Quantum memories for squeezed and coherent superpositions in a driven-dissipative nonlinear oscillator

Adrià Labay-Mora,

Roberta Zambrini and
Gian Luca Giorgi

I-Link Quantum Workshop - June 06, 2023
I. The oscillator

II. The lobes

III. The applications

Storage

Associative Memory

GKLS master equation

$$
\frac{\partial \rho}{\partial t}=\mathcal{L} \rho=-i[\hat{\mathrm{H}}, \rho]
$$

Hamiltonian: $\hat{\mathrm{H}}=\omega_{0} \hat{a}^{\dagger} \hat{a}$

GKLS master equation

$$
\frac{\partial \rho}{\partial t}=\mathcal{L} \rho=-i[\hat{\mathrm{H}}, \rho]
$$

Hamiltonian: $\hat{\mathrm{H}}=\omega_{0} \hat{a}^{\dagger} \hat{a}+i \eta\left[\hat{a}^{n} e^{-i \omega_{s} t}-\left(\hat{a}^{\dagger}\right)^{n} e^{i \omega_{s} t}\right]$

GKLS master equation

$$
\frac{\partial \rho}{\partial t}=\mathcal{L} \rho=-i[\hat{\mathrm{H}}, \rho]
$$

Hamiltonian: $\hat{\mathrm{H}}=\Delta \hat{a}^{\dagger} \hat{a}+i \eta\left[\hat{a}^{n}-\left(\hat{a}^{\dagger}\right)^{n}\right]$

The oscillator

GKLS master equation

$$
\frac{\partial \rho}{\partial t}=\mathcal{L} \rho=-i[\hat{\mathrm{H}}, \rho]+\gamma_{1} \mathcal{D}[\hat{a}] \rho
$$

Hamiltonian: $\hat{\mathrm{H}}=\Delta \hat{a}^{\dagger} \hat{a}+i \eta\left[\hat{a}^{n}-\left(\hat{a}^{\dagger}\right)^{n}\right]$
Lindblad operator: $\mathcal{D}[J] \rho=J \rho J^{\dagger}-\frac{1}{2} J^{\dagger} J \rho-\frac{1}{2} \rho J^{\dagger} J$

EXCELENCIA

The oscillator

GKLS master equation

$$
\frac{\partial \rho}{\partial t}=\mathcal{L} \rho=-i[\hat{\mathrm{H}}, \rho]+\gamma_{1} \mathcal{D}[\hat{a}] \rho+\gamma_{m} \mathcal{D}\left[\hat{a}^{m}\right] \rho
$$

Hamiltonian: $\hat{\mathrm{H}}=\Delta \hat{a}^{\dagger} \hat{a}+i \eta\left[\hat{a}^{n}-\left(\hat{a}^{\dagger}\right)^{n}\right]$
Lindblad operator: $\mathcal{D}[J] \rho=J \rho J^{\dagger}-\frac{1}{2} J^{\dagger} J \rho-\frac{1}{2} \rho J^{\dagger} J$

$$
\text { Remember } \longrightarrow \begin{cases}n & \text { driving power } \\ m & \text { dissipation power }\end{cases}
$$

$$
\frac{\partial \rho}{\partial t}=\eta\left[\hat{a}^{n}-\left(\hat{a}^{\dagger}\right)^{n}, \rho\right]+\gamma_{1} \mathcal{D}[\hat{a}] \rho+\gamma_{m} \mathcal{D}\left[\hat{a}^{m}\right] \rho
$$

A zoo of steady states can be generated by modifying (n, m)

EXCELENCIA
 The oscillator symmetry

The system has a discrete symmetry:

$$
\hat{Z}_{p}=\exp \left(-i 2 \pi \hat{a}^{\dagger} \hat{a} / p\right)
$$

n driving
m dissipation

The oscillator symmetry

The system has a discrete symmetry:

$$
\hat{Z}_{p}=\exp \left(-i 2 \pi \hat{a}^{\dagger} \hat{a} / p\right)
$$

n driving
m dissipation

Strong symmetry

SS: p cat-states
Requirements:

1. $\gamma_{1}=0$
2. $\left[\hat{Z}_{p}, \hat{a}^{n}\right]=\left[\hat{Z}_{p}, \hat{a}^{m}\right]=0$

Requirement: $\left[\mathcal{L}, \mathcal{Z}_{n}\right]=0$

Consequences:

