

Degree-Ordered-Percolation on uncorrelated networks

Annalisa Caligiuri¹ and Claudio Castellano²

¹ IFISC (CSIC-UIB) Palma de Mallorca – Spain. ² Istituto dei Sistemi Complessi (ISC-CNR), via dei Taurini 19, I-00185 Rome, Italy

annalisa@ifisc.uib-csic.es

What is it?

The Degree-Ordered-Percolation (DOP) is a process in which nodes are added in degree-descending order.

Critical exponents DOP VS Random Percolation (RP)

By using the generating function formalism we have computed the following critical exponents of the DOP:

- $\boldsymbol{\nu}$: $p_c(N) p_c \propto N^{-\frac{1}{\overline{\nu}}}$;
- β : $|G(p)| \sim \Delta^{\beta}$ where $\Delta = p p_c$;
- τ : $n_s(p) \sim s^{-\tau}$ where n_s is the probability that a finite cluster has size s at the percolation critical point.

	$\frac{1}{\overline{\nu}}$	
3	$3<\gamma<4$	4
	$\gamma-3$	

	$\mid 2 < \gamma \leq 3$	$\mid 3 < \gamma < 4 \mid$	$4<\gamma$
DOP	1	$\frac{\gamma-3}{\gamma-1}$	$\frac{1}{3}$
$oxed{\mathbf{RP}}$	$\frac{3-\gamma}{\gamma-1}$	$\frac{\gamma-3}{\gamma-1}$	$\frac{1}{3}$

	$\parallel 2 < \gamma \leq 3$	$3<\gamma<4$	$4<\gamma$
DOP	1	$\frac{1}{\gamma-3}$	1
$\overline{\mathbf{RP}}$	$\frac{1}{3-\gamma}$	$\frac{1}{\gamma-3}$	1

	$\parallel 2 < \gamma \leq 3$	$3<\gamma<4$	$4<\gamma$
DOP	not a power law	$\frac{2\gamma - 3}{\gamma - 2}$	$\frac{5}{2}$
$\overline{\mathbf{RP}}$	3	$\frac{2\gamma-3}{\gamma-2}$	$\frac{5}{2}$

Why are we interested in this process?

We analyse the birth of the giant component G on uncorrelated networks of size N with a power law degree distribution $P(k) = Ak^{-\gamma}$.

We determine the percolation threshold p_c

To verify what has been argued by Lee et al. [1]:

if p_c vanishes, for $N \to \infty$ and $\gamma > 3$, then it is at the origin of the vanishing of the SIS threshold

It is natural to wonder how p_c depends on the network properties and

whether the critical exponents are different from those of standard random percolation.

Conclusions

1- For networks with $3<\gamma<4$ p_c is finite but extremely small.

2- DOP and RP are in different universality classes for scale-free networks.

What's next?

What is the effect of degree correlations on p_c ?

References

- 1 Gallos L K, Cohen R, Argyrakis P, Bunde A and Havlin S 2005 Phys. Rev. Lett. 94 188701
- 2 Lee H K, Shim P-S and Noh J D 2013 Phys. Rev. E 87 062812
- 3 Pastor-Satorras R, Castellano C, Van Mieghem P and Vespignani A 2015 Rev. Mod. Phys. 87 925
- 4 C. Castellano and R. Pastor-Satorras, Phys. Rev. X 10, 011070 (2020).

The percolation threshold pc

By applying the Molloy-Reed criterion we obtain

$$\sum_{k} \frac{k^2 - k}{\langle k \rangle} \Theta(k - k_c) P(k) = 1$$

from this we determine the value of k_c that is the minimum degree left in the network at the critical point. Once k_c is known we find the percolation threshold by the condition:

$$p_c = \sum_{k} \Theta(k - k_c) P(k). \tag{1}$$

The blue solid line represents the exact solution of Eq. (1), the orange dashed line represents the approximate one. The dotted red line is the threshold for standard percolation.

