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Introduction

Motivation

Double quantum dot + superconducting island

o Potential qubit realization by using two dots coupled to a superconducting
island SC (subgap states)
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Source: PRB 104, L241409 (2021)
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Double quantum dot + superconducting island
o Potential qubit realization by using two dots coupled to a superconducting
island SC (subgap states)
o Cooper pair splitter

Source: npj Quantum Materials, 7, 88 (2022)
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Introduction

Motivation

Double quantum dot + superconducting island

o Potential qubit realization by using two dots coupled to a superconducting
island SC (subgap states)

o Cooper pair splitter

@ Interaction between magnetic impurities embedded in superconducting
materials

PRL 113, 087202 (2014)

PRX Quantum 2, 040347 (2021) =
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Introduction

Interaction between magnetic impurities

o RKKY interaction:
Hj = J(R1 — R»)S:S>

@ The coupling J is determined by the charge-charge correlation function
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Interaction between magnetic impurities

o RKKY interaction:
Hj = J(R1 — R»)S:S>

The coupling J is determined by the charge-charge correlation function

For metals,

cos(2krR)

JR) ~ x(R) ~ <20

at large distances

The nature of coupling (ferromagnetic/antiferromagnetic) alternates with the
distance

@ For superconductors, the coupling is shifted toward antiferromagnetism
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Introduction

Interaction between magnetic impurities

@ RKKY interaction:
Hj = J(R1 — R»)S:S>
@ The coupling J is determined by the charge-charge correlation function

o For metals,

J(R) ~ x(R) ~ % at large distances

@ The nature of coupling (ferromagnetic/antiferromagnetic) alternates with the
distance

@ For superconductors, the coupling is shifted toward antiferromagnetism
PRL 113, 087202 (2014)

o Between magnetic impurities located closely to each other, the coupling is
described by superexchange
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Introduction

Two quantum dots coupled to SC

o Model:
H = Hsc + Hops + Hiyb
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Introduction

Two quantum dots coupled to SC

o Model:
H = Hsc + Hgps + Hryp
N g N
Hsc = Z e,-c;c,-g ~N Z c,.#czcﬁcjzr (Richardson model)
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Introduction

Two quantum dots coupled to SC

o Model:
H = Hsc + Hgps + Hryp
Hops = €1 Z df dis+er Z di dro + Urnisngy + Ugnging)
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Introduction

Two quantum dots coupled to SC

o Model:
H = Hsc + Hgps + Hryp

Hhyp = vi Z (Viichdis + h.c.) + vr Z (V&ichdro + h.c.)

ai oi

@ Strength of couplings: v, and vg
o Distribution of couplings: ;; and g which fulfill > v [? =, [vril* =1
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Introduction

Two quantum dots coupled to SC

o Model:
H = Hsc + Hqps + Hpyp
o Hybridizations may also overlap: a = ", v vri a € [0;1]
UL UR
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VL\‘ /‘;ﬂ
Us

Source: arXiv:2303.14410
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Introduction

Two quantum dots coupled to SC

o Model:
H = Hsc + Hqps + Hpyp
o Hybridizations may also overlap: a = ", v vri a € [0;1]
UL UR
Ay e
VL\‘ /‘;ﬂ
Us

Source: arXiv:2303.14410
@ We will focus on close QDs, o = 1.

@ Main question: What is the ground state depending on £, /, v /g and U?
What spin configuration?

Bacsi, Adam 5



Flatband limit

Richardson model within flatband limit

o Full model is solvable numerically only: density matrix renormalization group
by sweeping «, €/ /r, etc.
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Richardson model within flatband limit

o Full model is solvable numerically only: density matrix renormalization group
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Flatband limit

Richardson model within flatband limit

o Full model is solvable numerically only: density matrix renormalization group
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o Analytical results can be obtained in the flatband limit
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Flatband limit

Richardson model within flatband limit

o Full model is solvable numerically only: density matrix renormalization group
by sweeping «, €/ /r, etc.

Analytical results can be obtained in the flatband limit

C;EO

N
__& + .+
Hsc = N E :CiTCi,LCNCJ'T
iJ

"Nearly" flat-band system in bilayer graphene twisted with magic-angle

In the single QD - SC system, flat-band limit provided a good description

(]

Ground state of the superconductor with fixed number of Cooper-pairs M

M
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Flatband limit

Relation between Richardson model and BCS theory

@ Richardson model: fix number of particles
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Relation between Richardson model and BCS theory

@ Richardson model: fix number of particles

o BCS theory, mean-field approximation, A = & >~ (¢ cit)
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o Diagonalization with Bogoliubov (finite chemical potential)
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Flatband limit