- The system is invariant under rotations by an angle $2 \pi k / n(k \in \mathbb{N})$
- The Liouvillian can be separated into n blocks
- Only 1 steady state with n lobes

$$
\rho_{s s} \approx \frac{1}{n} \sum_{k=1}^{n} \mu_{k}
$$

where $\mu_{k} \approx\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$

* - EXCELENCIA
 The oscillator symmetry: strong

Requirements: $\gamma_{1}=0$ and $\left[\hat{Z}_{p}, \hat{a}^{n}\right]=\left[\hat{Z}_{p}, \hat{a}^{m}\right]=0$
$|0\rangle \quad|1\rangle \quad|2\rangle \quad|3\rangle \quad|4\rangle \quad|5\rangle \quad|6\rangle \quad|7\rangle \quad|8\rangle \quad|9\rangle \quad|10\rangle \quad|11\rangle$

Requirements: $\gamma_{1}=0$ and $\left[\hat{Z}_{p}, \hat{a}^{n}\right]=\left[\hat{Z}_{p}, \hat{a}^{m}\right]=0$

$$
n=2 \& m=2: \quad|0\rangle \quad|1\rangle \quad|2\rangle \quad|3\rangle \quad|4\rangle \quad|5\rangle \quad|6\rangle \quad|7\rangle \quad|8\rangle \quad|9\rangle \quad|10\rangle \quad|11\rangle
$$

Requirements: $\gamma_{1}=0$ and $\left[\hat{Z}_{p}, \hat{a}^{n}\right]=\left[\hat{Z}_{p}, \hat{a}^{m}\right]=0$

$$
\begin{array}{rllllllllllll}
n=2 \& & \& & |0\rangle & |1\rangle & |2\rangle & |3\rangle & |4\rangle & |5\rangle & |6\rangle & |7\rangle & |8\rangle & |9\rangle & |10\rangle
\end{array}|11\rangle
$$

* © EXCELENCIA

Requirements: $\gamma_{1}=0$ and $\left[\hat{Z}_{p}, \hat{a}^{n}\right]=\left[\hat{Z}_{p}, \hat{a}^{m}\right]=0$

* \because EXCELENCIA
 The oscillator symmetry: strong

Requirements: $\gamma_{1}=0$ and $\left[\hat{Z}_{p}, \hat{a}^{n}\right]=\left[\hat{Z}_{p}, \hat{a}^{m}\right]=0$

* © EXCELENCIA

Requirements: $\gamma_{1}=0$ and $\left[\hat{Z}_{p}, \hat{a}^{n}\right]=\left[\hat{Z}_{p}, \hat{a}^{m}\right]=0$

Requirements: $\gamma_{1}=0$ and $\left[\hat{Z}_{p}, \hat{a}^{n}\right]=\left[\hat{Z}_{p}, \hat{a}^{m}\right]=0$
$n=2 \& m=4: \quad|0\rangle \quad|1\rangle \quad|2\rangle \quad|3\rangle \quad|4\rangle \quad|5\rangle \quad|6\rangle \quad|7\rangle \quad|8\rangle \quad|9\rangle \quad|10\rangle \quad|11\rangle$

Two symmetry blocks Even parity

Odd parity

The oscillator symmetry: strong

Requirements:

1. $\gamma_{1}=0$
2. $\left[\hat{Z}_{p}, \hat{a}^{n}\right]=\left[\hat{Z}_{p}, \hat{a}^{m}\right]=0$
$\rightarrow \operatorname{gcd}(n, m)=p>1$

Consequences:

- Liouvillian can be separated into p^{2} blocks.
- p steady states with n lobes

$$
\left|\psi_{s s}^{(k)}\right\rangle \approx \frac{1}{\sqrt{n}} \sum_{k=1}^{n} c_{k}\left|\psi_{k}\right\rangle \propto \sum_{a=0}^{\infty}|a p+k\rangle
$$

each having definite parity $k=1, \ldots, p$

The lobes

Squeezed-coherent state

$$
|\alpha, \xi\rangle=\left|r e^{i \theta}, s e^{i \phi}\right\rangle=D(\alpha) S(\xi)|0\rangle
$$

