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Reservoir computing (RC) Is a neuro-inspired machine learning approach to time series processing. As such, it forms an example of a natural unconventional analog
computer designed to perform a given computational task. Its power in solving nonlinear and temporal tasks depends on the reservoir possessing a high dimensional state space

and the ability to retain memory of information for sufficiently long time. Quantum systems, with their large number of degrees of freedom and their comp

satisfy both requirements, and for this reason are good candidates to serve as substrates for RC. In addition, guantum effects such as superposition could
the performance of a RC. An important issue we explore here in order to establish the potential of qguantum reservoirs computing (QRC) is the role of the
units composing the complex network reservoir. Considering the simplest interaction, we assess the performance of fermions bosons and the commonly used spins for QRC.
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Advantages of RC:
1. Fast training

2. Easy to implement in practice

3. Possibility of solving many tasks with the same reservoir simply by

training only the output layer independently for each task
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Echo state property
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Particles Wash Time

for bosons at n 7 level

— 2,4
Yk = Uk_delay

Oi — (Cl;l-ai>

Optimizing evolution time
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Fermions and Spins with delay = 4
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Performance
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Bosons with input in 18t excited
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Algorithm:
1.Measurement every At: x; = Tr|0;p(kAt)|

obtained using all particles and observables 0;
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2.State of reservoir prepared after measurement:

p(kAL) = pi®Tr[p((k — 1)AL)]
3.Unitary evolution during time At

p(kAt) — e—iAtH[~(kAt)] IAtH
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Goal: Evaluate Iits performance on reproducing vy,
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Input numbers uy
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Non-linear task for Spins
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Non-linear task for Fermions
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Check boson’s levels’ occupation
P,,;j = tr (ptﬁf ) where:

Average population

PP=I1®.0I0j){jle.oI
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Boson population
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1) performance
decreases for more
nonlinear tasks.
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Fermion/Boson MC VS observable
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Bosons virtual nodes
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» Performance improves up to a saturation level, as the interevent time increases for bosons and fermions
* Fermions and spins perform better as the number of particle increases

* The performance decreases for longer memory tasks. For the input state \w}n(kAt)) bosons perform as good as spins.

they perform as good as fermions. The increase in the performance observed is attributed to the utilization of the larger Hilbert space of bosons.
* We studied the performance of bosons and spins for various observables.

* We saw that the performance decreases for more non-linear tasks. Fermions performance is more robust as delay increases.
* Virtual nodes improve the performance in all cases.
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