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Complexity along quantum phase transitions

Ana Palacios de Luis, Gianluca Giorgi
Instituto de F́ısica Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB)
Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain

Abstract

In this work a fermionic chain presenting emergent Majorana fermions is analysed for both
open and closed boundary conditions, along with low temperature effects in the latter case. We
study its topological phase transition by looking at complexity measures (density and disparity)
built considering the mutual information and concurrence between sites as the connections between
nodes. At zero temperature, in the case of periodic boundary conditions, a discontinuity at the
phase transition is observed in these functions. This jump becomes continuous when we introduce
temperature and flattens gradually as we rise it. On the other hand, the open system exhibits
multiple phase transitions instead of a single one, transitioning through states of alternating parity.

1 Introduction

The study of quantum systems from the point of view of their complexity is a novel approach
to understanding some of their key features, like the nature and distribution of their correlations.
Because of the inherent presence of entanglement, these correlations already give rise to a rich
structure even with a small number of components of the system, as opposed to classical systems.
In fact, the question of a low size-limit for a quantum system to exhibit complex behaviour remains
open today [1], and is also addressed through the kind of work we present here. Nonetheless, we
will focus our interest on the study of a model’s phase transitions, an approach to the discovery
and characterisation of these that is proving very fruitful.
The second global matter of interest of this work are Majorana fermions, which have gained a lot of
relevance along the past few years. Nowadays, the excitement over their possible manifestation as
emergent phenomena in condensed matter physics has been added to the importance they already
held to particle and nuclear physicists, despite being motivated by very different reasons. In
the solid state context- the one concerning us here- the spotlight they currently stand in comes
from the advantages they would provide as building blocks for a quantum computer. Intuitively,
since Majorana fermions are linked to superconducting systems, the large delocalisation of the
ground state modes translates to longer decoherence times for the information stored in each qubit,
providing the robustness necessary for the implementation of quantum computation [2].

We now proceed to the conceptual description of the methodology followed in this study. Firstly,
we consider a fermionic chain of L sites1 and calculate the reduced density matrix of every possible
pair of sites. This allows us to compute the mutual information and the concurrence between sites
according to their usual definitions ([1], [3]). We will then take these measurements as the strength
of the different connections of a classical network of L nodes and characterise the complexity of
this network by looking at the resulting density and disparity, which are defined as follows:

Density of node i: di =

∑L
j=1 eij

L− 1
(1)

Disparity of node i: Yi =

∑L
j=1 e

2
ij(∑L

j=1 eij

)2 (2)

The suitability of these measures for the detection and analysis of the kind of phase transition at
hand is also an interesting question this project intends to look into.

1The values of L considered in the numerical simulations ranged between 3 and 10, but the results presented here
correspond to the largest simulations the computational means could undertake in the available time.
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2 Theoretical model

The system under study here is Kitaev’s 1D chain, the simplest model for a topological super-
conductor. The ”topological” terminology stems from the fact that the states the system transitions
between have the same physical symmetry, but a different value for a topological invariant- the Ma-
jorana number, which we will approach through the parity of the state in this work. This change
in the system’s topological invariant comes with the appearance of unpaired Majorana modes at
the ends of the chain (in the case of an open system, a mechanism we will briefly describe in more
detail), which can only be realised in the absence of spin degeneracy. This condition leaves us with
the experimental turmoil of building a system of spinless fermions from electrons, the basic inter-
playing particles of solid-state systems and 1/2-spinfull, and thus Kitaev’s chain was considered a
mere toy model for p-wave superconductivity for about a decade. Nontheless, the manipulation of
electrons into behaving as spinless fermions has already been achieved successfully [4] and there is
even a wide variety of proposals for the model’s experimental realisation [5].

After this brief introduction of the model at hand, we move on to its mathematical description.
Kitaev’s Hamiltonian is presented below:

H =

L−1∑
j=1

[
−ω(c†jcj+1 + c†j+1cj)− µ(c†jcj −

1

2
) + ∆(cjcj+1 + c†j+1c

†
j)

]
(3)

In expression (3), L is the number of sites present in the chain, ω is the hopping parameter (which
we set to unity throughout this work in order to fix a scaling reference), µ is the chemical potential,

∆ is the superconductive parameter2 and c†j , cj are the usual electron creation and annihilation
operators at site j obeying the anticommutation relations:

{c†i , c
†
j} = {ci, cj} = 0 {c†i , cj} = δij i, j = 1, ..., L

Throughout this work we will restrict ourselves to positive values of the parameters ω, µ and ∆
for the sake of simplicity, since we will not miss any physical features of the model in doing so.

This Hamiltonian can be diagonalised by transforming into a Majorana basis, which is defined
as follows:

γj,1 = c†j + cj γj,2 = i(c†j − cj) j = 1, ..., L (4)

These operators obey the anticommutation rules:

{γi,α, γj,β} = 2δijδαβ γ†i,α = γi,α j = 1, ..., L α, β = 1, 2

As it can be noted in (4), Majorana fermions do not preserve the number of electrons in the system-
a characteristic of the ground state of a superconductor. Introducing this transformation in the
Hamiltonian we find:

H =
i

2

∑
j

[−µγj,1γj,2 + (ω + ∆)γj,2γj+1,1 + (−ω + ∆)γj,1γj+1,2] (5)

In order to understand the physical emergence of Majorana fermions, it is convenient to examine
some particular choices of parameters. Firstly, let us consider the case ∆ = ω = 0. We then have

H =
−iµ

2

∑
j

γj,1γj,2 = −µ
∑
j

(
c†jcj −

1

2

)
(6)

In this scenario we find that both Majorana modes at every site are occupied in the ground state.
On the other hand, if we focus our attention on the case ∆ = ω and µ = 0, the following Hamiltonian
arises:

H = iω
∑
j

γj,2γj+1,1 (7)

We can diagonalise this last expression by performing a transformation that brings us to a basis of
fermionic operators residing between nearest-neighbouring sites.

