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Conclusion & OutlookWhat are the limitations?

output layer

Physics-informed reservoir computing

‣ using prior knowledge about the task's    

   physics to bias the training data, the 

   reservoir's topology or loss function

‣ data-driven learning of the reservoir's 

   output layer 

          high prediction accuracy 

          far-reaching inference

          data efficient learning

‣ learning to replicate the 
   chaotic dynamics of the 
   training data set

 

‣ Goal: predict the dynamics of high-
            dimensional chaotic delay systems

‣ Example: Mackey-Glass system 
 

‣ dynamics rely on long history function

‣ ML Model: delayed echo state network

‣ learn to predict time series one-step-
    ahead 

‣ feed back prediction as new input -> 
   autonomous running reservoir

‣ after replicating the training
   data, changing the delay of the   
   dESN

‣ reservoir infers dynamics of the 
   Mackey-Glass system with 
   different delays

   - output layer left unchanged
   - no further training needed
  

‣ prediction reveals bifurcations    
  towards:
         - limit cycles
         - fixed points 

‣ trained reservoir can infer unseen 
  multistabilties

‣ learning from a single example  
  enables to infer the entire 
  bifurcation diagram of the delay 
  system

‣ more complexity in the training data 
   improves the inference ability

‣ e.g. learning from a chaotic system 
   with a long delay enables to predict 
   dynamics of systems with respectively  
   shorter delay

‣ learning in the long delay limit enables 
   prediction of much longer delays up to    
       =1000

‣ training a physics-informed reservoir on data    
  enables prediction of dynamical features not   
  seen during the training

‣ building digital twins of real world systems to  
  infer dynamics of regimes where data is not 
  accesible 

‣ possible extension to other 
   dynamical system such as: 
    - delay-coupled oscillators
    - spatio-temporal systems
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no external input

‣ inferring complex dynamics
not seen in the training but

corresponding to system
trained for in a different

dynamical regime
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