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Understanding human mobility is crucial for predicting epidemics, urban and transit
infrastructure planning, understanding people’s responses to con�ict and natural disasters and
other important domains. Formerly, the state-of-the-art in mobility data was based on cell carrier
logs or location "check-ins", and was therefore available only in limited areas — where the
telecom provider is operating. As a result, cross-border movement and long-distance travel were
typically not captured, because users tend not to use their SIM card outside the country covered
by their subscription plan and datasets are often bound to speci�c regions. Additionally, such
measures involved considerable time lags and were available only within limited time ranges
and geographical areas.

In contrast, de-identi�ed aggregate �ows of populations around the world can now be computed
from phones' location sensors at a uniform spatial resolution. This metric has the potential to
be extremely useful for urban planning since it can be measured in a direct and timely way. The
use of de-identi�ed and aggregated population �ow data collected at a global level via
smartphones could shed additional light on city organization, for example, while requiring
signi�cantly fewer resources than existing methods. 

In “Hierarchical Organization of Urban Mobility and Its Connection with City Livability”, we show
that these mobility patterns — statistics on how populations move about in aggregate —
indicate a higher use of public transportation, improved walkability, lower pollutant emissions
per capita, and better health indicators, including easier accessibility to hospitals. This work,
which appears in Nature Communications, contributes to a better characterization of city
organization and supports a stronger quantitative perspective in the efforts to improve urban
livability and sustainability.

New Insights into Human Mobility with Privacy Preserving
Aggregation
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Computing a Global Mobility Map While Preserving User Privacy
In line with our AI principles, we have designed a method for analyzing population mobility with
privacy-preserving techniques at its core. To ensure that no individual user’s journey can be
identi�ed, we create representative models of aggregate data by employing a technique called
differential privacy, together with k-anonymity, to aggregate population �ows over time. Initially
implemented in 2014, this approach to differential privacy intentionally adds random “noise” to
the data in a way that maintains both users' privacy and the data's accuracy at an aggregate
level. We use this method to aggregate data collected from smartphones of users who have
deliberately chosen to opt-in to Location History, in order to better understand global patterns of
population movements.

The model only considers de-identi�ed location readings aggregated to geographical areas of
predetermined sizes (e.g., S2 cells). It "snaps" each reading into a spacetime bucket by
discretizing time into longer intervals (e.g., weeks) and latitude/longitude into a unique identi�er
of the geographical area. Aggregating into these large spacetime buckets goes beyond
protecting individual privacy — it can even protect the privacy of communities. 

Finally, for each pair of geographical areas, the system computes the relative �ow between the
areas over a given time interval, applies differential privacy �lters, and outputs the global,
anonymized, and aggregated mobility map. The dataset is generated only once and only
mobility �ows involving a su�ciently large number of accounts are processed by the model.
This design is limited to heavily aggregated �ows of populations, such as that already used as a
vital source of information for estimates of live tra�c and parking availability, which protects
individual data from being manually identi�ed. The resulting map is indexed for e�cient lookup
and used to fuel the modeling described below.

Mobility Map Applications
Aggregate mobility of people in cities around the globe de�nes the city and, in turn, its impact
on the people who live there. We de�ne a metric, the �ow hierarchy (Φ), derived entirely from the
mobility map, that quanti�es the hierarchical organization of cities. While hierarchies across
cities have been extensively studied since Christaller’s work in the 1930s, for individual cities,
the focus has been primarily on the differences between core and peripheral structures, as well
as hether cities are mono or pol centric O r res lts instead sho that the realit is m ch

Visualization of privacy-�rst computation of the mobility map. Individual data points are automatically aggregated
together with differential privacy noise added. Then, �ows of these aggregate and obfuscated populations are studied.
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as whether cities are mono- or poly-centric. Our results instead show that the reality is much
more rich than previously thought. The mobility map enables a quantitative demonstration that
cities lie across a spectrum of hierarchical organization that strongly correlates with a series of
important quality of life indicators, including health and transportation.

Below we see an example of two cities — Paris and Los Angeles. Though they have almost the
same population size, those two populations move in very different ways. Paris is mono-centric,
with an "onion" structure that has a distinct high-mobility city center (red), which progressively
decreases as we move away from the center (in order: orange, yellow, green, blue). On the other
hand, Los Angeles is truly poly-centric, with a large number of high-mobility areas scattered
throughout the region.

More hierarchical cities — in terms of �ows being primarily between hotspots of similar activity
levels — have values of �ow hierarchy Φ closer to the upper limit of 1 and tend to have greater
levels of uniformity in their spatial distribution of movements, wider use of public
transportation, higher levels of walkability, lower pollution emissions, and better indicators of
various measures of health. Returning to our example, the �ow hierarchy of Paris is Φ=0.93 (in
the top quartile across all 174 cities sampled), while that of Los Angeles is 0.86 (bottom
quartile). 

We �nd that existing measures of urban structure, such as population density and sprawl
composite indices, correlate with �ow hierarchy, but in addition the �ow hierarchy conveys
comparatively more information that includes behavioral and socioeconomic factors.