2∆ is, more generally, a complex number, but since the phase it may carry does not have any effect for our purposes
we are assuming ∆ ∈ IR .
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bj =
1

2
(γj,2 + iγj+1,1) b†j =

1

2
(γj,2 − iγj+1,1) j = 1, ..., L− 1

H = 2ω

L−1∑
j=1

(
b†jbj −

1

2

)
The ground state will now have all bj modes unoccupied, but note that the Majorana modes at
sites 1 and L remain unpaired, since γ1,1 and γL,2 are not present in the Hamiltonian. These are
known as the zero-energy Majorana modes, as they may be occupied without contributing to the
system’s energy [6].

Figure 1: Ground state configuration for a) the case described in (6) and b) the one described in
(7). The big cyan circles correspond to fermionic sites, inside each of which two Majorana fermions
(modes) are depicted as small dots, their pairing represented by a straight line.

These two phases arising from the model, without having imposed any boundary conditions, are
found to share the same bulk properties when we note that they are related by the transformation
γj → γj+1. Thus, under closed boundary conditions (that is, translational invariance) we cannot
observe the unpaired Majorana fermions since no edge states exist, but the transition is still taking
place between the same-site pairing depicted in Fig. 1a and the different-site pairing shown in Fig.
1b. The periodicity of the system allows us to analytically solve the system’s spectrum and find
the critical point by performing a Fourier transform on our starting Hamiltonian (see (3)).

cj =
∑
k

bke
−i 2πkN j (8)

H = α+
∑
k

[
−εkb†kbk + 2i∆ sin

2πk

N

(
bkb−k + b†kb

†
−k

)]
εk = µ+ 2ω cos

2πk

N
, α =

−µ
2N

(9)

With the help of a Bogoliubov transformation, we can find the system’s energy spectrum.

bk = ukck + ivkc
†
−k uk, vk ∈ IR (10)

H = α+
∑
k

Λk

(
c†kck −

1

2

)
− (2ω + µ)b†0b0 + (2ω − µ)b†N/2bN/2 (11)

Λk = ±
√
ε2k + ∆2 sin2 2πk

N
(12)

Thus, we see that the system is gapless for µ = 2ω. Making use of the principle of adiabatic
continuity3 we realise that the critical point at which the phase transition occurs is

µc = 2ω , (13)

To conclude this analysis, we turn our attention back to the Majorana number M to take a
glance at its relation with everything we have just discussed. It turns out that the somewhat
complicated definition of M simplifies to

M = (−1)ν (14)

in the limit where ∆ is much smaller than the other relevant energy scales of the problem (weak
superconducting order approximation) [2], with ν being the number of Fermi points qF = 2πkF

N of

3The principle of continuity states that two gapped phases are identical if they can be smoothly deformed into one
another without closing the excitation gap [2].
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the underlying Fermi system (∆ = 0) in the interval (0, π). According to (11) and remembering
our convention of all parameters being positive, we realise that we always have one Fermi point at
qF = 0. In addition, when 2ω < µ we have a second Fermi point at qF = π (which corresponds to
kF = N/2) and thus, in this case, ν = 2 andM = +1. This corresponds to the topologically trivial
phase, depicted in Fig. 1a. On the other hand, when 2ω > µ the mode qF = π remains unoccupied
and we have ν = 1 and M = −1, a scenario that relates to the topologically nontrivial phase of
Fig. 1b.

3 Results and discussion

We will divide this section into two separate parts, one regarding each case of boundary condi-
tions, since they yield very different results. The periodic case (and temperature effects on it) will
be analysed first. Secondly, we will focus our attention on the open system and its characteristics.
On this last part we lack an analytical expression for the structure of the ground state or the
associated energies so we will only discuss properties observed on the simulations, without being
able to justify them further in some cases.

3.1 Closed chain

As we know from section 2, at zero temperature Kitaev’s fermion chain presents a phase
transition at µc = 2ω. To verify this prediction, we calculated each ground state resulting from
the adiabatic variation of the chemical potential µ in the range from 0 4 to 3ω (on steps of 0.05,
keeping the rest of the parameters fixed5) and computed the fidelity (F (ψ, φ) = |〈φ|ψ〉|2) between
the first (µ = 0) and (i+1)-th ground states.

0.5 1.0 1.5 2.0 2.5 3.0

μ

0.2

0.4

0.6

0.8

1.0

F

Figure 2: Fidelity between the µ → 0 ground state and the consecutive ones when adiabatically
increasing the chemical potential.

As we can see in Fig. 2, the ground state before the phase transition (µ < 2) and after (µ > 2)
are orthogonal, which reflects on the fact that they exhibit opposite parities.

We will now present the results of the analysis of the phase transition at zero temperature by
looking at the density and disparity measures described in (1), (2) calculated from the mutual
information and concurrence between different sites.
Fig. 3 shows that the density of the classical network is a suitable measure for the study of the
system’s properties around the critical point, since the phase transition is clearly visible.
When looking at the disparity (Fig. 4) , on the other hand, the situation is somewhat different.
The disparity calculated from mutual information also carries information about the transition
undergone by the system, but in the disparity calculated from the concurrence everything has
been perfectly erased. It was later observed that this remains so even after the introduction of
temperature, which confirms this measure’s ineffectiveness to characterise the phenomena at hand.
This is due to the fact of concurrence being a very delicate measure of entanglement that decreases
rapidly for every next-nearest neighbour and is, in addition, very small in the present system, even
between nearest neighbours. Since disparity makes use of the square of connections (as shown in

4To avoid occasional issues with the degeneration of the case µ = 0, the actual numerical value used was µmin = 0.05.
Thus, strictly speaking we are in the situation µ → 0, but the degeneration of the system with null chemical potential
does not change the qualitative behaviour of the system in any case.

