

@ifisc_mallorca

Coexistence, consensus and polarisation in a continuous opinion dynamics model with quenched disorder

Joseph W. Baron

IFISC (CSIC-UIB) Palma de Mallorca – Spain.

josephbaron@ifisc.uib-csic.es

UNIT OF EXCELLENCE
MARÍA
DE MAEZTU

AGENCIA ESTATAL DE INVESTIGACIÓN

(5)

Introduction

A model of continuously varying opinions with heterogeneous interactions between individuals is introduced

It is shown that consensus, polarisation and a spread of moderate opinions (coexistence) are all possible in this model In the limit $N \to \infty$, the following single-opinion process has the same statistics as Eqs. (1)

Dynamic mean-field theory

$$\dot{x} = g(x) \left\{ m(t) - x + \mu \left[m(t) - \frac{1}{2} \right] + \Gamma \sigma^2 \int_0^t dt' G(t, t') \left[x(t') - \frac{1}{2} \right] + \sigma \eta(t) \right\}.$$
(3)

We deduce what kinds of interactions between individuals lead to each of the aforementioned states

Model

- Consider a set of individuals i = 1, 2, 3, ..., N with opinions $0 \le x_i \le 1$
- Opinions evolve continuously according to (inspired by the Lotka-Volterra model in Ecology)

$$\dot{x}_{i} = g(x_{i}) \left[N^{-1} \sum_{j} x_{j} - x_{i} + \sum_{j} z_{ij} \left(x_{j} - \frac{1}{2} \right) \right].$$
(1)

The precise form of $g(x_i)$ does not affect the phase transitions (see below), but it is convenient to choose $g(x_i) = x_i(1 - x_i)$ for the numerical integration.

• Quenched interaction coefficients z_{ij} are Gaussian random variables with statistics

 Γ μ σ^2 σ^2 $\Gamma\sigma^2$

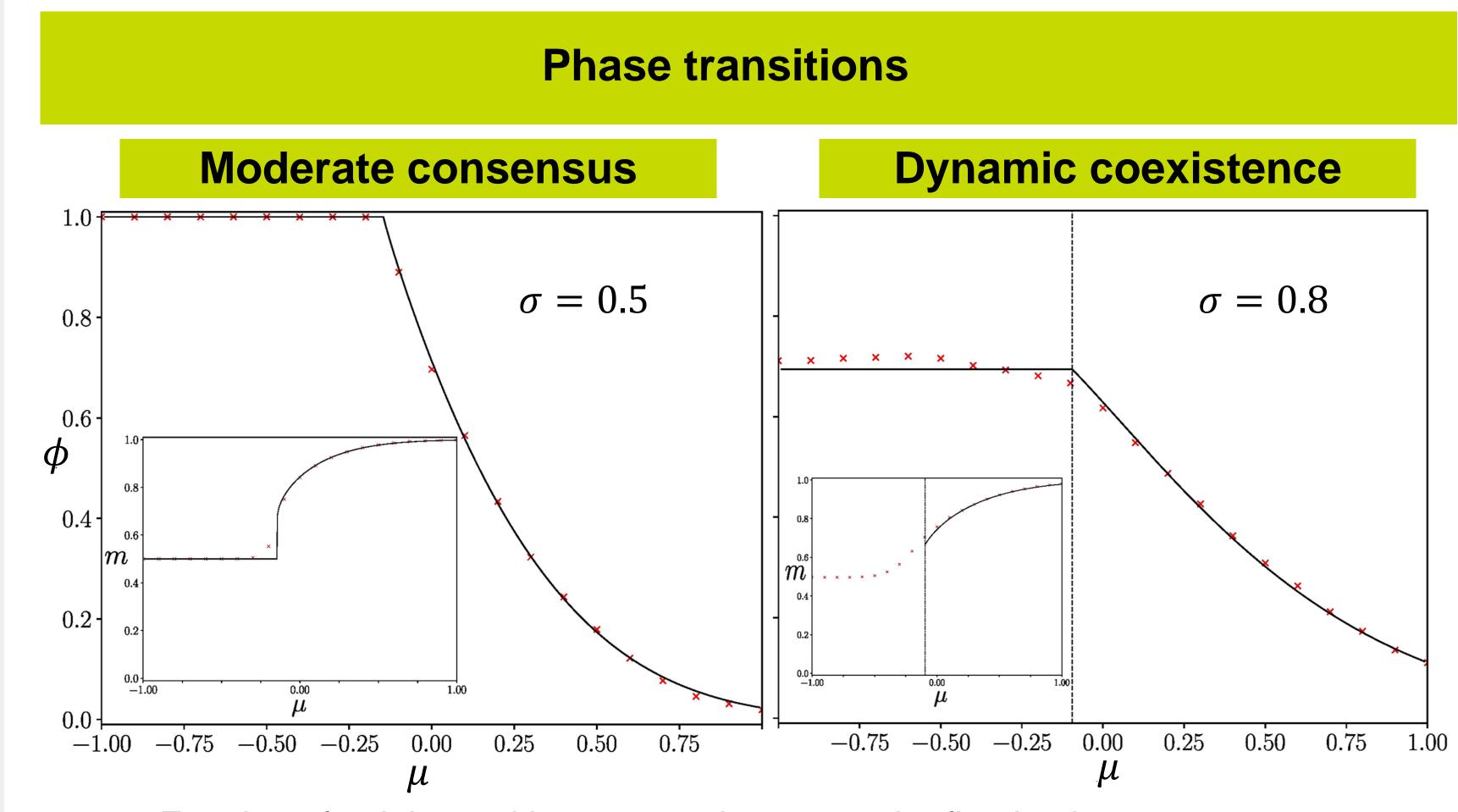
• The coloured Gaussian noise $\eta(t)$ has statistics

$$\langle \eta(t) \rangle = 0, \quad \langle \eta(t)\eta(t') \rangle = \left\langle \left[x(t) - \frac{1}{2} \right] \left[x(t') - \frac{1}{2} \right] \right\rangle.$$
 (4)