The quadrature variance $\left\langle\left(\Delta \hat{X}_{\phi}\right)^{2}\right\rangle$ in
the direction $X_{\phi}=\left[\hat{a} e^{-i \phi}+\hat{a}^{\dagger} e^{i \phi}\right] / 2$ is
The quadrature variance $\left\langle\left(\Delta \hat{X}_{\phi}\right)^{2}\right\rangle$ in
the direction $X_{\phi}=\left[\hat{a} e^{-i \phi}+\hat{a}^{\dagger} e^{i \phi}\right] / 2$ is narrower than for a coherent state

$$
\left(\Delta \hat{X}_{\phi}\right)^{2}<0.25
$$

Mandel parameter:

$$
\mathcal{Q}=\frac{\left\langle(\Delta \hat{n})^{2}\right\rangle-\langle\hat{n}\rangle}{\langle\hat{n}\rangle} \begin{cases}<0 & \text { purely quantum state } \\ =0 & \text { coherent state (Poissonian) } \\ >0 & \text { we need more info }\end{cases}
$$

The lobes: squeezing

Mandel parameter:

$$
\mathcal{Q}=\frac{\left\langle(\Delta \hat{n})^{2}\right\rangle-\langle\hat{n}\rangle}{\langle\hat{n}\rangle} \begin{cases}<0 & \text { purely quantum state } \\ =0 & \text { coherent state (Poissonian) } \\ >0 & \text { we need more info }\end{cases}
$$

The lobes: squeezing

Mandel parameter:

$$
\mathcal{Q}=\frac{\left\langle(\Delta \hat{n})^{2}\right\rangle-\langle\hat{n}\rangle}{\langle\hat{n}\rangle} \begin{cases}<0 & \text { purely quantum state } \\ =0 & \text { coherent state (Poissonian) } \\ >0 & \text { we need more info }\end{cases}
$$

- if $n<m$, states show sub-Poissonian statistics (in fact, amplitude-squeezed)
- if $n>m$, states are super-Poissonian \rightarrow we can do more

The lobes: squeezing

The variance of the quadrature operator \hat{X}_{ϕ} allows to determine the amount of squeezing and the angle.

The lobes: squeezing

The variance of the quadrature operator \hat{X}_{ϕ} allows to determine the amount of squeezing and the angle.

The lobes: squeezing

The variance of the quadrature operator \hat{X}_{ϕ} allows to determine the amount of squeezing and the angle.

Quantum Associative Memory

Dynamically protected cat-qubits: a new paradigm for universal quantum computation

Mazyar Mirrahimi ${ }^{1,2}$, Zaki Leghtas ${ }^{2}$, Victor V Albert ${ }^{2,3}$, Steven Touzard ${ }^{2}$, Robert J Schoelkopf ${ }^{2,3}$, Liang Jiang ${ }^{2,3}$ and Michel H Devoret ${ }^{2,3}$
${ }^{1}$ INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105, F-78153 Le Chesnay Cedex, France
${ }^{2}$ Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
${ }^{3}$ Department of Physics, Yale University, New Haven, Connecticut 06520, USA
M. Mirrahimi et al., New Journal of Physics 16, 045014 (2014)

C. Berdou et al., arXiv
preprint arXiv:2204.09128
(2022)

FFISC

Case $n=2$: computational basis $\{| \pm \alpha, \xi\rangle\}(|\alpha|>1)$

FFISC

Case $n=2$: computational basis $\{| \pm \alpha, \xi\rangle\}(|\alpha|>1)$

How long is information preserved?

Relaxation time

Decay time to the steady state.

Dephasing rate

Decay of coherences between states.

Storage

Relaxation time

Decay time to the steady state.

Dephasing rate

Decay of coherences between states.

Storage

Relaxation time

- Exponential scaling
- Larger system size needed for high n

Dephasing rate

- Linear scaling
- Slope drastically larger if $\operatorname{gcd}(n, m)=1$

(Quantum) Associative Memory

Neural networks and physical systems with emergent collective computational abilities
(associative memory/parallel processing/categorization/content-addressable memory/fail-soft devices)
J. J. Hopfield

Division of Chemistry and Biology, California Institute of Technology, Pasadena, California 91125, and Bell Laboratories, Murray Hill, New Jersey 07974 Contributed by John J. Hopfield, January 15, 1982
J. J. Hopfield, Proceedings of the national academy of sciences 79, 2554 (1982)

Any physical system whose dynamics in phase space is dominated by a substantial number of locally stable states to which it is attracted can therefore be regarded as a general content-addressable memory.

