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Motivation
Double quantum dot + superconducting island

Potential qubit realization by using two dots coupled to a superconducting
island SC (subgap states)

Source: PRB 104, L241409 (2021)

Cooper pair splitter
Interaction between magnetic impurities embedded in superconducting
materials

PRL 113, 087202 (2014)

PRX Quantum 2, 040347 (2021) ⇒
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Interaction between magnetic impurities

RKKY interaction:
Hij = J(R1 − R2)S1S2

The coupling J is determined by the charge-charge correlation function

For metals,

J(R) ∼ χ(R) ∼ cos(2kF R)
R3 at large distances

The nature of coupling (ferromagnetic/antiferromagnetic) alternates with the
distance
For superconductors, the coupling is shifted toward antiferromagnetism
PRL 113, 087202 (2014)
Between magnetic impurities located closely to each other, the coupling is
described by superexchange
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Two quantum dots coupled to SC

Model:
H = HSC + HQDs + Hhyb

Hybridizations may also overlap: α =
∑

i γ∗
LiγRi α ∈ [0; 1]

Source: arXiv:2303.14410

We will focus on close QDs, α = 1.
Main question: What is the ground state depending on εL/R , vL/R and U?
What spin configuration?
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iσciσ − g
N
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c+
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∑
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(
γσ

Lic+
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)
+ vR

∑
σi

(
γσ

Ric+
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∑
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Effects of finite bandwidth

Richardson model within flatband limit

Full model is solvable numerically only: density matrix renormalization group
by sweeping α, εL/R , etc.

Analytical results can be obtained in the flatband limit

ϵi ≡ 0

HSC = − g
N

N∑
i,j

c+
i↑c+

i↓cj↓cj↑

"Nearly" flat-band system in bilayer graphene twisted with magic-angle
In the single QD - SC system, flat-band limit provided a good description
Ground state of the superconductor with fixed number of Cooper-pairs M

|ΨN
M⟩ ∼

(∑
i

c+
i↑c+

i↓

)M

|0⟩
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Relation between Richardson model and BCS theory

Richardson model: fix number of particles

BCS theory, mean-field approximation, ∆ = g
N
∑

i⟨ci↓ci↑⟩

HSC ≈ N|∆|2

g −
∑

i

(
∆c+

i↑c+
i↓ + h.c.

)

Diagonalization with Bogoliubov (finite chemical potential)
Ground state is a mixture of |ΨN

M⟩ with different values of M

|ΨBCS⟩ =
∑
M

rM |ΨN
M⟩

rM describes a binomial distribution
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Complete overlap, α = 1, analytical results

Fix the number of Cooper pairs, M, and assume the limit U → ∞ and the
thermodynamic limit
Symmetric coupling v and ε < 0
Quantum numbers:

total number of particles (even/odd)
total spin (S = 0 singlet, S = 1/2 doublet, S = 1 triplet)
total Sz
parity (symmetric/antisymmetric)
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Complete overlap, α = 1, analytical results

Even number of particles (singlet/symmetric or triplet/antisymmetric)

singlet 1√
2

(
|↑L, ↓R⟩ − |↓L, ↑R⟩

)
⊗ |ΨN

M⟩SC

triplet |↑L, ↑R⟩ ⊗ |ΨN
M⟩SC

The difference in minimal energies: ET − ES = 2v4

|ε|3
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Complete overlap, α = 1, analytical results

Odd number of particles, doublet (symmetric or antisymmetric)

antisymmetric 1√
6

(
2|↑, ↑⟩ ⊗ | ↓, ΨN−1

M−1⟩ − (|↑, ↓⟩ + |↓, ↑⟩) ⊗ | ↑, ΨN−1
M−1⟩

)
symmetric 1√

2 (|↑, ↓⟩ − |↓, ↑⟩) ⊗ | ↑, ΨN−1
M−1⟩

The difference in minimal energies: ED,sym − ED,asym = 2v2

|ε|
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Comparison with DMRG

Density Matrix Renormalization Group simulation with U/g = 40 and N = 80
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Superexchange through a single level

Two dots coupled to a single level

Hamiltonian

H = ε
∑

σδ=L,R
d+

δσdδσ + U
∑

δ=L,R
nδ↑nδ↓ + v

∑
σδ=L,R

(
d+

δσfσ + h.c.
)

+ εf
∑

σ

f +
σ fσ

The occupation of the mediating level determines whether ferromagnetic or
antiferromagnetic alignment is favoured
Doubly occupied or empty intermediate level favours antiferromagnetic
alignment
Singly occupied intermediate level favours antiferromagnetic alignment
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Effects of finite bandwidth
DMRG results:

even number of particles: transition from singlet to triplet
odd number of particles: no transition, always ferromagnetic alignment

Kinetic energy enhances the probability of single occupancy on the
distinguished level
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Summary

In the flatband limit, QD-SC-QD system features
singlet (antiferromagnetic alignment) for even number of particles
parity-antisymmetric doublet (ferromagnetic alignment) for odd number of
particles

The features can be understood through the occupancy of the distinguished
level of the superconductor
Finite bandwidth plays an important role as opposed to single QD - SC

Thank you for your attention!
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Löwdin orthogonalization

Two quantum dots coupled to the SC in a symmetric way: εL = εR = ε,
vL = vR = v and UL = UR = U
In the flatband limit, the SC levels are identical

⇒ freedom to choose basis of SC levels fi↑ =
N∑

j=1
Uijci↑ fi↓ =

N∑
j=1

U∗
ij ci↓

We choose a basis in which the dots are coupled to two SC level only

α = sin(2φ)
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Superexchange through a single level

Phase diagram for the ground state for U = 10 and ε = −5

g = 0 g = 1
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