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The oscillator

S

ω0

GKLS master equation

∂ρ

∂t
= Lρ = −i[Ĥ, ρ]

+ γ1D [â] ρ+ γmD [âm] ρ

Hamiltonian: Ĥ = ω0â
†â

Lindblad operator: D [J ] ρ = JρJ† − 1
2J

†Jρ− 1
2ρJ

†J

Remember −→
{
n driving power

m dissipation power
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The oscillator steady states

∂ρ

∂t
= η[ân − (â†)n, ρ] + γ1D [â] ρ+ γmD [âm] ρ

A zoo of steady states can be generated by modifying (n,m)
(3, 3) (3, 4) (2, 4) even

(4, 3) (4, 4) (2, 4) odd
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The oscillator symmetry

The system has a discrete symmetry:

Ẑp = exp
(
−i2πâ†â/p

) n driving

m dissipation

(3, 3) (3, 4) (2, 4) even

(4, 3) (4, 4) (2, 4) odd
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The oscillator symmetry

The system has a discrete symmetry:

Ẑp = exp
(
−i2πâ†â/p

) n driving

m dissipation

Weak symmetry

SS: 1 mixed state
Requirement: [L,Zn] = 0
(essentially when not strong)

Strong symmetry

SS: p cat-states
Requirements:

1. γ1 = 0

2. [Ẑp, â
n] = [Ẑp, â

m] = 0
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The oscillator symmetry: weak

Requirement: [L,Zn] = 0

Consequences:
• The system is invariant under

rotations by an angle 2πk/n (k ∈ N)
• The Liouvillian can be separated into
n blocks

• Only 1 steady state with n lobes

ρss ≈
1

n

n∑
k=1

µk

where µk ≈ |ψk⟩⟨ψk|

p− q even
ρss, λ0 = 0
R2, λ2 ≫ λ1

p− q odd
R1, λ1 → 0

L =

(3, 4)

(4, 3)
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The oscillator symmetry: strong

Requirements: γ1 = 0 and [Ẑp, â
n] = [Ẑp, â

m] = 0

|0⟩ |1⟩ |2⟩ |3⟩ |4⟩ |5⟩ |6⟩ |7⟩ |8⟩ |9⟩ |10⟩ |11⟩

Two symmetry blocks
Even parity

|0⟩ |2⟩ |4⟩ |6⟩ |8⟩ |10⟩ |12⟩

Odd parity

|1⟩ |3⟩ |5⟩ |7⟩ |9⟩ |11⟩ |13⟩
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m] = 0

n = 2 & m = 2: |0⟩ |1⟩ |2⟩ |3⟩ |4⟩ |5⟩ |6⟩ |7⟩ |8⟩ |9⟩ |10⟩ |11⟩

n = 3 & m = 3: |0⟩ |1⟩ |2⟩ |3⟩ |4⟩ |5⟩ |6⟩ |7⟩ |8⟩ |9⟩ |10⟩ |11⟩

n = 2 & m = 4: |0⟩ |1⟩ |2⟩ |3⟩ |4⟩ |5⟩ |6⟩ |7⟩ |8⟩ |9⟩ |10⟩ |11⟩

Two symmetry blocks
Even parity

|0⟩ |2⟩ |4⟩ |6⟩ |8⟩ |10⟩ |12⟩

Odd parity

|1⟩ |3⟩ |5⟩ |7⟩ |9⟩ |11⟩ |13⟩

7 / 23



The oscillator symmetry: strong

Requirements: γ1 = 0 and [Ẑp, â
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The oscillator symmetry: strong

Requirements:

1. γ1 = 0

2. [Ẑp, â
n] = [Ẑp, â

m] = 0↰

gcd(n,m) = p > 1

Consequences:
• Liouvillian can be separated into p2 blocks.
• p steady states with n lobes∣∣∣ψ(k)

ss

〉
≈ 1√

n

n∑
k=1

ck |ψk⟩ ∝
∞∑
a=0

|ap+ k⟩

each having definite parity k = 1, . . . , p
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The lobes
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|α, ξ⟩ = |reiθ, seiϕ⟩ = D(α)S(ξ) |0⟩

