fFISC

b, EXCELENCIA
MARIA

i DE MAEZTU

SO b 2023-2027

Topological Superconductivity
and Majorana Modes in
Magnetic Topological Insulators

“CSsIC @ ’ st O aifisc_mallorca ) Facebook.comifisc  http/iifisc.uib-csic.es - Mallorca - Spain



EXCELENCIA

IFISC %&Q%ﬁEzm Outllne

2023 - 2027

i. Topology in Condensed Matter Physics
 Quantum Anomalous Hall State

* Topological Insulators

ii. Topological Superconductors in MTIs

e 2D Chiral Superconductors
1D Topological Superconductor

* The Emergence of Majorana Modes

ili. Detecting Majorana Excitations

 Antisymmetric Electric Conductance

e Numerical Results



(FISC € e Topology 1

D 2023-2027
MATERIALS SCIENCE

Higher-order topological insulators

Frank Schindler,’ Ashley M. Cook," Maia G. Vergniory,”** Zhijun Wang,* Stuart S. P. Parkin,®
B. Andrei Bernevig,**®" Titus Neupert'®

Three-dimensional topological (crystalline) insulators are materials with an insulating bulk b A | QTICLE

states that are topologically protected by time-reversal (or spatial) symmetries. We extenc doi:19.1098/natines3260
dimensional topological insulators to systems that host no gapless surface states but exhibit tc
gapless hinge states. Their topological character is protected by spatiotemporal symmetries of

cases: (i) Chiral higher-order topological insulators protected by the combination of time-re TOpOlogical quantum ChemiStI'y

rotation symmetry. Their hinge states are chiral modes, and the bulk topology is Z,-classified. (
topological insulators protected by time-reversal and mirror symmetries. Their hinge states com
the bulk topology is Z-classified. We provide the topological invariants for both cases. Furthermc
as well as surface-modified BiZTeL BiSe’ and BiTe are helical higher-order topological insulators i Since the discovery of topological insulators and semimetals, there has been much research into predicting and

" I d he hi experimentally discovering distinct classes of these materials, in which the topology of electronic states leads to robust
experimental setup to detect the hinge states. surface states and electromagnetic responses. This apparent success, however, masks a fundamental shortcoming:
topological insulators represent only a few hundred of the 200,000 stoichiometric compounds in material databases.
However, it is unclear whether this low number is indicative of the esoteric nature of topological insulators or of a
fundamental problem with the current approaches to finding them. Here we propose a complete electronic band theory,
which builds on the conventional band theory of electrons, highlighting the link between the topology and local chemical

bonding. This theory of topological quantum chemistry provides a description of the universal (across materials), global
R E S E A R C H A R T I C L E properties of all possible band structures and (weakly correlated) materials, consisting of a graph-theoretic description of
momentum (reciprocal) space and a complementary group-theoretic description in real space. For all 230 crystal symmetry

groups, we classify the possible band structures that arise from local atomic orbitals, and show which are topologically non-
trivial. Our electronic band theory sheds new light on known topological insulators, and can be used to predict many more.

Barry Bradlyn', L. Elcoro®*, Jennifer Cano'*, M. G. Vergniory>*°*, Zhijun Wang®*, C. Felser’, M. 1. Aroyo? & B. Andrei Bernevig®©-.?

All topological bands of all nonmagnetic
stoichiometric materials

Maia G. Vergniory>?>*+, Benjamin J. Wieder*>®*+, Luis Elcoro’, Stuart S. P. Parkin®, Claudia Felser>,
B. Andrei Bernevig®, Nicolas Regnault®°*

Topological quantum chemistry and symmetry-based indicators have facilitated large-scale searches
for materials with topological properties at the Fermi energy (Ef). We report the implementation of a
publicly accessible catalog of stable and fragile topology in all of the bands both at and away from E¢
in the 96,196 processable entries in the Inorganic Crystal Structure Database. Our calculations, which
represent the completion of the symmetry-indicated band topology of known nonmagnetic materials,
have enabled the discovery of repeat-topological and supertopological materials, including rhombohedral
bismuth and Bi;Mg;. We find that 52.65% of all materials are topological at Ef, roughly two-thirds

of bands across all materials exhibit symmetry-indicated stable topology, and 87.99% of all materials
contain at least one stable or fragile topological band.
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Topology is concerned with the properties of geometric figures that are
invariant under continuous deformations (stretching, twisting, ecc.)

