
Benchmarking the performance of

quantum reservoir computing platforms of

particles of distinct statistics
Christos Charalambous, Guillem Llodra, Rodrigo Martinez-Peña,

Gian Luca Giorgi and Roberta Zambrini

Abstract

IFISC (CSIC-UIB) Palma de Mallorca – Spain.

christos@ifisc.uib-csic.es

http://ifisc.uib-csic.es@ifisc_mallorca www.facebook.com/ifisc

Introduction / Model

Input OutputReservoir Solid lines:

random but

fixed

connections

Dashed lines:

trained

connections

Advantages of RC:

1. Fast training

2. Easy to implement in practice

3. Possibility of solving many tasks with the same reservoir simply by

training only the output layer independently for each task

Reservoir computing (RC) is a neuro-inspired machine learning approach to time series processing. As such, it forms an example of a natural unconventional analog

computer designed to perform a given computational task. Its power in solving nonlinear and temporal tasks depends on the reservoir possessing a high dimensional state space

and the ability to retain memory of information for sufficiently long time. Quantum systems, with their large number of degrees of freedom and their complex real time dynamics

satisfy both requirements, and for this reason are good candidates to serve as substrates for RC. In addition, quantum effects such as superposition could lead to improvement in

the performance of a RC. An important issue we explore here in order to establish the potential of quantum reservoirs computing (QRC) is the role of the particle statistics of the

units composing the complex network reservoir. Considering the simplest interaction, we assess the performance of fermions bosons and the commonly used spins for QRC.

Comments:

1. 𝐽𝑖𝑗~𝑈 0,1

2.Input:

ȁ ۧ𝜓𝑖𝑛
𝑟 𝑘Δ𝑡 = 𝑢𝑘ȁ ۧ0 + 1 − 𝑢𝑘ȁ ۧ𝑟

where 𝑢𝑘 ∈ 𝑢 = 𝑢0, … , 𝑢𝐿 with 𝑢𝑘~𝑈 0,1 is the

classical input and

3.Input nodes: subset of physical nodes

4.Output nodes: All of physical nodes

𝜌𝑖𝑛 = ȁ ۧ𝜓𝑖𝑛 𝑘Δ𝑡 ۦ ȁ𝜓𝑖𝑛 𝑘Δ𝑡

𝜌 𝑘Δ𝑡 = 𝑒−𝑖Δ𝑡𝐻 𝜌 𝑘Δ𝑡 𝑒𝑖Δ𝑡𝐻

Algorithm:

1.Measurement every Δ𝑡: 𝑥𝑘 = 𝑇𝑟 𝑂𝑗𝜌 𝑘Δ𝑡

obtained using all particles and observables 𝑂𝑗
→ 𝑦𝑘

𝑜𝑢𝑡 = 𝑊𝑜𝑢𝑡𝑓 𝑥𝑘
2.State of reservoir prepared after measurement:

3.Unitary evolution during time Δ𝑡
𝜌 𝑘Δ𝑡 = 𝜌𝑖𝑛⨂𝑇𝑟1 𝜌 𝑘 − 1 Δ𝑡

Goal: Evaluate its performance on reproducing 𝑦𝑘
using a new set of outputs 𝑦𝑘

𝑜𝑢𝑡 obtained for new

input numbers 𝑢𝑘

Energy spectrum cutoff

for bosons at 𝑛𝑐𝑢𝑡𝑜𝑓𝑓 level

𝐻 =

𝑖,𝑗

𝐽𝑖𝑗 𝑎𝑖
†𝑎𝑗

where:

Fermions:

Bosons:

Normal Hamiltonian

Classical RC

Check boson’s levels’ occupationEcho state property

(independence on initial state)

optimum interevent time Δ𝑡

𝑃𝑖
0 ≫ 𝑃

𝑖

𝑛𝑐𝑢𝑡𝑜𝑓𝑓 ∀ 𝑖 ∈ 1,… , 𝑁

1) performance

decreases for more

nonlinear tasks.

2) For small (large)

delays bosons

ห ൿ𝜓𝑖𝑛
2 𝑘Δ𝑡 (fermions)

outperform fermions

(bosons).

The

performance of

QRC using

different

observables in

the output is

examined.

8.

𝒚𝒌 = 𝒖𝒌−𝒅𝒆𝒍𝒂𝒚
𝒒

, 𝑂𝑖 = 𝑎𝑖
†𝑎𝑖

The

introduction of

virtual nodes

improves the

performance

1.

𝒒 = 𝟏

𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝐶𝑜𝑟𝑟 =
𝐶𝑜𝑣2 𝑦𝑘

𝑜𝑢𝑡 , 𝑦𝑘

𝜎2 𝑦𝑘
𝑜𝑢𝑡 𝜎2 𝑦𝑘

𝑟 = ቊ
1 𝑓𝑒𝑟𝑚𝑖𝑜𝑛𝑠

1 𝑜𝑟 2 𝑏𝑜𝑠𝑜𝑛𝑠

Performance

improves with

the number of

particles

Bosons with input in 1st excited

state perform similarly to spins

Bosons with input in 2nd excited

state perform similarly to fermions

• Performance improves up to a saturation level, as the interevent time increases for bosons and fermions

• Fermions and spins perform better as the number of particle increases

• The performance decreases for longer memory tasks. For the input state ห ൿ𝜓𝑖𝑛
1 𝑘Δ𝑡 bosons perform as good as spins. For the input state ห ൿ𝜓𝑖𝑛

2 𝑘Δ𝑡

they perform as good as fermions. The increase in the performance observed is attributed to the utilization of the larger Hilbert space of bosons.

• We studied the performance of bosons and spins for various observables.

• We saw that the performance decreases for more non-linear tasks. Fermions performance is more robust as delay increases.

• Virtual nodes improve the performance in all cases.

Results

Conclusions

2.

3.

4.

5.

6. 7.

9.

10.

Train network (regression min
𝑊

𝑦𝑘
𝑜𝑢𝑡 − 𝑦𝑘

2) to

be able to reproduce a target function of the

input 𝑦𝑘, e.g. 𝑦𝑘 = 𝑢𝑘−𝑑𝑒𝑙𝑎𝑦