5Specifically, the selected parameters for the results regarding the closed chain are L = 10 sites, ω = 1 and ∆ = 1.3.
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Figure 3: Density at zero temperature calculated at any sites (since the current boundary condition
makes the system translationally invariant) based on the mutual information (a) and in the concurrence
(b).
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Figure 4: Disparity at zero temperature calculated based on mutual information (a) and concurrence
(b).

(2)), the information it may carry gets easily lost if the numbers involved are small. Say we consider
all non-zero contributions to the disparity to be equal in strength. We then have:

C =

∑
i x

2
i(∑

j xj

)2 ' Nx2

(Nx)
2 =

1

N

Since the only relevant contributions are given by the nearest neighbours, N = 2 and Fig. 4b can
be fully understood. For all the reasons stated above, in the remaining analysis of the closed chain
this measure will no longer be considered.

We now move on to the study of the system when a finite (low) thermal energy is introduced,
namely the cases kT = 0.1, 0.2 and 0.4 (in the appropriate [ω] units). The results analogous to
Figs. 3 and 4 are presented in Figs. 5, 6 and 7.
All these plots show the effect of temperature we would expect: smoothing and flattening of the
curves as temperature rises.

The critical point at which the transition takes place was also studied as a temperature function.
To achieve this, the discontinuous jump between consecutive values of µ was reduced (in order to
get a better resolution) and the number of sites was diminished for time-saving reasons. In this
case, instead of observing the fidelity as we did in the zero temperature case, the critical point
was determined by looking at the derivative of the density computed from the concurrence (but we
could have used any of the other measures) and selecting the µ at which it reaches its maximum.
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Figure 5: Density calculated from mutual information at (a) kT = 0.1, (b) kT = 0.2 and (c) kT = 0.4.
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Figure 6: Density calculated from concurrence at (a) kT = 0.1, (b) kT = 0.2 and (c) kT = 0.4.
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Figure 7: Disparity calculated from mutual information at (a) kT = 0.1, (b) kT = 0.2 and (c)
kT = 0.4.

The observed behaviour of the critical point with temperature is presented below:

0.0 0.2 0.4 0.6 0.8

T
1.92
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2.00

2.02

μc

Figure 8: Critical chemical potential at different temperatures for a fermionic chain with parameters
L = 6, ω = 1, ∆ = 1.3 and a precision on µ of ∆µ = 0.01.

The information presented in Fig.8 may be interpreted as to indicate a low temperature regime of the
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system, which would be the T < 0.5 region (where the topological phase domain is extended). For
higher temperatures, the topological phase seems to get gradually lost according to the broadening
and smoothing of the functions under study, but a more exhaustive analysis should be made in
order to extract truly reliable conclusions.

3.2 Open chain

We now move on to the study of the system with open boundary conditions exclusively at zero
temperature. For this part of the project the parameters are slightly changed: the number of sites
L is still 10, ω = 1 and ∆µ = 0.05, but the superconductive parameter is reduced to ∆ = 0.7. The
reason for this change is that, in this case, no phase transition is observed if ω ≤ ∆. When we
perform the same analysis of the fidelity between ground states described in the previous section,
we obtain the following data:
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Figure 9: Fidelity between the µ → 0 ground state and the consecutive ones when adiabatically
increasing the chemical potential.

Fig. 9 shows the appearance of multiple phase transitions, more precisely at the critical points
µc = 0.275, 0.625, 0.975, 1.275 and 1.425. It is observed that the parity of the states the system
transitions through (when gradually increasing µ) is, too, alternating, as a generalisation of the
observed behaviour of the bulk. The number of phase transitions that emerge depends on the
length of the chain, and can be summarised as

n(L) =


L
2 if L even

L−1
2 if L odd

(15)

The relative distance between critical points has been observed to depend on the value of ω−∆
with a direct proportionality- the greater the difference, the more homogeneous the different phase
regimes become (as far as broadness is concerned). In addition, it was also noticed that the greater
∆ is, the greater the distance 2ω − µc,max.

The study of density and disparity in the system with open boundary conditions revealed a
richer structure than the periodic case, as it may be expected from the properties observed so far.
In this case we present the results obtained for a shorter chain but with a higher resolution (L = 6,
∆µ = 0.025, same fixed parameters for the rest), since this simulation is less time-consuming. In
this case, the resulting critical points are µc = {0.338, 0.913, 1.313}.

We note that the discontinuities in Figs. 10 and 11 take place at the critical points µc (except for
the disparity derived from mutual information, where we are not able to distinguish any significant
behaviour), as we would have expected.
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Figure 10: Density at zero temperature calculated in the first half of the sites (since in the current
system only the symmetry with respect to the centre of the chain is preserved) based on the mutual
information (a) and in the concurrence (b).
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Figure 11: Disparity at zero temperature calculated based on mutual information (a) and concurrence
(b).

4 Conclusions

In the current work we have analysed Kitaev’s fermionic chain under two different kinds of
boundary conditions by translating its properties to the framework of a complex (classical) network.
The introduction of temperature effects in the closed chain causes the zero-temperature results to
gradually smooth out. It is also worth noticing that, in this scenario, the measure of disparity
derived from the concurrence does not provide any information regarding the phenomena under
study.