* Topologically equivalent shapes can be
smoothly deformed into each other

* A discrete topological invariant
characterizes the equivalence classes
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Topological classification of insulating Hamiltonians describing gapped band
structures

» Topologically equivalent Hamiltonian can be continuously deformed one
into each other without closing the energy gap

» A discrete topological invariant characterizes the equivalence classes
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Topological classification of insulating Hamiltonians describing gapped band
structures

» Topologically equivalent Hamiltonian can be continuously deformed one
into each other without closing the energy gap

» A discrete topological invariant characterizes the equivalence classes
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A fundamental consequence of the topological classification is the bulk-
boundary correspondence

Along the interfaces between distinct topological phases the energy gap has
to vanish to allow the topological invariant to change:

e Zero-energy gapless modes localized over the interfaces between different
topological states of matter

* Topological invariants count the number of zero-energy surface modes

2D topological 3D topological
bulk bulk
1D gapless 2D gapless

edge states surface states
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The quantum anomalous Hall (QAH) state is the simplest 2D topological state

PHYSICAL REVIEW LETTERS

* Asingle chiral edge mode at
. . Model for a Quantum Hall Effect without Landau Levels:
th e Inte rfa ce wit h vacuum Condensed-Matter Realization of the “Parity Anomaly”

F. D. M. Haldane
Department of Physics, University of California, San Diego, La Jolla, California 92093

i | nteger topO'Ogical inva riant (Received 16 September 1987)
Ca | | e d th e ”C h e rn n u m be r” C A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization

of the Hall conductance o* in the absence of an external magnetic field. Massless fermions without

spectral doubling occur at critical values of the model parameters, and exhibit the so-called “parity
anomaly” of (2+1)-dimensional field theories.

Conduction Band

The Chern invariant Insulator C=0
defines a quantized
Hall conductance

KA AR A]  Er
e? Quantum Hall
Oxy = C H State c=1

Valence Band
|

—T/a 0 k -m/a
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Three-dimensional spinful systems can realize
topological insulating (T1) phases

* Insulating bulk but conductive edges Ky iE

* Single Dirac cone shaped topological surface .
state $ N '

* Topological classification through a set of \~ A
Z., topological invariants

nature
PUBLISHED ONLINE: 10 MAY 2009 | DOI:101038/NPHYS1270 phySICS

ARTICLES

Topological insulators in Bi,Ses, Bi;Tes and Sb,Tes
with a single Dirac cone on the surface
Haijun Zhang', Chao-Xing Liu?, Xiao-Liang Qi?, Xi Dai', Zhong Fang' and Shou-Cheng Zhang?* |n Blz SeB the Su rfa ce States

Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such p d by | g

systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to a re rOte Cte a a r e

scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of

topologically protected states in two-dimensional and three-dimensional band insulators with large spin-orbit coupling. So g g p d ~ O 3 V
far, the only known three-dimensional topological insulator is Bi,Sb,_,, which is an alloy with complex surface states. Here, we e n e r y a a ro u n ~ Ll e

present the results of first-principles electronic structure calculations of the layered, stoichiometric crystals Sb,Te;, Sb,Se;,
Bi;Te; and Bi,Se;. Our calculations predict that Sb,Te;, Bi>Te; and Bi,Se; are topological insulators, whereas Sb,Se; is not.
These topological insulators have robust and simple surface states consisting of a single Dirac cone at the I' point. In addition,
we predict that Bi;Se; has a topologically non-trivial energy gap of 0.3 eV, which is larger than the energy scale of room
temperature. We further present a simple and unified continuum model that captures the salient topological features of this
class of materials.
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Magnetic topological insulators (MTls) are 3D topological insulators with
topological protected surface states and ferromagnetic ordering

