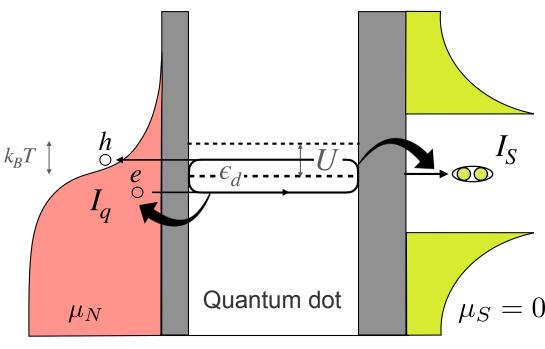
Terlizzi and Baisei, JPA (2018), Hiura and Sasa PRE (2021)



Andreev-reflection engine

Andreev reflection: incident electron in N generates a Cooper pair at S and a retro-reflected hole in N of opposite spin.

A. F. Andreev, Soviet Physics-JETP (1964)


Many applications in hybrid NS devices: superconducting transistors, spin-entangled electrons generation, Andreev qubits, topological qubits...

Engine model:

$$H_d = \sum_{\sigma} \epsilon_{\sigma} d_{\sigma}^{\dagger} d_{\sigma} + U d_{\uparrow}^{\dagger} d_{\uparrow} d_{\downarrow}^{\dagger} d_{\downarrow}$$

electron's spin $\sigma = \{\uparrow, \downarrow\}$

- $\epsilon_{\uparrow,\downarrow} = \epsilon \pm \Delta_Z \qquad {\rm dot \ level}$
- U Coulomb interaction

Normal metal

Superconductor

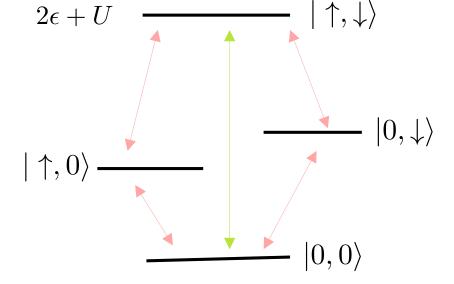
Large superconductor gap limit (subgap transport)

$$\Delta \to \infty \qquad (\Delta \gg \Gamma_N, k_B T)$$

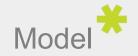
QD is "proximitized" by superconductor Rozhkov and Arovas PRB (2000), Lee et al. Nat. Nanotech. (2014), Tabatanei et al. PRB (2022)

superconductor
$$\longrightarrow H_S(t) = \Gamma_S(d^{\dagger}_{\uparrow}d^{\dagger}_{\downarrow}e^{i(2\epsilon+U)t} + d_{\downarrow}d_{\uparrow}e^{-i(2\epsilon+U)t})$$

$$\dot{\rho}(t) = -i\Gamma_S[d^{\dagger}_{\uparrow}d^{\dagger}_{\downarrow} + d_{\uparrow}d_{\downarrow}, \rho] + \sum_k L_k \rho L^{\dagger}_k - \frac{1}{2} \{L^{\dagger}_k L_k \rho\}$$

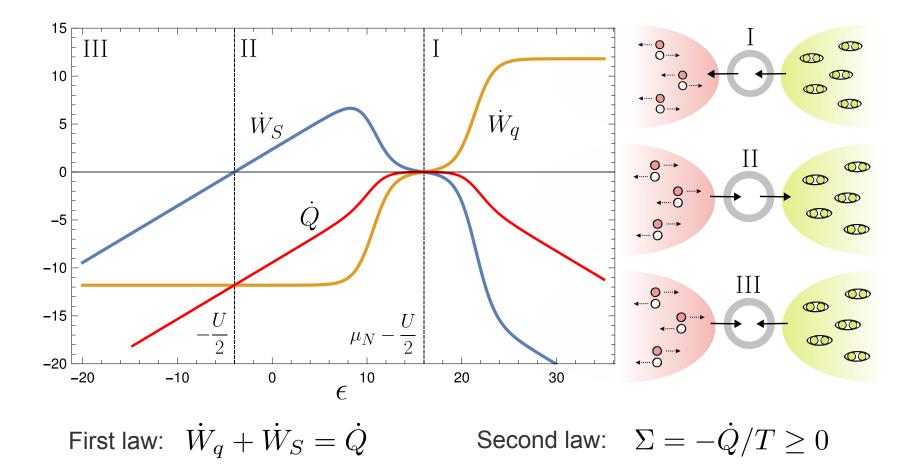

coherent contribution (Cooper pairs) Dissipative contribution (normal metal electrons)

Single-electron jumps from normal metal:


$$L_{\sigma,\delta}^{+} = \Gamma_N f(\epsilon_{\sigma} + \delta U) d_{\sigma}^{\dagger} \qquad L_{\sigma,\delta}^{-} = \Gamma_N [1 - f(\epsilon_{\sigma} + \delta U]) d_{\sigma}$$