The numerical analysis of the open chain revealed many qualitative features about this system,
such as the multiple phase transitions between states of alternating parity and some parameter
threshold for the transition to take place (ω > ∆) that would indicate a more important role of
the superconductivity - nearest-neighbour hopping interplay in the dynamics of the model, but an
analytical solution is needed to reach a true understanding of the physics at work in this scenario.
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Abstract

We discuss transport properties in systems having low-energy topological excitations, with cur-
rents attached to edges or interfaces, and hybrid superconductivity induced by proximity of a ma-
terial with a superconductor. The hybrid superconductivity allows the existence of non-trivial
topological phases with unpaired Majorana modes. Specifically, we model a hybrid structure made
of a 2D strip of quantum-anomalous-Hall insulator. This material is characterized by the exis-
tence of an intrinsic magnetization whose orientation can be controlled with an externally applied
magnetic field. We consider normal-superconducting-normal junctions, generalizing previous works
[3, 4] for arbitrary orientations of the internal magnetization.

1 INTRODUCTION

Topological transport systems are characterized by the presence of current-carrying states along
the edges and boundaries of the material. This work addresses a theoretical description of topo-
logical transport in a class of materials, quantum-anomalous Hall insulators (QAHI) with induced
superconductivity. In particular, we investigate the conductance of 2D strips having normal con-
tacts and a central superconducting region; i.e., a normal-superconducting-normal (NSN) double
junction in different topological phases of each region. We use the complex-k technique with arbi-
trarily oriented magnetization of the QAHI material. The paper is organized as follows; the rest
of this Sec. 1 introduces the system; Sec. 2 presents our model; Sec. 3 discusses the results; finally,
the conclusions are drawn in Sec. 4.The Appendixes give more detailed discussions on symmetry
properties of the model.

Figure 1: Sketch of the model of a strip (orange) in contact with a superconductor
bar (blue). The presence of chiral edge modes in the different regions is indicated by
the lines with arrows. The phase transitions with the corresponding conductances for
varying magnetic fields is indicated by the red curve of the upper plot. In particular,
in the second panel from the left a single chiral Majorana mode is present in the
intermediate region and the corresponding conductance is 0.5e2/h. Figure reproduced
from Ref. [2]

1
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Quantum-anomalous Hall insulator

The quantum-anomalous Hall effect is a quantum version of the anomalous Hall effect. While the
Hall effect requires the presence of a perpendicular magnetic field to generate a finite Hall voltage,
the anomalous Hall effect generates this voltage without magnetic field due to the combination
of the material internal magnetization and spin-orbit coupling. The anomalous Hall conductances
are quantized to integer multiples of the quantum conductance, similarly to the ”normal” quantum
Hall effect in this sense. But the integer here is the Chern number which arises from the topological
properties of the material in its band structure. These effects are seen in systems called Quantum-
anomalous Hall insulators (QAHI) or Chern insulators.

The discovery of the quantum Hall effect has shown that topology is an essential element for
the quantum description of Condensed Matter systems. In the last decade we have seen the discov-
ery of topological insulators, materials that insulate although they present conductive superficial
states. These surface states are protected by topological invariants and electron states fixed in
spin-moment, which are deeply visible in transport, since most of the materials are highly resis-
tant. Moreover, in these topological insulators, the topological protection of the surface states
makes them robust against disorder and impurities. Therefore, topological insulators are very
relevant for laboratory and commercial applications nowadays.

Superconductor

Superconductivity is the intrinsic capacity of certain materials to drive an electric current with
null resistance in certain conditions. The superconductivity occurs below a certain temperature;
however, it is not enough to cool the material, it is also necessary not to exceed a critical current
nor a critical magnetic field in order to maintain the superconducting state.

Topological superconductivity is a topological phase. All superconductors are characterized
by an energy gap, a range of energies in which excitations are forbidden. However, the recently
discovered class of topological superconductors has a unique distinguishing feature: the boundary
of a topological superconductor hosts gapless states called Majorana Modes.

Majorana modes

Majorana particles or Majorana fermions are particles that are their own antiparticles. The
existence of elementary Majorana fermions is not entirely clear, but it does seem clear that they
can exist as low energy excitations (called quasiparticles) in certain systems. A Majorana fermion
would then be a quasiparticle that is its own anti-quasiparticle (superposition of equal parts of
quasiparticle and anti-quasiparticle). The interest in these strange fermions lies in their exotic
statistical physics. A normal fermion can be expressed as an overlap of two Majorana fermions.
This property, together with the robustness of the topological states, can have applications in
quantum computing. Majorana modes are composite quantum mechanical states, with distinct
and perhaps even more intriguing properties. The fundamental aspects of the Majorana fermion
modes and their non-Abelian braiding properties can be potentially used to implement topological
qubits in fault-tolerant quantum computation. The Majorana zero mode is a charge-neutral bound
state that exists strictly at zero energy.

2 THEORETICAL MODEL

We consider the model of a strip of QAHI material and with induced superconductivity in a central
region like in Refs. [3] and [4]. See Fig. 1. The model describes a double layer system with the
possibility of different superconductivity strengths in each layer. In its original formulation of the
model the QAHI magnetization was assumed oriented along the perpendicular direction z, but in
this work we are considering the generalization for orientations along any arbitrary unit vector n̂.

Using vectors of Pauli matrices for variables representing usual spin by ~σ, isospin (charge) by

~τ and pseudospin (layer) by ~λ, in a representation called Nambu spinorial representation, the field
operators are grouped and the Hamiltonian becomes a multiple-block matrix. The Hamiltonian in

2
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our case reads

H =
[
m0 +m1(p2x + p2y)

]
τz λx

+ ∆Z ~σ · n̂
− α

~
( pxσy − pyσx ) τz λz

+ ∆pτx + ∆mτxλz . (1)

It is important to assume realistic values for the parameters that appear in the Hamiltonian.
The strip confinement along the lateral coordinate (y) is obtained by assuming that m0 takes a
large value for y 6∈ [−Ly/2, Ly/2], effectively forcing the wave functions to vanish on the lateral
edges. In our calculations we take α = 0.26 meV, m0 = 1 meV and m1 = 10−3m−1

U (were mU =
7.6× 10−5me).