A robust QAH state can be realized when
* Tlsareplacedina - configuration

* Ferromagnetic ordering is induced through _

Conduction band

3D Topological
Insulators

Surface state —

Quantum
anomalous
Hall state
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ii. Topological Superconductors in MTIs
e 2D Chiral Superconductors
e 1D Topological Superconductor

* The Emergence of Majorana Modes
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The topological classification is valid
also for superconducting Hamiltonian PHYSICAL REVIEW 578, 195125 2005

Classification of topological insulators and superconductors in three spatial dimensions

1 S u p e rCO n d u Cti n g (ga p ped ) b u | k Andreas P. Schnyder,! Shinsei Ryu,! Akira Furusaki, and Andreas W. W. Ludwig?

'Kavli Institute for Theoretical Physics, University of California-Santa Barbara, Santa Barbara, California 93106, USA
2Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
3Department of Physics, University of California-Santa Barbara, Santa Barbara, California 93106, USA

L4 G a p | e SS b O u n d a ry m O d e S (Received 11 April 2008; revised manuscript received 13 September 2008; published 26 November 2008)

The topological invariant is determined by symmetry and dimensions

TRS PHS SLS d=1 d=2 d=3

Standard A (unitary) 0 0 0 " 7 .
(Wigner-Dyson) Al (orthogonal) +1 0 0 - : -
AlI (symplectic) -1 0 0 - 7y 7o

Chiral AIII (chiral unitary) 0 0 1 Z - Z
(sublattice) BDI (chiral orthogonal) +1 +1 1 Z = 5
CII (chiral symplectic) -1 -1 1 Z : 7

BdG D 0 +1 0 7 Z -

C 0 -1 0 - Z -

DIII - +1 1 Z Z 7

CI +1 = 1 i i 7
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The topological classification is valid
also for superconducting Hamiltonian PHYSICAL REVIEW B 78, 195123 (2008
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DE MAEZTU
D 2023-2027

(FISC 9 s Topological Superconductors 8

The topological classification is valid
also for superconducting Hamiltonian PHYSICAL REVIEW B 78, 195123 (2008

Classification of topological insulators and superconductors in three spatial dimensions

L S u p e rCO n d u Cti n g (ga p ped ) b u | k Andreas P. Schnyder,! Shinsei Ryu,! Akira Furusaki, and Andreas W. W. Ludwig?

'Kavli Institute for Theoretical Physics, University of California-Santa Barbara, Santa Barbara, California 93106, USA
2Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
3Department of Physics, University of California-Santa Barbara, Santa Barbara, California 93106, USA

L4 G a p | e SS b O u n d a ry m O d e S (Received 11 April 2008; revised manuscript received 13 September 2008; published 26 November 2008)

The topological invariant is determined by symmetry and dimensions

TRS PHS SLS d=1 d=2 d=3

Standard A (unitary) 0 0 0 - Z -
(Wigner-Dyson) Al (orthogonal) +1 0 0 - - -
AlI (symplectic) -1 0 0 . 7y 7o
Chiral AIII (chiral unitary) 0 0 1 Z - Z
(sublattice) BDI (ch'lral orthogon.al) +1 +1 | 5D Chiral To D olo gical
CII (chiral symplectic) -1 -1 Superconductor
BdG D 0 +1 0 7 Y/ -
C 0 -1 0 - V/ -
DIII - +1 1 Z Z 7
A +1 -1 | - : Y/




EXCELENCIA

(FISC 9 . Topological Superconductors 8

DE MAEZTU
D 2023-2027

The topological classification is valid
also for superconducting Hamiltonian PHYSICAL REVIEW B 78, 195123 (2008

Classification of topological insulators and superconductors in three spatial dimensions

L S u p e rCO n d u Cti n g (ga p ped ) b u | k Andreas P. Schnyder,! Shinsei Ryu,! Akira Furusaki, and Andreas W. W. Ludwig?

