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Topology

Topology is concerned with the  properties of geometric figures that are 
invariant under continuous deformations (stretching, twisting, ecc.)

• Topologically equivalent shapes can be 
smoothly deformed into each other

• A discrete topological invariant 
characterizes the equivalence classes
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Topology in Condensed Matter

Topological classification of insulating Hamiltonians describing gapped band 
structures

• Topologically equivalent Hamiltonian can be continuously deformed one 
into each other without closing the energy gap

• A discrete topological invariant characterizes the equivalence classes
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Bulk-Boundary Correspondence 4

A fundamental consequence of the topological classification is the bulk-
boundary correspondence

Along the interfaces between distinct topological phases the energy gap has 
to vanish to allow the topological invariant to change:

• Zero-energy gapless modes localized over the interfaces between different 
topological states of matter

• Topological invariants count the number of zero-energy surface modes 

2D topological
bulk

1D gapless
edge states

3D topological
bulk

2D gapless
surface states



Quantum Anomalous Hall State

• A single chiral edge mode at 
the interface with vacuum

• Integer topological invariant
called the “Chern number” 

The Chern invariant 
defines a quantized
Hall conductance 

The quantum anomalous Hall (QAH) state is the simplest 2D topological state
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Topological Insulators

Three-dimensional spinful systems can realize 
topological insulating (TI) phases

• Insulating bulk but conductive edges

• Single Dirac cone shaped topological surface 
state

• Topological classification through a set of 
topological invariants

In the Surface states
are protected by a large
energy gap around
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Magnetic Topological Insulators

Magnetic topological insulators (MTIs) are 3D topological insulators with 
topological protected surface states and ferromagnetic ordering

A robust QAH state can be realized when

• TIs are placed in a thin film configuration

• Ferromagnetic ordering is induced through magnetic doping

3D Topological
Insulators

Quantum 
anomalous
Hall state
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Topological Superconductors

The topological classification is valid 
also for superconducting Hamiltonian

• Superconducting (gapped) bulk

• Gapless boundary modes 

The topological invariant is determined  by symmetry and dimensions

8



Topological Superconductors

The topological classification is valid 
also for superconducting Hamiltonian

• Superconducting (gapped) bulk

• Gapless boundary modes 

The topological invariant is determined  by symmetry and dimensions

8

QH State

TIs



Topological
Superconductors

Topological Superconductors

The topological classification is valid 
also for superconducting Hamiltonian

• Superconducting (gapped) bulk

• Gapless boundary modes 

The topological invariant is determined  by symmetry and dimensions

8



Topological Superconductors

The topological classification is valid 
also for superconducting Hamiltonian

• Superconducting (gapped) bulk

• Gapless boundary modes 

The topological invariant is determined  by symmetry and dimensions

8

2D Chiral Topological
Superconductor



Topological Superconductors

The topological classification is valid 
also for superconducting Hamiltonian

• Superconducting (gapped) bulk

• Gapless boundary modes 

The topological invariant is determined  by symmetry and dimensions
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The chiral TSC can be realized through a quantum Hall state in proximity to an 
ordinary -wave superconductor

• 2D superconducting (gapped) bulk

• 1D counterpropagating edge modes

Integer topological invariant 
analogous to the Chern number

Chiral Topological Superconductor 9

Described by a Bogoliubov de Gennes
Hamiltonian

The superconductors induce pairing 
amplitudes and on top and bottom
layers

SC 2

MTI

SC 1

QAH insulator-superconductor 
heterostructure with MTI thin film



Chiral Topological Superconductor 10

In the BdG language the QAH state is equivalent to a TSC with Chern
invariant 

Superconducting pairing
leads to a chiral TSC

• Equivalent to the QAH state in 
superconducting systems

• A pair of counterpropagating 
edge modes

Energy bands
for a 
chiral TSC

Energy spectrum
for a 
proximitized
QAH state



1D Topological Superconductor 11

A small width of the MTI slab couples opposite edge modes and opens an
edge energy gap

 Narrow thin film:
1D TSC with gapped edge modes

 Large thin film:
2D TSC with gapless edge modes

Odd number of
intersections:
1D TSC with end-
localized zero-
energy states



1D Topological Superconductor 12

1D topological superconductor

• Characterized by an integer
topological invariant

• Host zero-energy end-
localized modes

The number of
bands at chemical
potential in the
QAH state
determines the
topological invariant

meV 



Majorana Excitations 13

Boundary modes in topological superconductors are Majorana quasiparticles
due to the presence of particle-hole symmetry