We consider that the parameters ∆p and ∆m are indicators of the superconductivity on the two
layers of the material, given by the pairing gap energies ∆1,2. Actually those two parameters are
defined by

∆p,m =
∆1 ±∆2

2
. (2)

In the normal regions representing the left and right leads we obviously have ∆1,2 = 0, while they
take constant values in the central hybrid superconducting region.

A remarkable result obtained in Ref. [5] is that a 0.5e2/~ conductance of the NSN double
junction is obtained when the central hybrid region is in a topological phase hosting a single chiral
Majorana mode. Such topological phase is possible when the pairing strengths on the top and
bottom layers are different (∆1 6= ∆2) in the region of the hybrid superconductor material. This
result is highlighted in Fig. 1. In the following Sec. 3 we show that tilting the Zeeman field from z
to different directions n̂ strongly modifies the transport Physics from the scenario of Fig. 1.

Symmetry

Symmetries in Quantum Mechanics describe features of spacetime and particles that remain un-
changed under some transformation. In our system, the only exact symmetry is particle-hole
symmetry, by which the spectrum of eigenstates of the Hamiltonian, Eq. (1), always appear in
pairs at energies E and −E, representing particle and antiparticle; each one being the particle-hole
conjugate of the other. Time reversal and so-called chiral symmetries are not fulfilled in our case
(see Appendix A). The particle-hole symmetry operator is antiunitary, given by

Q ≡ τyσyK , (3)

where K stands for complex conjugation. The particle-hole symmetry has a deep influence on the
topology, and it plays a central role in superconducting systems.

3 RESULTS AND DISCUSSION

My project is addressed to solve the Schrödinger equation for the normal-superconductor-normal
junction, which in this context of superconductivity is called the Bogoliubov-deGennes equation.
With that aim, first of all I solve it for the homogeneous system. We can understand the homoge-
neous system as a system that is superconductor or normal and it is very long, ideally infinitely long
and thus homogenous and invariant by translation. Subsequently, using these solutions of normal
and superconducting infinite systems I will try to understand propagation in the inhomogenous
normal-superconductor-normal system and, specifically, its electrical linear conductance.

This report presents first the results for the system with the magnetic field in z direction, since
this is the case of the experiments motivation of our project, Ref. [3] and Ref. [4]. In later sections
I will then show the novel results for systems with intrinsic Zeeman field in y and x directions.

3
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3.1 HOMOGENEOUS SUPERCONDUCTING SYSTEM

As previously mentioned, the first step in this project is solving the Schrödinger equation of the ho-
mogeneous system. We can choose between considering this homogeneous system superconductive
or normal, adjusting a single parameter. Seeing the similarity of both results in the case of band
structure, I have decided to present only the results of the homogeneous superconducting system.
The superconducting option is more interesting because not only can we analyze the band structure
(energy vs wavenumber) but we can also see how the charge neutrality of the system eigenstates
changes (isospin vs wavenumber). The transverse length for the strip will be arbitrarily chosen as
Ly = 2.5µm.

Magnetic field in the direction z

As we will see, in all the steps in which we reproduce the results in which the intrinsic magnetic
field is oriented in the z direction, we get the results we expect (the results of previous papers).
This makes us think that the model we are running is correct and that in principle it should not
have much numerical error.

In the graphs that we are going to present next we expect a confirmation of some results
already known and commented in many of the references of this work. For our choice of a length
Ly = 2.5µm, the slope of the E(k) bands is directly related to the oscillation period of the linear
NSN conductance. On the other hand, the essentally null isospin graph (indicating neutrality of
the system), confirms our expectations for a Majorana mode.

Figure 2: Band structure and isospin configuration for the superconductor homogeneous
system with an Ly = 2.5µm, when intrinsic magnetic field is oriented in z direction.
In both cases we show a more distant vision and another zoomed one.

As expected, We can see that we effectively have Majorana modes, because we have energy zero
when wave number is zero, and they are charge neutral states.

4
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Magnetic field in the direction y

This is a novel configuration and, therefore, we do not know exactly what results we are going
to obtain.

Figure 3: Band structure and isospin configuration for the superconductor homogeneous
system with a Ly = 2.5µm, when intrisic magnetic field is oriented in y direction. In
both cases we have a more distant vision and an enlarged view.

In this case we do not have neutral states, because the isospin in the z direction is not null, it
only vanishes for the single point k = 0. The band structure its really flat, with a slope that it is
really small. This will reflect in the conductance oscillations.

We conclude that in these case we do not have Majorana modes due to the lack of charge
neutrality in a sizeable interval.

Magnetic field in the direction x

This case is the weirdest, because the homogeneous superconductive system has an energy gap
in E(k) close to zero energy. So, we will only have evanescent states at small energies that will not
propagate along the strip. This already confirms that in this case Majorana modes are not possible
because we do not have a mode with null energy. Besides, the charge neutrality is also not fulfilled.

It is interesting to study in which inclination of the intrinsic magnetic field an energy gap
appears in E(k). It is easily visible that it appears at a certain angle and in an abrupt clear way.
In addition, the critical angle in which it appears depends on the parameters considered for the
model, but above all it depends on the thickness, Ly.

5
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Figure 4: Band structure and isospin configuration for the superconductor homogeneous
system with an Ly = 2.5µm, when intrisic magnetic field is oriented in X direction. In
both cases we have a more distant vision of the result and another closer

3.2 NSN DOUBLE JUNCTION

The next step is to solve our complete NSN system, and then be able to see what probability spatial
distributions we find. In this case we are also considering a width of 2.5 microns. Now, we must
also introduce another parameter, the length Lx of the central superconducting area. In this case
we consider the central zone of 20 microns.