'Kavli Institute for Theoretical Physics, University of California-Santa Barbara, Santa Barbara, California 93106, USA
2Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
3Department of Physics, University of California-Santa Barbara, Santa Barbara, California 93106, USA

L4 G a p | e SS b O u n d a ry m O d e S (Received 11 April 2008; revised manuscript received 13 September 2008; published 26 November 2008)

The topological invariant is determined by symmetry and dimensions

TRS PHS SLS d=1 d=2 d=3

Standard A (unitary) 0 0 0 " 7 .

(Wigner-Dyson) Al (orthogonal) +1 0 0 - : -

AlI (symplectic) -1 0 0 - 7y 7o

Chiral AIII (chiral unitary) 0 0 1 Z - Z

(sublattice) BDI (chiral orthogonal) +1 +1 ] 7 . B}
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The chiral TSC can be realized through a quantum Hall state in proximity to an
ordinary s-wave superconductor

PHYSICAL REVIEW B 82, 184516 (2010)

Chiral topological superconductor from the quantum Hall state

. Xiao-Liang Qi,'? Taylor L. Hughes,"* and Shou-Cheng Zhang'

i 2 D S u p e rCO n d u Ct I n g (ga p p e d ) b u | k i 'Department of Physics, Stanford University, Stanford, California 94305, USA

“Microsoft Research, Station Q, Elings Hall, University of California, Santa Barbara, California 93106, USA
3Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801, USA
1 Received 31 March 2010; revised manuscript received 29 September 2010; published 10 November 2010)
« 1D t t dge mod ‘ ’ ’ ’
counterpropagating eage moades _ _ o . -

The chiral topological superconductor in two dimensions has a full pairing gap in the bulk and a single chiral
Majorana state at the edge. The vortex of the chiral superconducting state carries a Majorana zero mode which
is responsible for the non-Abelian statistics of the vortices. Despite intensive searches, this superconducting
state has not yet been identified in nature. In this paper, we consider a quantum Hall or a quantum anomalous

| ntege r to p O | Og i Ca | i n Va ri a nt N Hall state near the plateau transition and in proximity to a fully gapped s-wave superconductor. We show that

this hybrid system may realize the chiral topological superconductor state and propose several experimental

analogous tO the Chern nUmber methods for its observation.

Described by a Bogoliubov de Gennes QAH insulator-superconductor
. . heterostructure with MTI thin film
Hamiltonian

The superconductors induce pairing

amplitudes A, and A, on top and bottom
layers MTI
SC2

SCH
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In the BAG language the C = 1 QAH state is equivalent to a TSC with Chern
invariant N' = 2C = 2

Superconducting pairing A # 0
leadstoa N = 1 chiral TSC

e Equivalent to the QAH state in
superconducting systems

e A pair of counterpropagating
edge modes

Energy spectrum | . o ,
foraN = 2 g NErgy bands
proximitized forav =1
QAH state chiral TSC —
-1.52
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A small width of the MTI slab couples opposite edge modes and opens an
edge energy gap

» Large thin film: » Narrow thin film:
2D TSC with gapless edge modes 1D TSC with gapped edge modes

Odd number of
intersections:

1D TSC with end-
localized zero-
energy states

E(meV)

-20

03 00 03 0.3 0 03
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1D topological superconductor

Quasi-one-dimensional quantum anomalous Hall systems as new platforms for scalable topological
quantum computation

[ ) C h a ra Cte ri Ze d by a n i ntege r Chui-Zhen Chen,' Ying-Ming Xie,' Jie Liu,” Patrick A. Lee,>” and K. T. Law -

'Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
2Department of Applied Physics, School of Science, Xian Jiaotong University, Xian 710049, China

to p O | Ogi Ca | i n Va ri a n t N B D I 3Dep'mn‘.'ivxerr.' of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

M (Received 19 October 2017; revised manuscript received 15 January 2018; published 12 March 2018)

Quantum anomalous Hall insulator/superconductor heterostructures emerged as a competitive platform to
realize topological superconductors with chiral Majorana edge states as shown in recent experiments [He ef al.
[ ] H O St N Ze ro_e n e rgy e n d - Science 357, 294 (2017)]. However, chiral Majorana modes, being extended, cannot be used for topological
B DI quantum computation. In this work, we show that quasi-one-dimensional quantum anomalous Hall structures
o exhibit a large topological regime (much larger than the two-dimensional case) which supports localized
| O Ca | I Z e d m O d e S Majorana zero energy modes. The non-Abelian properties of a cross-shaped quantum anomalous Hall junction is
shown explicitly by time-dependent calculations. We believe that the proposed quasi-one-dimensional quantum
anomalous Hall structures can be easily fabricated for scalable topological quantum computation.