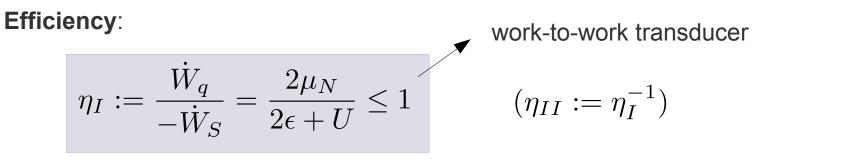
$$\sigma = \{\uparrow, \downarrow\}$$
$$\delta = \{0, 1\}$$

with



Focus on steady-state operation:

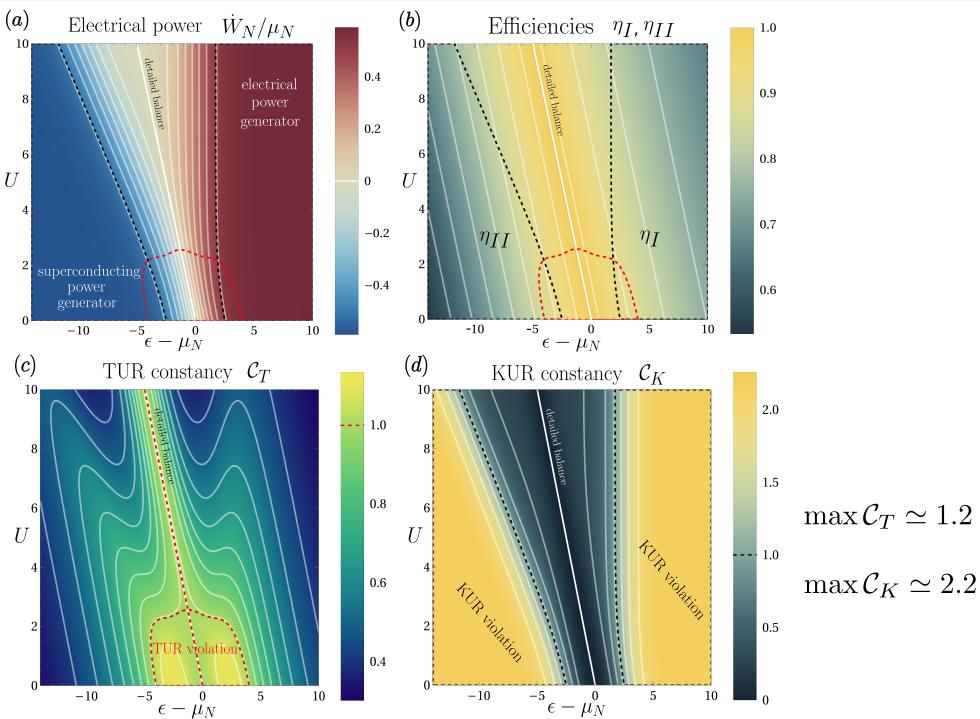
Energy and particle currents from normal metal: $\langle J_E \rangle \langle J_q \rangle$


 $\dot{Q} = \langle J_E \rangle - \mu_N \langle J_q \rangle$ $\dot{W}_q = -\mu_N J_q$ output electrical current

Extra (output) work contribution from superconductor: $\dot{W}_S = -\text{Tr}[\dot{H}_S(t)\rho_s(t)]$

Stability of the output power:

$$\operatorname{Var}[\dot{W}_q] = \mu_N^2 \operatorname{Var}[J_q]$$
 w.r.t. \dot{W}_q


Signal-to-noise ratio:
$$\mathcal{F}_q := \langle J_q \rangle^2 / \operatorname{Var}[J_q]^2 \longrightarrow$$
 Full Counting Statistics methods

Using TUR and KUR we can give classical bounds using normalized "constancy":

From TUR:
$$\mathcal{C}_T := \frac{2k_B \mathcal{F}_q}{\Sigma} = 2k_B T \frac{\eta_I \mathcal{F}_q}{(1 - \eta_I) \dot{W}_q} \leq 1$$
Then if:From KUR: $\mathcal{C}_K := \frac{\mathcal{F}_q}{\mathcal{K}} \leq 1$ Classical
boundsenhanced
stability !

Conclusions

- Superconducting-to-electrical power transducer based on Andreev reflection
- Superconductor acts as a coherent contribution leading to quantum thermodynamic signatures spotted by the violation of TUR and KUR.
- We have higher stability than classically allowed for steady-state engines in relevant regimes with either maximum power or high efficiencies (or a compromise between them).

Possible implementation:

Subgap transport re	egime	$\Delta \sim 2meV$	(Niobium)	Lee <i>et al.</i> Nature Nanotech 9 (2014) PRB 95 (2017)
Weak coupling	$\Gamma_N \sim$	$1 \mu eV$		Foxman <i>et al.</i> PRB 47 (1993) Jaliel <i>et al.</i> PRL 123 (2019)

 $T \sim 0.1 K - 1 K \qquad U \sim 0.2 meV$

THANK YOU

for your attention

arXiv: 2302.09414