Magnetic field in the direction z

Figure 5: Spatial distribution of probability density with E = 0.01 meV and intrinsic
magnetic field in z direction. Incidence is from the upper left corner and we can wee
the Andreev reflection on the lower left corner and the transmission on the upper right.

6
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These states are localized on the lateral edges and have got an implicit direction of motion;
right- and left- movers localizing on upper and lower edges, respectively. Therefore, as anticipated,
we have edge chiral states for this configuration.

Magnetic field in the direction y

Figure 6: Probability density distribution with E = 0.01 meV, intrinsic magnetic field
in y direction

Here we can see that we have edge modes but they are not chiral states since propagation is on
both upper and lower edges simultaneously .

Magnetic field in the direction x

In this case, we must consider that we have an energy gap in the corresponding homogeneous
systems, and if we do not really exceed this minimal energy, our system will not sustain any
propagating modes at all. I checked that with an energy of 0.01 meV our program finds no modes.
But with an energy of 0.1 meV we have got mostly reflective modes, so we will represent the profile
with energy 0.2 meV, that has some transmission and thus we can see the spatial probability
distribution in the central part.

Figure 7: Probability density with E = 0.2 meV for an intrinsic magnetic field in x
direction

3.3 CONDUCTANCE VS ENERGY FOR THE NSN SYSTEM

In all this document we are considering an arbitrary length for the stick, Ly = 2.5 µm. With the
z orientation we do not have problems with this length. But then (with other field directions) we
believe this length is too small that finite size effects are still important, complicating the scenario
for the edge effects we are interested in. These problems arise when trying to find an explanation
to the conductance. As we have seen in many of the references, the conductance when it is in an
ideal perfect state is quantified and that is why when the magnetic field is in the z direction it

7
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oscillates around 0.5e2/h. But, with other directions we do not actually have such perfect or ideal
systems and, as a consequence, we do not see a quantified conductance.

Magnetic field in the direction z

Figure 8: Conductance versus energy, with intrinsic magnetic field in z direction

As expected, the conductance shows an incipient plateau at the half-quantized conductance,
with oscillation around 0.5e2/h.

Magnetic field in the direction y

Figure 9: Conductance versus energy, with intrinsic magnetic field in y direction

Now we see that the oscillations of the conductance are very much contracted (shorter E period)
and look more continuous than in the case of the magnetic field in direction z. This is easily
explained since the E(k) band dispersion is practically flat in this case and the mode speed v, given
by this slope, is related to the conductance oscillation period ∆E by

v =
∆ELx

2π~
. (4)

Magnetic field in the direction x

We can see in Fig. 10 that in the region of energy between 0.07 meV and 0.17 meV we have
a static conductance around a strange value 0.8e2/h. We can explain this with the fractional

8
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contributions of Andreev reflection and normal reflection. But a better explanation is that finite
size effects are important and lead to deviations form a more ’ideal’ behavior characteristic of larger
Ly (e.g., with Ly = 5 µm) where this unclear saturation of the conductance to strange values would
surely disappear.

Figure 10: Conductance versus energy with intrinsic magnetic field in x direction

4 CONCLUSIONS

This report only reflects a few of the results that I have obtained during the SURF fellowship,
since I have made the decision to only present the results for certain parameter sets which are the
ones I have tried and understood the most. In conclusion, this work could be much more extensive
since by varying a single parameter the explanation of what happens with conductance may change
significantly.

The more important idea to me is that when studying the band structure of the homogeneous
system we can already infer many things about the physics in presence of inhomogeneities like
system edges. This property is just reflecting the underlying bulk-to-edge correspondence principle.
In this case, simply when we analyze the band structure E(k) we can infer what quantization we
expect on the conductance, and under what conditions the Majorana modes arise.

I think that a possible extension of this work would be to study what happens in the critical
angle in which the energy gap arises, to see if just small changes in angle change the topological
nature of the system completely. This can have many practical implications in quantum computing.
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A Appendix I: Symmetries in our system

In this appendix we discuss symmetries of our Hamiltonian, Eq. (1).

A.1 Time reversal symmetry

All the time reversals operators are antiunitary and have to ”invert the time”. So the time reversal
operator, Θ, does nothing to the x-operator (position), ΘxΘ−1 = x, but it reverses the direction
of p (momentum), ΘpΘ−1 = −p. In our system Θ = −iσyK, where K is the complex conjugation
operator. And we can prove that Θ2 = −1 (necessary condition to be an antiunitary operator for
a spin 1/2 system):

Θ2f = −iσyK(−iσyKf) = −iσyK(−iσyf∗) = −iσyi(σy)∗f = σy(σy)∗f = σy(−σy)f = −f

So, Θ2 = −1 is checked. Now we want to demostrate that in our system we do not have time
reversal symmetry, because it is not fulfilled that ΘHΘ−1 = H. This is obvious, from the general
transformations

Θ~rΘ−1 = ~r ,

Θ ~pΘ−1 = −~p ,
Θ~σΘ−1 = −~σ ,
Θ~τ Θ−1 = ~τ . (5)

To verify it we do not need to do the calculation with the full Hamiltionan (1). As an illustration,
we will show that the Rashba terms fulfill the symmetry. This is also true for the rest of terms,
except of the Zeeman. The Rashba terms read

HR = (pxσy − pyσx)τz , (6)

and they fulfill the symmetry since it is a combination of two vectors that change sign and one that
does not. On the other hand, the Zeeman term ~σ · n̂ breaks the symmetry in any orientation as it
includes a single vector that changes sign under time reversal.