20+

_ n:2... .................. bands at chemical
> 10+ potential u in the ;

E [%.. n=l QAH state S
= determines the Ngp; '
n=20 fa . topological invariant

n=3 n=2 The number n of [N, *IN:O
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Boundary modes in topological superconductors are Majorana quasiparticles
due to the presence of particle-hole symmetry

* Unpaired, zero-energy states are described by nonfermionic operators
= rf

MCEM edge spectrum
foraN = 1TSC The N =1 2D TSC has a 1D single,

unpaired Majorana chiral edge mode
(MCEM) counterpropagating on the
side of a large thin film
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Boundary modes in topological superconductors are Majorana quasiparticles
due to the presence of particle-hole symmetry

* Unpaired, zero-energy states are described by nonfermionic operators

r=rt
MBS edge spectrum for
a Ngp; = 1 SC nanowire The Ngp; = 1 1D TSC has a OD single,
unpaired Majorana bound state
A A (MBS) on the extremities
A A
1_‘E
Iy = F](;
Tr -rt O
-k = O NBDI — 1 TSC O
—A —A




@ EXCELENCIA O I'
FISC € 2w utline
2023 - 2027

ili. Detecting Majorana Excitations

 Antisymmetric Electric Conductance

e Numerical Results
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L

y )
S N
Vo + Vz__

Q Back-gate Electrode (1 . c) Q Superconductor

o

& Electrode £ Magnetic TI
g Dielectric Substrate

We apply an asymmetric bias on the N leads with respect to the
proximitized sector S

V]_ — C(V, Vz — _ﬁV

with0<a<landf =1—-—asuchthatV; =V, =V

15
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We define the differential conductance on the N terminals of the junction as
d I
v

I; = electric current on the i=1,2 normal lead

G;(E) =

I/ = total bias across the junction

The following equations can be derived using the BTK formalism

2 2
G,(E) = a % [Nf (aV) — PEf (aV) + PR (aV)] + B % [PI(BV) — PER(BV)]

2 2
6o(E) = B—[~NR(BV) = PSR(BV) + PR (BV)] + a—— [PJ (aV) - PEE (aV)]
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The differential conductance G;(E) is expressed in terms of the transmission

amplitudess Pioj‘-b (E) indicating trasmission of a quasiparticle b in lead j to a
quasiparticle a in lead i

Pi‘j‘-b (E) : quasiparticle b, lead j = quasiparticle a, lead i

The following equations can be derived using the BTK formalism

Number of
62 electrons 62
G1(E) = a— [ = PIf (aV) + Pif (aV)] + B —=[Piz' (BV) — Pz (BV)]
Number of

holes
2

2
6o(5) = B (-G BY) PV + P PV)] + P V) — P a)
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The differential conductance G;(E) is expressed in terms of the transmission

amplitudess Pioj‘-b (E) indicating trasmission of a quasiparticle b in lead j to a
quasiparticle a in lead i

Pi‘j‘-b (E) : quasiparticle b, lead j = quasiparticle a, lead i

The following equations can be derived using the BTK formalism

2 2
61 (E) = a o [N )~ @) +Ehr ] + 55 PGBV — Peb (V)

Andreev
N | '
Rg;gsﬁon Reflection
e? 2
G2(E) = B—[-NZ(BV) —) +)] + [Pl (aV) — St (aV)
Normal Andreev

reflection reflection
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The differential conductance G;(E) is expressed in terms of the transmission

amplitudess Pioj‘-b (E) indicating trasmission of a quasiparticle b in lead j to a
quasiparticle a in lead i

P“b (E) : quasiparticle b, lead j = quasiparticle a, lead i

The following equations can be derived using the BTK formalism

Normal Andreev
TransmISS/on Transmission

2
G,(E) = a%[Nl (aV) — Pg¢(aV) + PX (aV)]+,B .) .)]

2
62(E) = B—[~NEBV) = PSR(BV) + P (BV)] + o — [‘) (P71 (a )]

Andreev Normal
Transmission Transmission
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)
i
1
e
|
i
I

!