Mobility maps of Paris (left) and Los Angeles (right). Both cities have similar population sizes, but very different
mobility patterns. Paris has an "onion" structure exhibiting a distinct center with a high degree of mobility (red) that

progressively decreases as we move away from the center (in order: orange, yellow, green, blue). In contrast, Los
Angeles has a large number of high-mobility areas scattered throughout the region.
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Measures of urban sprawl require composite indices built up from much more detailed
information on land use, population, density of jobs, and street geography among others
(sometimes up to 20 different variables). In addition to the extensive data requirements, such
metrics are also costly to obtain. For example, censuses and surveys require a massive
deployment of resources in terms of interviews, and are only standardized at a country level,
hindering the correct quanti�cation of sprawl indices at a global scale. On the other hand, the
�ow hierarchy, being constructed from mobility information alone, is signi�cantly less expensive
to compile (involving only computer processing cycles), and is available in real-time.

Given the ongoing debate on the optimal structure of cities, the �ow hierarchy, introduces a
different conceptual perspective compared to existing measures, and can shed new light on the
organization of cities. From a public-policy point of view, we see that cities with greater degree
of mobility hierarchy tend to have more desirable urban indicators. Given that this hierarchy is a
measure of proximity and direct connectivity between socioeconomic hubs, a possible direction
could be to shape opportunity and demand in a way that facilitates a greater degree of hub-to-
hub movement than a hub-to-spoke architecture. The proximity of hubs can be generated
through appropriate land use, that can be shaped by data-driven zoning laws in terms of
business, residence or service areas. The presence of e�cient public transportation and lower
use of cars is another important factor. Perhaps a combination of policies, such as congestion-
pricing, used to disincentivize private transportation to socioeconomic hubs, along with building
public transportation in a targeted fashion to directly connect the hubs, may well prove useful.

Next Steps
This work is part of our larger AI for Social Good efforts, a program that focuses Google's
expertise on addressing humanitarian and environmental challenges.These mobility maps are
only the �rst step toward making an impact in epidemiology, infrastructure planning, and
disaster response, while ensuring high privacy standards.

The work discussed here goes to great lengths to ensure privacy is maintained. We are also
working on newer techniques, such as on-device federated learning, to go a step further and
enable computing aggregate �ows without personal data leaving the device at all. By using
distributed secure aggregation protocols or randomized responses, global �ows can be
computed without even the aggregator having knowledge of individual data points being
aggregated. This technique has also been applied to help secure Chrome from malicious
attacks.

Acknowledgements
This work resulted from a collaboration of Aleix Bassolas and José J. Ramasco from the Institute

Connecting �ow hierarchy Φ with urban indicators in a sample of US cities. Proportion of trips as a function of Φ, broken
down by model share: private car, public transportation, and walking. Sample city names that appear in the plot: ATL

(Atlanta), CHA (Charlotte), CHI (Chicago), HOU (Houston), LA (Los Angeles), MIN (Minneapolis), NY (New York City), and
SF (San Francisco). We see that cities with higher �ow hierarchy exhibit signi�cantly higher rates of public

transportation use, less car use, and more walkability.

https://www.semanticscholar.org/paper/Compactness-versus-Sprawl-A-Review-of-Recent-from-Ewing-Hamidi/20b0f3e65204f20439093581c4838f752eeff62c
https://www.ncbi.nlm.nih.gov/pubmed/19942281
https://www.semanticscholar.org/paper/An-idealized-study-of-city-structure%2C-urban-energy-Martilli/1a6c19ce270e3d0ec22cc7125e9097942ac426c6
https://ai.google/social-good/
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://arxiv.org/abs/1611.04482
https://security.googleblog.com/2014/10/learning-statistics-with-privacy-aided.html
https://security.googleblog.com/2014/10/learning-statistics-with-privacy-aided.html
https://ifisc.uib-csic.es/en/
https://1.bp.blogspot.com/-tlamPQGPoSU/XcskJ8pQHmI/AAAAAAAAE7w/ajwWQgdXtPElreNiWzlCvRB6sP4FpfzQgCLcBGAsYHQ/s1600/Figure3.png


  

 

for Cross-Disciplinary Physics and Complex Systems (IFISC, CSIC-UIB), Brian Dickinson, Hugo
Barbosa-Filho, Gourab Ghoshal, Surendra A. Hazarie, and Henry Kautz from the Computer Science
Department and Ghoshal Lab at the University of Rochester, Riccardo Gallotti from the Bruno
Kessler Foundation, and Xerxes Dotiwalla, Paul Eastham, Bryant Gipson, Onur Kucuktunc, Allison
Lieber, Adam Sadilek at Google.

The differential privacy library used in this work is open source and available on our GitHub repo.

  

Google ·  Privacy ·  Terms

http://ai.googleblog.com/
http://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html
http://ai.googleblog.com/2019/11/highlights-from-2019-google-ai.html
https://ifisc.uib-csic.es/en/
https://www.cs.rochester.edu/
http://gghoshal.pas.rochester.edu/
https://comunelab.fbk.eu/
https://developers.googleblog.com/2019/09/enabling-developers-and-organizations.html
https://github.com/google/differential-privacy/
https://www.google.com/
https://www.google.com/policies/privacy/
https://www.google.com/policies/terms/