Relation between Richardson model and BCS theory

@ Richardson model: fix number of particles

o BCS theory, mean-field approximation, A = & >~ (¢ cit)

2
Hsc =~ ? — Z (Acﬁrclfi + h.c.)

i

o Diagonalization with Bogoliubov (finite chemical potential)
o Ground state is a mixture of |W,) with different values of M
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Flatband limit

Complete overlap, a = 1, analytical results

@ Fix the number of Cooper pairs, M, and assume the limit U — oo and the
thermodynamic limit

@ Symmetric coupling v and € < 0

@ Quantum numbers:

total number of particles (even/odd)

total spin (S = 0 singlet, S = 1/2 doublet, S =1 triplet)
total S;

parity (symmetric/antisymmetric)

U U
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Flatband limit

Complete overlap, a = 1, analytical results

o Even number of particles (singlet/symmetric or triplet/antisymmetric)

(Ewin — Eos)/g

elg
| singlet % (ITL,$R> - |J/L7TR>) @ W) sc
———— | triplet L TR) @ [Wi)sc
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Flatband limit

Complete overlap, a = 1, analytical results

o Even number of particles (singlet/symmetric or triplet/antisymmetric)

.
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o The difference in minimal energies: ET — Es = ‘2#
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Flatband limit

Complete overlap, a = 1, analytical results

@ Odd number of particles, doublet (symmetric or antisymmetric)

(Ewin — Eos)/g
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---- | symmetric D)=LD) e 1, vy
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Flatband limit

Complete overlap, a = 1, analytical results

@ Odd number of particles, doublet (symmetric or antisymmetric)

(Ewin — Eos)/g

——— | antisymmetric | 1 (2110 @ LT - 0n 0+l el nvyTh)

V6
~—— | symmetric D)=LD) e 1, vy
o The difference in minimal energies: Ep sym — Ep, asym = %
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Flatband limit

Comparison with DMRG

o Density Matrix Renormalization Group simulation with U/g = 40 and N = 80

Even number of particles Odd number of particles
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Flatband limit

Superexchange through a single level

@ Two dots coupled to a single level

Oor Tor | or Tl

@ Hamiltonian

H=c¢ Z déadgg—i—U Z nsynsy + v Z déaf +hc —i—szfﬂ‘
o6=L,R 6=L,R o6=L,R
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Flatband limit

Superexchange through a single level

@ Two dots coupled to a single level

Oor Tor | or Tl

@ Hamiltonian

H=c¢ Z déadgg—i—U Z nsynsy + v Z déaf +hc —i—szfﬂ‘
o6=L,R 6=L,R o6=L,R

@ The occupation of the mediating level determines whether ferromagnetic or
antiferromagnetic alignment is favoured

@ Doubly occupied or empty intermediate level favours antiferromagnetic
alignment

@ Singly occupied intermediate level favours antiferromagnetic alignment
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Effects of finite bandwidth

Effects of finite bandwidth

o DMRG results:
e even number of particles: transition from singlet to triplet
o odd number of particles: no transition, always ferromagnetic alignment
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Effects of finite bandwidth

Effects of finite bandwidth

o DMRG results:
e even number of particles: transition from singlet to triplet
o odd number of particles: no transition, always ferromagnetic alignment
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o Kinetic energy enhances the probability of single occupancy on the
distinguished level
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Effects of finite bandwidth

Summary

@ In the flatband limit, QD-SC-QD system features

o singlet (antiferromagnetic alignment) for even number of particles
o parity-antisymmetric doublet (ferromagnetic alignment) for odd number of
particles

@ The features can be understood through the occupancy of the distinguished
level of the superconductor

o Finite bandwidth plays an important role as opposed to single QD - SC
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Effects of finite bandwidth

Summary

@ In the flatband limit, QD-SC-QD system features

o singlet (antiferromagnetic alignment) for even number of particles
o parity-antisymmetric doublet (ferromagnetic alignment) for odd number of
particles

@ The features can be understood through the occupancy of the distinguished
level of the superconductor

o Finite bandwidth plays an important role as opposed to single QD - SC

Thank you for your attention!
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Effects of finite bandwidth

Lowdin orthogonalization

@ Two quantum dots coupled to the SC in a symmetric way: ¢, = er = ¢,
vi=vgr=vand U =Ur=U

o In the flatband limit, the SC levels are identical
N N
= freedom to choose basis of SC levels  fi = Z Ujcir fiy = Z U,-jfcw
Jj=1 J=1

@ We choose a basis in which the dots are coupled to two SC level only
U U

Veos vsing

fr—=
fa

vsing veosg

a = sin(2p)
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Effects of finite bandwidth

Superexchange through a single level

o Phase diagram for the ground state for U = 10 and ¢ = —5

&=-5 e=-5
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