Perfect normal reflection is
expected for a trivial
superconductor without subgap
states

j =2
(2

M

ee _ phh _
11 _P22 —

The conductance takes the following values
G,(E) = a%z [NE(aV) — PEE(aV) + PlE (aV)] + B %2 [PE}(BV) — PER(BV)]

G>(E) = < [~NJ(BY) — PSE(BV) + P (BV)] + a < [P (aV) — PSS (aV)]

G (E) = G1(E) + G,(E)



(FISC 9 . Trivial Superconductor 17

DE MAEZTU
2023 - 2027

om .- -y

!

Perfect normal reflection is
expected for a trivial
superconductor without subgap
states

j =2
(2

M

Pff = P5 =1

The conductance takes the following values

A A ,
G,(E) = a— [N1 (aV) — PEE(aV) + 174 (aV)] + B — [P;gf (BV) — P}z( BN)] =0
A

Go(E) = B [~NE(BV) - P (ﬁV)+P;"5{([>’V)] +a S [PY(av) ~ P an)] = 0

G (E) = G (E) + G,(E) =0
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Perfect Andreev reflection is (FE==P= Rl bl
expected in presence of ! ;
Majorana bound states within the N : : N
energy gap i i

CEEE ST Ty

P =P =1

The conductance takes the following values
G(E) = a %2 [NE(aV) — PEE(aV) + P (aV)] + B %2 [PE}(BV) — PER(BV)]

G>(E) = B<[~NR(BV) — PSR(BV) + PI(BY)] + a = [P (aV) — PSE (aV)]

G (E) = G (E) + G,(E)
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Perfect Andreev reflection is (FEEEPEE=, i
expected in presence of ! ;
Majorana bound states within the N : : N
energy gap i i
(=== = ! ST Ty
Pif = P33 =1

The conductance takes the following values

2 ’/’\ ’/\ 2 2
G1(B) = ae [Ne(@V) — b (V) + P ()] + <= (B (6V) - P (BV)] = 205
N A
6 (B) = BE[-NE(BY) — BFBY) + P (BV)] + a <2 [Pfav) — pfo(ar)] = ~28 2

e? e?
G:(E) = G1(E) + G2(E) = 2(a _,3)7 = 2(2a — 1)7
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In presence of Majorana chiral
Edge modes all processes occur
with the same probability

P11 _Pll _P21 _P21 _025
P22 —P22 —P12 —Peh_O.ZS

The conductance takes the following values
Gy (E) = a— [N (@v) — PEE(aV) + Pl (aV)] + B [P1 1 (BV) — PER(BV)]

G,(E) = —[ NI}(BV) — P h(,BV)+Phh(,BV)]+a—[P 2 (aV) — P& (aV)]

G (E) = G (E) + G,(E)
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In presence of Majorana chiral
edge modes all processes occur
with the same probability

P11 —P11 —P21 —P21 —025
P22 —P22 —P12 =P12 =O.25

The conductance takes the following values

A N- P N- P Fy 2 N- P
G,(E) = a—[N1 (aV) — Pee(aV) + Pie(aV)] + p = [Pl"(ﬁV) PEL(BY)] = a—

A FY 2 N 2 qu» 0"'"
G,(E) = —[ NE(BY) - Pz”(ﬁV)+Pz"2”(/fV>]+a—[chf(aV> PEe(aV)] =

e? e?
G (E) = G1(E) + G(E) = (a _,3)7 = (2a — 1)7
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In the QAH State electron and (FE=Tgpesa S

holes are perfectly transmitted

across the junction N N
Pii =Pl =1 SEEPES TRt o CEPPE <----

The conductance takes the following values
G1(E) = a<[Nf(aV) — P (aV) + Pt (aV)] + B [PEF(BV) — PEF(BY))]