P. Rotondo et al., Journal of Physics

A: Mathematical and Theoretical 51,
115301 (2018)

Quantum Associative Memory

Quantum Associative Memory with a Single Driven-Dissipative Nonlinear Oscillator
Adrià Labay-Mora©, ${ }^{*}$ Roberta Zambrini©, and Gian Luca Giorgi©
Institute for Cross Disciplinary Physics and Complex Systems (IFISC) UIB-CSIC, Campus Universitat Illes Balears, Palma de Mallorca, Spain(Received 31 May 2022; accepted 14 April 2023; published 11 May 2023)
Algorithms for associative memory typically rely on a network of many connected units. The prototypical example is the Hopfield model, whose generalizations to the quantum realm are mainly based on open quantum Ising models. We propose a realization of associative memory with a single drivendissipative quantum oscillator exploiting its infinite degrees of freedom in phase space. The model can improve the storage capacity of discrete neuron-based systems in a large regime and we prove successful state discrimination between n coherent states, which represent the stored patterns of the system. These can be tuned continuously by modifying the driving strength, constituting a modified learning rule. We show that the associative-memory capability is inherently related to the existence of a spectral separation in the Liouvillian superoperator, which results in a long timescale separation in the dynamics corresponding to a metastable phase.

DOI: 10.1103/PhysRevLett. 130.190602
A. Labay-Mora et al., Phys. Rev. Lett. 130, 190602 (2023)

Liouvillian spectrum
 $$
\mathcal{L} R_{j}=\lambda_{j} R_{j}{ }^{1}
$$
 $$
\tau_{j}=-1 / \operatorname{Re} \lambda_{j}
$$

[^0]
Liouvillian spectrum
 $$
\mathcal{L} R_{j}=\lambda_{j} R_{j}{ }^{1}
$$
 $$
\tau_{j}=-1 / \operatorname{Re} \lambda_{j}
$$

[^1]
Protocol

1. Construct the patterns by tuning the oscillator parameters.
2. Encode the initial information into a squeezed-coherent state $\left|r e^{i \theta}, s e^{i \phi}\right\rangle$.
3. Evolve it for at least a time $\gamma_{1} \tau_{n+1}$, the state will be close to one phase μ_{k}.
4. Extract the matching pattern k from a measurement on the state.

Quantum Associative Memory

Protocol

1. Construct the patterns by tuning the oscillator parameters.
2. Encode the initial information into a squeezed-coherent state $\left|r e^{i \theta}, s e^{i \phi}\right\rangle$.
3. Evolve it for at least a time $\gamma_{1} \tau_{n+1}$, the state will be close to one phase μ_{k}.
4. Extract the matching pattern k from a measurement on the state.

Quantum Associative Memory

Protocol

1. Construct the patterns by tuning the oscillator parameters.
2. Encode the initial information into a squeezed-coherent state $\left|r e^{i \theta}, s e^{i \phi}\right\rangle$.
3. Evolve it for at least a time $\gamma_{1} \tau_{n+1}$, the state will be close to one phase μ_{k}.
4. Extract the matching pattern k from a measurement on the state.

Quantum Associative Memory

Storage capacity

$$
\alpha=\frac{\# \text { of patterns }}{\text { system size }}
$$

Classical limit: $\alpha_{c}=0.138^{a}$

```
\({ }^{a}\) D. J. Amit et al., Phys. Rev. Lett. 55, 1530 (1985).
```


Outlook and Future Work

- Study the generation of squeezed states
- Modifying (n, m) preserves the exponential (linear) scaling of the relaxation time (dephasing rate) with $\langle\hat{n}\rangle$.
- Squeezed lobes improve the relaxation time for $n=2$ while maintaining the same scaling of the dephasing error rate for $m=4$.
- Successful state discrimination in the metastable phase
- Best performance using coherent states (longer metastability + more distinguishable).

Outlook and Future Work

- Study the generation of squeezed states
- Modifying (n, m) preserves the exponential (linear) scaling of the relaxation time (dephasing rate) with $\langle\hat{n}\rangle$.
- Squeezed lobes improve the relaxation time for $n=2$ while maintaining the same scaling of the dephasing error rate for $m=4$.
- Successful state discrimination in the metastable phase
- Best performance using coherent states (longer metastability + more distinguishable).

Hopefully, on arXiv soon...

THANK YOU

for your attention

[^0]: ${ }^{1}$ K. Macieszczak et al., Physical Review Research 3, 033047 (2021).

[^1]: ${ }^{1}$ K. Macieszczak et al., Physical Review Research 3, 033047 (2021).