A.2 Particle-hole symmetry

As advanced, this symmetry is associated to the operator Q = τyσyK. This operator fulfills Q2 = 1,
and so it a self inverse operator Q−1 = Q. In our system, particle-hole symmetry means that it is
fulfilled

QHQ = −H . (7)

We only check it with the Rashba term, because the others are very easy. Demonstration:
QHRQ

−1 = τyσyK[HRτyσyKf ] = τyσyK[(pxσy−pyσx)τzτyσyf
∗] = τyσy(pxσy−pyσx)∗τ∗z τ

∗
yσ

∗
yf =

τyσy[i~ ∂
∂x (−σy)− i~ ∂

∂y (σx)]τz(−τy)(−σy)f = τyσy(pxσy + pyσx)τzτyσyf

10
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⇒ τyσypxσyτzτyσy = τyσypxσy(−iτx)σy = −iτyσypxτx = −iσyτyτxpx = −iσy(−iτz)px = −σyτzpx =
−pxσyτz
⇒ τyσypyσxτzτyσy = τyσypyσx(−iτx)σy = τyσypy(−iτx)σxσy = τyσypy(−iτx)(iσz) = τyσypyτxσz =
σypyτyτxσz = σypy(−iτz)σz = pyσyσz(−iτz) = py(+iσx)(−iτz) = pyσxτz
QHRQ

−1 = τyσy(−pxσy + pyσx)τzτyσyf = HR

The particle-hole symmetry condition immediately shows that if |n〉 is an eigenstate with energy
En, then Q|n〉 is an eigenstatet with energy −En, i.e., the system has particle-hole symmetry
characterized by pairs of eigenstates at reversed energies; particle and antiparticle states.

A.3 ”Chiral” symmetry

The word ”chiral” is written in quotation marks as it is used here to refer to a general extra
symmetry, not necessarily related to the chirality of the propagating edge states discussed above.
With the particle-hole operator given by Q = τyσyK, the ”chiral” symmetry operator is C = τyσy
since Q = CK. The chiral symmetry operator C is a usual linear unitary operator that fulfills the
self-inverse requirement C2 = 1.

This symmetry changes the topological properties of a system in a dramatical way. When we
do not have this symmetry, there is no degeneracy in eigenmodes, so we can have none or at most
one zero mode associated at null energy. This is our case, since chiral symmetry is not fulfilled
but we have to take into account that actually we have two systems superposed (bottom and top
surfaces) so in our case we can have zero, one or two modes associated with null energy.
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Abstract

In the present work, we study a mesoscopic system consisting of a double quantum dot in which both

quantum dots or artificial atoms are electrostatically coupled. Each dot is additionally coupled to two

electronic reservoirs and driven far from equilibrium by external voltage differences. Our objective is to

find configurations of these biases such that the current through one of the dots vanishes. In this situation,

the validity of the fluctuation-dissipation theorem and Onsager’s reciprocity relations has been established.

In our analysis, we employ a master equation formalism for a minimum model of four charge states and

limit ourselves to the sequential tunnelling regime. We numerically study those configurations far from

equilibrium for which we obtain a stalling current. In this scenario, we explicitly verify the fluctuation-

dissipation theorem, as well as Onsager’s reciprocity relations, which are originally formulated for systems

in which quantum transport takes place in the linear regime.

1 Introduction

The continuous miniaturisation of electronic devices causes problems due to the mutual interaction
between conductors and the existing electrostatic forces. An intelligent and controllable way of
managing these interactions would allow us to improve their functionalities. A simple but remark-
able example is found in a minimal setup composed of two conductors represented by two quantum
dots that are coupled through a common capacitor and are only allowed to interact via the Coulomb
interaction. Quantum dots are zero-dimensional systems with a discrete energy spectrum, inside
of which one can add electric charges at the cost of a charging energy [1, 2]. In the mentioned
system, an electrical current can be dragged into one of the conductors when it remains poten-
tially unbiased if there exists a driven electrical flow in the other one. The importance of mutually
connected conductors does not only reside in the drag phenomenon: they have also been proposed
for the construction of a quantum Maxwell demon, in which one of the dots plays the role of the
demon, whereas the other one is able to transfer charges in the opposite direction of the applied bias
voltage [3]. Therefore, we insist on the importance of investigating the out-of-equilibrium quantum
transport in coupled conductors as a key point for the rapid development of electronic devices at
the nanoscale.

Here, the interest resides in the fact that we look at the same setup from a different perspective
inspired by a recent article (Ref. 4) in which the concept of stalling currents is introduced. One of
the paradigms of statistical mechanics close to equilibrium is the so-called fluctuation-dissipation
theorem (FDT) [5]. It establishes that the action of an external perturbation on a system has
the same effect as a spontaneous fluctuation. Equilibrium here is understood in the sense that all
contributions to the currents in the system vanish simultaneously. The response of this current to
its driving force is then proportional to the current’s variance. Another consequence of the equilib-
rium conditions is the notion of micro-reversibility, which implies the Onsager-Casimir reciprocity
relations [6]. These establish that the Onsager matrix, which relates physical fluxes and their
conjugate forces, is symmetric. For example, considering as forces the electrostatic and thermal
gradients, and their associated currents being the electrical and heat currents, these relations set an
identity between the thermoelectrical conductance (electrical response to a thermal gradient) and
the electrothermal conductance (response of the heat current to an electrical bias). Both the FDT
and the Onsager relations have been extended to certain situations far from equilibrium in which
the sum of the different contributions to a current vanishes (instead of them vanishing individually,
as in the case of global equilibrium). A current which is nullified in this way is then called a stalling
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current. Under these conditions, if the perturbative force solely affects the microscopic transitions
that contribute to this current, both the FDT and the Onsager relations are restored [4, 7]. The
requirement that all contributing elemental transitions be internally equilibrated is equivalent to
them being microscopically reversible.