G,(E) = —[ NI}(BV) — P h(,BV)+Phh(,BV)]+a—[P 2 (aV) — P& (aV)]

G (E) = G (E) + G,(E)
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In the QAH State electron and (FE=Tgpesa S

holes are perfectly transmitted

across the junction N N
Pii =Pl =1 SEEPES TRt o CEPPE <----

The conductance takes the following values
N
G,(E) = a—[N1 (@V) — P/(aV) +P},{/(aV)] . [P h(,BV) p /;/ gV =

N
Go(E) = B [-NR(BV) - %(ﬁv>+¢<ﬁv>]+a—[&%av> P/<av>]

G (E) = G(E) + G,(E) =0
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Gl GZ Gt — Gl + GZ
Ngp; = 0 (Trivial) 0 L
e e’
26(7 2(a — 1)7
0 0
e? e’
(XT (o — 1)7
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E G> G; = Gy + G

Ngp; = 0 (Trivial) 0 0

0

e? o2

2a— — 1) —

“ 2(a—1) h
N = 0 (Trivial) 0 0 .
0

e? o2
a (a—l)z

N = 2 (Trivial) 0 0
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Analysis of the symmetry of G; as a
function of

i. the antisimmetry around a = 0.5
(equal bias splitting) is a necessary
condition

ii. rule out electric signal produced by
trivial Andreev levels

Gy [62/ h]

Different ratio G, /G, distinguishes
different Majorana excitations

« MCEM G,/Gy = 2a — 1)

e MBS G,/Gy=2Qa—1)

G, = e?/h (conductance quantum)
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Numerical simulations in different geometries reproduce the physics of 2D
and 1D topological superconductors

Topological states with Majorana modes can be identified by G; # 0

0

—0.5

Gy [e?/h)

A [meV]
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i. Topology in Condensed Matter Physics
 Quantum Anomalous Hall State

* Topological Insulators

ii. Topological Superconductors in MTIs

e 2D Chiral Superconductors
1D Topological Superconductor

* The Emergence of Majorana Modes

ili. Detecting Majorana Excitations

 Antisymmetric Electric Conductance

e Numerical Results
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Surface Hamiltonian for the Dirac-type boundary states in top and bottom layer of a
MTI thin film

/ A ky+iky  mo+mik] 0 \
U R ) 0 Mo + mo k2

mo + myk? 0 A —(ky + iky)

\ o mo +mik?  —(ky — iky) )

In the basis of spin 0 =T,{ and layer T = t, b eigenstates

(¢, ™), |, 1), |b, 1), |b, 1)) Dirac cone TSSs on top

and bottom surfaces

The topological state is given by th Chern invariant:

* Trivial Insulator, C = 0 forA < m,

e QAHstate, C =1ford > m,
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The low-energy effective Hamiltonian for 3D MTls around the high-symmetry Dirac
point I' k = 0 takes the following form

M(k)+24 Ak, 0 Aok
Ak, -M(k)+1  Ayk_ 0
mri(k) = € (k)lyxq 0 Ak, M(k)— 2 —A 1k,
A2k+ 0 _AlkZ _M(k) o /1/

-

y

In the basis of spin 0 =T, 1 and
parity T = + eigenstates

(|+r T), |+r T), |_r l), |_r l))

Brillouin Zone
for BizSEg

Dirac-cone shaped energy states are
found in the boundary Brillouin zone
around I'
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The proximitized MTI thin film is described by a Bogoliubov de Gennes

Hamiltonian that takes the form

H . Ho(k) — u A
Bde = At —H (k) +

A = iAoy 0
- 0 lAz O-y

26

Here Ay and A, are the superconducting pairing amplitudes induced on the

top and bottom layers, respectively.

Ox,yz are Pauli matrices acting on the spin subspace

SC1

QAH insulator-superconductor
heterostructure with MTI thin film

MTI

SC2