The process is determined self-consistently so that

$$m(t) = \langle x(t) \rangle, \qquad G(t,t') = \left\langle \frac{\delta x(t)}{\delta \eta(t')} \right\rangle$$

This single-opinion process has a fixed-point solution. One can find the distribution of opinions at the fixed point and analyse the stability.

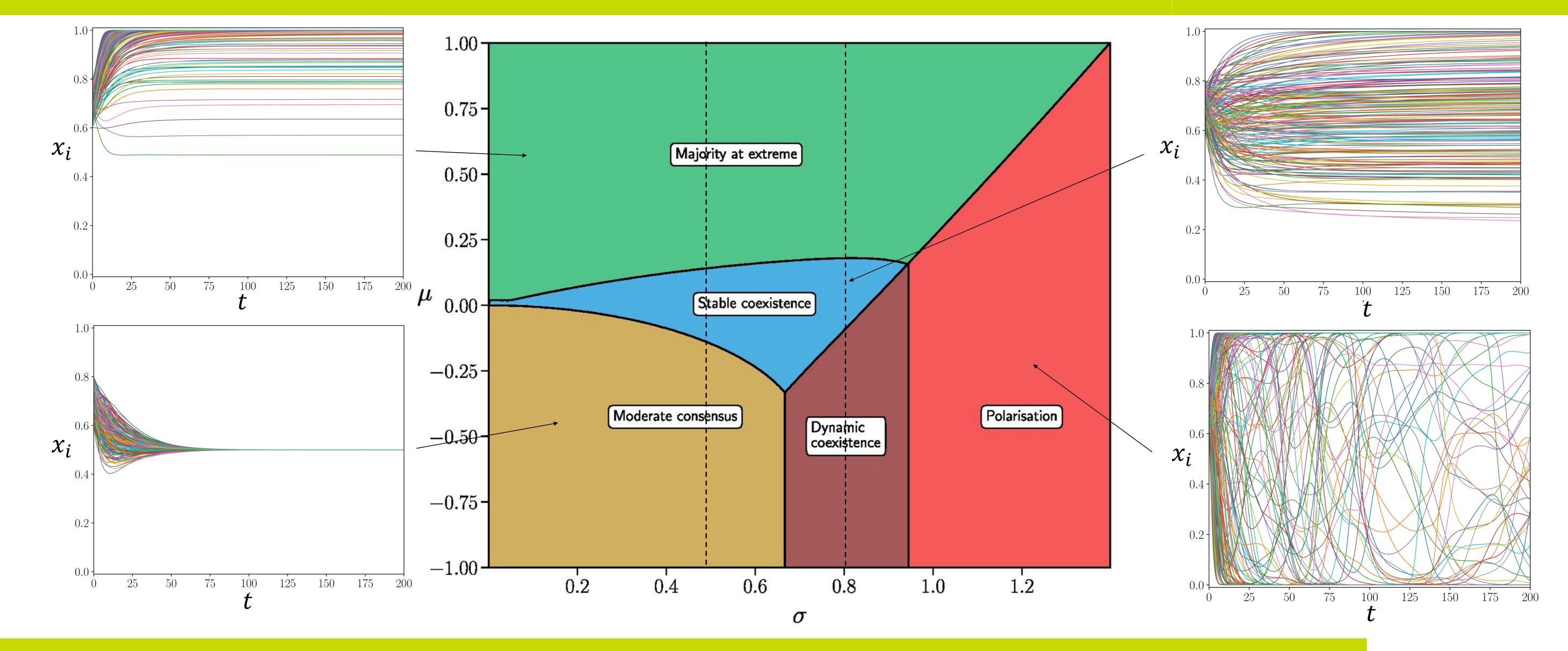


$$E[z_{ij}] = \frac{\mu}{N}, \qquad Var[z_{ij}] = \frac{\sigma}{N}, \qquad Cov[z_{ij}, z_{ji}] = \frac{10}{N}.$$
(2)

- $\blacksquare \mu$ is the agreeableness how likely individuals are to copy each other
- σ is the amount of heterogeneity in the interactions
- $0 \le \Gamma \le 1$ is the reciprocity how closely related are z_{ij} and z_{ji}

 ϕ – Fraction of opinions with $x_i \neq 0$ and $x_i \neq 1$ at the fixed point

Phase diagram



Conclusions

• Agreeableness (a tendency to adopt the same opinion as others – large positive μ) leads to a majority at the extreme opinion

• Disagreeableness (a tendency to contradict others – large negative μ) leads to consensus at the moderate opinion

• Highly heterogeneous interactions between individuals (large σ) leads to unstable opinions and polarization

• Reciprocity of interactions ($\Gamma \approx 1$) accentuates the effect of heterogeneity and promotes extreme opinions (not shown here)