• Unpaired, zero-energy states are described by nonfermionic operators

The 2D TSC has a 1D single, 
unpaired Majorana chiral edge mode
(MCEM) counterpropagating on the
side of a large thin film

TSC

MCEM edge spectrum
for a TSC 



Majorana Excitations 14

Boundary modes in topological superconductors are Majorana quasiparticles
due to the presence of particle-hole symmetry

• Unpaired, zero-energy states are described by nonfermionic operators

TSC

The 1D TSC has a 0D single, 
unpaired Majorana bound state 
(MBS) on the extremities

MBS edge spectrum for
a SC nanowire
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Experimental Device

We apply an asymmetric bias on the N leads with respect to the
proximitized sector S

with and such that
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Electric Conductance

We define the differential conductance on the N terminals of the junction as

electric current on the i=1,2 normal lead

total bias across the junction

The following equations can be derived using the BTK formalism
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Electric Conductance

The differential conductance is expressed in terms of the transmission 
amplitudess indicating trasmission of a quasiparticle in lead to a 
quasiparticle in lead 

:     quasiparticle , lead quasiparticle , lead 

The following equations can be derived using the BTK formalism

Number of
electrons

Number of
holes
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Electric Conductance

The following equations can be derived using the BTK formalism

Andreev
Reflection

Normal 
reflection

Normal 
Reflection

Andreev
reflection

The differential conductance is expressed in terms of the transmission 
amplitudess indicating trasmission of a quasiparticle in lead to a 
quasiparticle in lead 

:     quasiparticle , lead quasiparticle , lead 
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Electric Conductance

The following equations can be derived using the BTK formalism

Normal 
Transmission

Normal 
Transmission

Andreev
Transmission

Andreev
Transmission

The differential conductance is expressed in terms of the transmission 
amplitudess indicating trasmission of a quasiparticle in lead to a 
quasiparticle in lead 

:     quasiparticle , lead quasiparticle , lead 
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Trivial Superconductor

Perfect normal reflection is
expected for a trivial 
superconductor without subgap
states

The conductance takes the following values
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expected for a trivial 
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Majorana Bound States

Perfect Andreev reflection is
expected in presence of
Majorana bound states within the
energy gap

The conductance takes the following values
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Majorana Bound States

Perfect Andreev reflection is
expected in presence of
Majorana bound states within the
energy gap

The conductance takes the following values
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Majorana Chiral Edge Modes

In presence of Majorana chiral
Edge modes all processes occur
with the same probability

The conductance takes the following values
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Majorana Chiral Edge Modes
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Proximitized QAH State

In the QAH State electron and 
holes are perfectly transmitted
across the junction

The conductance takes the following values
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Conductance Summary

𝑩𝑫𝑰 (Trivial)

𝑩𝑫𝑰 (MBS)

(Trivial)

(MCEM)

(Trivial)
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Symmetry Constraint

Analysis of the symmetry of as a 
function of 

i. the antisimmetry around
(equal bias splitting) is a necessary 
condition

ii. rule out electric signal produced by 
trivial Andreev levels

Different ratio distinguishes
different Majorana excitations

• MCEM

• MBS

(conductance quantum)

22



Numerical Results

Numerical simulations in different geometries reproduce the physics of 2D 
and 1D topological superconductors

Topological states with Majorana modes can be identified by 
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2D Surface Hamiltonian

Surface Hamiltonian for the Dirac-type boundary states in top and bottom layer of a 
MTI thin film 

In the basis of spin and layer eigenstates

The topological state is given by th Chern invariant:

• Trivial Insulator, for

• QAH state, for
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MTI Thin Film

Dirac cone TSSs on top 
and bottom surfaces



3D Hamiltonian

The low-energy effective Hamiltonian for 3D MTIs around the high-symmetry Dirac 
point takes the following form

×
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In the basis of spin and 
parity eigenstates

Dirac-cone shaped energy states are 
found in the boundary Brillouin zone
around

Brillouin Zone
for



BdG Hamiltonian

The proximitized MTI thin film is described by a Bogoliubov de Gennes
Hamiltonian that takes the form

Here and are the superconducting pairing amplitudes induced on the
top and bottom layers, respectively.

are Pauli matrices acting on the spin subspace
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SC 2

MTI

SC 1
QAH insulator-superconductor 
heterostructure with MTI thin film


