

@ifisc_mallorca

Battery control models for frequency stability in power grids with renewables

> Giulia Ruzzene, Damià Gomila, Pere Colet IFISC (CSIC-UIB) Palma de Mallorca – Spain.

> > giulia@ifisc.uib-csic.es

Abstract

The ecological transition to cleaner energy production is a fundamental part in facing the challenge of climate change. Many renewables, such as solar and wind powers, have an intermittent nature as their outputs strongly depend on factors like the weather, time of the day, season etc. This may create issues to the stability of the power grid, in particular it may accentuate frequency fluctuations. A possible solution to this problem is the introduction of energy storage systems in the grid, such as batteries. In this study we propose two different algorithms for battery operations: one is based on an optimisation technique called model predictive control which aims at smoothing power from renewables, and another which acts as an additional primary and secondary control.

Model ingredients

 Conventional power plant: swing equation, primary and secondary control

Conventional power plant

generator inertia

Generator power

Demand and wind generation in Gran Canaria for 24 hours starting at 20:00 on June 30th 2020.

- Fluctuating demand (actual data from Gran Canaria (Spain) + correlated noise)
- Wind generation *W* (actual data from Gran Canaria (Spain))
- Energy storage system

Battery with model predictive control

Aimed at smoothing real wind power W by goes in the swing equation instead of W.

- error between real wind power W and smoothed wind power P_w

- battery state of charge Q

Battery as primary and secondary control

Jeman

Vind generatior

fluctuations. Comparison between the reference case with no battery and different battery sizes. (b)Same as panel (a) but with correlated noise added to the demand.

The effect of this method is more visible in the case with no noise. This is due to the fact that the

Counterintuitive effect: small batteries work better than bigger ones. Solution: set a cutoff for the battery power. (b)Cumulative probability rank of a fluctuation of amplitude 0.2 Hz as a function of battery size. Lines of different colours correspond to different limits on the battery power. The cutoff improves the performance of the battery in reducing frequency fluctuations.

fluctuations. Comparison between the reference case with no battery and different battery

optimisation problem only takes into account wind fluctuations. This model requires batteries that are big enough to ensure the convergence of the algorithm used to solve the optimisation problem.

Discussion

- Both methods can be used to reduce frequency fluctuations.
- In general, to implement the model predictive control algorithm, a battery of bigger capacity is needed. Thus may increase the operation costs.
- To compare the two methods we consider the cumulative probability ranks obtained with and without noise added to actual demand data for 10 days in Gran Canaria. We used a battery of 10 MWh and a cutoff of 1 MW on the battery power for the additional primary and secondary control.
- The model predictive control algorithm performs better without noise in the demand (a). The other battery usage mode does not reduce the fluctuations, which in this case are caused only by the variability of wind generation.
- The battery as an additional primary and secondary control outperforms the model predictive control algorithm the case of noisy demand (b), even though the latter can still cause a small reduction of frequency fluctuations.

sizes.

References

[1] H. Saadat, McGraw - Hill (1999) [2] M. Khalid and A. V. Savkin, Renewable Energy, 25, 1520-1526 (2010) [3] E. B. Tchawou Tchuisseu et al., Physical Review E, 96, 2, 022302 (2017)

Acknowledgements

We acknowledge funding from project PACSS RTI2018-093732-B-C22 of the MCIN/AEI/10.13039/501100011033/ and by EU through FEDER funds, from the Maria de Maeztu program MDM-2017-0711 of the MCIN/AEI /10.13039/501100011033/, and from European Commission under Horizon2020 Innovation Action VPP4ISLANDS (grant agreement 957852).

