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Abstract

The ecological transition to cleaner energy production is a fundamental part in facing the challenge of climate change. Many renewables, such as solar and wind powers, 
have an intermittent nature as their outputs strongly depend on factors like the weather, time of the day, season etc. This may create issues to the stability of the power 
grid, in particular it may accentuate frequency fluctuations. A possible solution to this problem is the introduction of energy storage systems in the grid, such as batteries.  
In this study we propose two different algorithms for battery operations: one is based on an optimisation technique called model predictive control which aims at smoothing 
power from renewables, and another which acts as an additional primary and secondary control. 

• Conventional power plant: swing equation, 
primary and secondary control 

• Fluctuating demand (actual data from Gran 
Canaria (Spain) + correlated noise) 

• Wind generation W (actual data from Gran 
Canaria (Spain)) 

• Energy storage system 

Conventional power plant
Generator power Demand

Deviation from 
reference frequency

Wind power W

generator inertia
Reference frequency

Mechanical power  
(primary control)

Spinning reserve 
(secondary control)

primary control response time
secondary control 
response time

Resistance

Aimed at smoothing real wind power W by 
solving an optimisation problem. The output Pw 
goes in the swing equation instead of W.

Model:  
- error between real wind power W and smoothed wind 
power Pw 
- battery state of charge Q

Optimisation problem:  
- quadratic cost function: minimise the error and keep the 
battery around  a reference value 
- constraints

Battery capacity

Wind turbine nominal 
power

Limit on smooth wind rate 
of change

Battery response 
time: faster than 
conventional 
primary control

Term that prevents 
the battery from 
discharging too fast

Two equations corresponding to additional primary (Pb) 
and secondary (Ps) control.  
Last equation for the dynamics of the battery state of 
charge (Q) 

When we couple these equations with the model of the 
conventional power plant we set Pw=W+Pb

Results

(a)Cumulative probability ranks (10 days of data, demand with added noise) for frequency 
fluctuations. Comparison between the reference case with no battery and different battery 
sizes.  

Counterintuitive effect: small batteries work better than bigger ones. Solution: set a cutoff for the 
battery power.  
(b)Cumulative probability rank of a fluctuation of amplitude 0.2 Hz as a function of battery size. 

Lines of different colours correspond to different limits on the battery power.  
The cutoff improves the performance of the battery in reducing frequency fluctuations. 

(a) Actual demand data with no noise. Cumulative probability ranks (10 days of data) for frequency 
fluctuations. Comparison between the reference case with no battery and different battery sizes.  

(b)Same as panel (a) but with correlated noise added to the demand. 

The effect of this method is more visible in the case with no noise. This is due to the fact that the 
optimisation problem only takes into account wind fluctuations.  
This model requires batteries that are big enough to ensure the convergence of the algorithm used to 
solve the optimisation problem.  

• Both methods can be used to reduce frequency fluctuations.  
• In general, to implement the model predictive control algorithm, a 

battery of bigger capacity is needed. Thus may increase the operation 
costs.  

• To compare the two methods we consider the cumulative probability 
ranks obtained with and without noise added to actual demand data 
for 10 days in Gran Canaria. We used a battery of 10 MWh and a 
cutoff of 1 MW on the battery power for the additional primary and 
secondary control. 

• The model predictive control algorithm performs better without noise in 
the demand (a). The other battery usage mode does not reduce the 
fluctuations, which in this case are caused only by the variability of 
wind generation. 

• The battery as an additional primary and secondary control 
outperforms the model predictive control algorithm the case of noisy 
demand (b), even though the latter can still cause a small reduction of 
frequency fluctuations. 
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Model ingredients

Demand and wind generation in Gran Canaria for 
24 hours starting at 20:00 on June 30th 2020. 

Frequency dynamics obtained integrating the 
model with data above. 
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Cumulative probability ranks for frequency fluctuations
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