The quadrature variance
〈
(∆X̂ϕ)

2
〉
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the directionXϕ = [âe−iϕ+ â†eiϕ]/2 is
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The lobes: squeezing

Mandel parameter:

Q =

〈
(∆n̂)2

〉
− ⟨n̂⟩

⟨n̂⟩


< 0 purely quantum state

= 0 coherent state (Poissonian)

> 0 we need more info
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• if n < m, states show sub-Poissonian statistics (in fact,
amplitude-squeezed)

• if n > m, states are super-Poissonian → we can do more
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The lobes: squeezing

The variance of the
quadrature operator
X̂ϕ allows to deter-
mine the amount of
squeezing and the
angle.

11 / 23



The lobes: squeezing

The variance of the
quadrature operator
X̂ϕ allows to deter-
mine the amount of
squeezing and the
angle.

11 / 23



The lobes: squeezing

The variance of the
quadrature operator
X̂ϕ allows to deter-
mine the amount of
squeezing and the
angle.

11 / 23



The applications

Storage

Quantum Associative Memory
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Storage

M. Mirrahimi et al., New Journal of Physics 16, 045014 (2014)

R. Lescanne et al., Nature Physics 16, 509 (2020)

C. Berdou et al., arXiv

preprint arXiv:2204.09128

(2022)
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Storage

Case n = 2: computational basis {|±α, ξ⟩} (|α| > 1)

ŷ

x̂

x̂
|C+⟩

−x̂
|C−⟩

ẑ = |0⟩L = |α⟩

−ẑ = |1⟩L = | − α⟩

How long is information preserved?
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Storage

Relaxation time
Decay time to the steady state.

Dephasing rate

Decay of coherences between states.
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Storage

Relaxation time
Decay time to the steady state.

Dephasing rate

Decay of coherences between states.
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Storage

Relaxation time
• Exponential scaling
• Larger system size

needed for high n

Dephasing rate

• Linear scaling
• Slope drastically larger

if gcd(n,m) = 1
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(Quantum) Associative Memory

J. J. Hopfield, Proceedings of the national

academy of sciences 79, 2554 (1982)

Any physical system whose dy-
namics in phase space is dominated
by a substantial number of locally
stable states to which it is attracted
can therefore be regarded as a gen-
eral content-addressable memory.

P. Rotondo et al., Journal of Physics

A: Mathematical and Theoretical 51,

115301 (2018)
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https://doi.org/10.1088/1751-8121/aaabcb
https://doi.org/10.1088/1751-8121/aaabcb
https://doi.org/10.1088/1751-8121/aaabcb


Quantum Associative Memory

A. Labay-Mora et al., Phys. Rev. Lett. 130, 190602 (2023)
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https://doi.org/10.1103/PhysRevLett.130.190602


The metastability

Liouvillian spectrum LRj = λjRj
1 τj = −1/Reλj

Decay time (τj) ∞0

τ1 = ∞τ2,3τ4τ5τn>5 GAP

Metastable manifold {|ψj⟩}Fast decay modes

1K. Macieszczak et al., Physical Review Research 3, 033047 (2021).
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Quantum Associative Memory

Protocol
1. Construct the patterns by tuning the oscillator parameters.

2. Encode the initial information into a squeezed-coherent
state

∣∣reiθ, seiϕ〉.

3. Evolve it for at least a time γ1τn+1, the state will be close
to one phase µk.

4. Extract the matching pattern k from a measurement on the
state.

n = 3
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Quantum Associative Memory

Storage capacity

α =
# of patterns
system size

Classical limit: αc = 0.138a

aD. J. Amit et al., Phys. Rev. Lett. 55, 1530 (1985).
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https://doi.org/10.1103/PhysRevLett.55.1530


Outlook and Future Work

• Study the generation of squeezed states
• Modifying (n,m) preserves the exponential (linear) scaling of

the relaxation time (dephasing rate) with ⟨n̂⟩.
• Squeezed lobes improve the relaxation time for n = 2 while

maintaining the same scaling of the dephasing error rate for
m = 4.

• Successful state discrimination in the metastable phase
• Best performance using coherent states (longer metastability

+ more distinguishable).

Hopefully, on arXiv soon...
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