Our purpose in this work is to implement these conclusions in the aforementioned setup of
two conductors. In a previous study by Sánchez, López, Sáez, and Büttiker (2016, Ref. 8), the
appearance of a drag current was established for this same system. In our case, we are interested in
the non-equilibrium conditions that account for stalling currents. Under these circumstances, we
set out to check whether or not the FDT is fulfilled, as well as if the micro-reversibility condition
is achieved by a direct test of Onsager’s reciprocal relations.

2 Theoretical model

2.1 Description of the system and underlying framework

With the previous objectives in mind, we consider the case of two conductors mutually connected
via the Coulomb interaction. Each conductor is modeled as a single level quantum dot, inside of
which the electrostatic repulsion is so strong that it can only accommodate one single electron.
For this reason, we effectively ignore the spin degree of freedom. Each quantum dot is tunnel
coupled to two electronic reservoirs that can be biased with electrostatic and thermal gradients.
The tunnelling takes place through capacitors C1 to C4. Besides, both quantum dots interact elec-
trostatically via another capacitor C. A sketch for this system is depicted in Fig. 1b. Under these
circumstances we consider four possible charge states |0〉 = |0u0d〉, |u〉 = |1u0d〉, |d〉 = |0u1d〉, and
|2〉 = |1u, 1d〉 where nund denotes the charge state with nu electrons in the upper dot and nd elec-
trons in the lower dot. All reservoirs are held at a common temperature T and different voltages Vi.

We now consider the transport properties of our setup. We limit ourselves to the sequential
tunneling regime, in which the transport of electrons along each quantum dot occurs in a sequence
of one electron transfer event at a time. Electrons can hop into a quantum dot, and then relax
before they can jump again. This restriction eliminates the transition |0〉 → |2〉 and its inverse.
Additionally, we consider that the transfer of particles from one dot to another through the capacitor
C is prohibited, so that their mutual influence is only caused by electrostatic interactions. This
removes the transition |u〉 → |d〉 and its inverse.

Figure 1: (a) Double quantum dot capacitively coupled to four terminals held at potentials Vi and temperatures Ti, for
i = 1, 2, 3, 4. The transition rates Γ±

i and γ±
i for each barrier are described in the main text. (b) Electrostatic sketch

showing the capacitors and voltages involved in the description of the energy levels of the quantum dots.

The theoretical framework employed to describe the quantum transport in our system is called
stochastic thermodynamics [4, 9]. Quite generally, we can consider a setup with an arbitrary num-
ber of states n ∈ {1, 2, ..., N} and picture each state as a node in a connected network. We draw
edges e connecting states between which a transition may occur, and require these to be possible
in both directions. However, transitions along ±e are not required to happen at the same rate
or with the same probability. Note that two nodes may be connected with several edges if there
are various physical mechanisms through which the system can transition between the associated
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states. The evolution of the system is modeled as a Markov jump process, i.e. the probability that
the system jumps from one state to another is independent of its previous history. This evolution
can also be visualised as a random walk on the network. A physical model is defined by prescribing
the forward and backward transition rates w±e, which evidently may be functions of the physical
parameters involved. The fluctuating current along an edge e, je(t) =

∑
k δ(t−tk)(δ+e,ek−δ−e,ek),

is a stochastic variable that peaks if the system transitions along the directed edge ek at time tk.
Physical currents, i.e. currents associated to the transport of physical quantities such as charge or
heat, are weighted currents Jα =

∑
e d

α
e je, where dα+e = −dα−e specifies the amount of a physical

variable α exchanged with an external reservoir along a transition edge e.

When applying the previous theoretical treatment to our particular system we consider that
transport in and out of the quantum dots is described by means of tunnelling constants or transmit-
tances Γi and γi. Specifically, uppercase gammas apply to a dot whenever the other dot is empty,
and lowercase ones apply when the other dot is full. Therefore, the tunnelling rates (previously
called w±e) between a reservoir and a quantum dot depend on the occupation level of the other
dot. This dependence on the charge state thus conforms the only interaction mechanism between
both artificial atoms. These rates are also influenced by the occupation state of the electrons in
the leads, described by Fermi-Dirac distributions at a given energy. According to Fermi’s golden
rule, they are given by

Γ−i = Γif(µ`,0 − qVi) (2.1)

Γ+
i = Γi (1− f(µ`,0 − qVi)) (2.2)

γ−i = γif(µ`,1 − qVi) (2.3)

γ+
i = γi (1− f(µ`,1 − qVi)) (2.4)

where f(x) =
(
1 + ex/kT

)−1
is the Fermi-Dirac distribution function, the − superscript stands for

the tunnelling from the lead to the dot, and + for the inverse process. The up dot (` = u) is
connected to left and right reservoirs with i = {1, 2}, and the down dot (` = d) to reservoirs with
i = {3, 4}. Note that the numerical subindex in the previous transition rates thus indicates the
reservoir involved in the transition, as shown in Fig. 1a. The chemical potential for the dot `, i.e.
µ`,0 (µ`,1) corresponds to the situation in which the other dot is empty (occupied).

In order to determine the effective chemical potentials of the dots, we must develop a model
that takes into account how their energy levels are altered by electrostatic interactions. The con-
sideration of these interactions ensures that all currents only depend on voltage differences (from
now on, we shorten the notation by defining Vij ≡ Vi−Vj), which is expected by gauge invariance.
Then, for one of the dots and n = 0 (1), if the other dot is empty (occupied) the energy levels
change to

εu,n → µu,n = εu + U (1, 0)− U (0, 0) + ECδ1n (2.5)

εd,n → µd,n = εu + U (0, 1)− U (0, 0) + ECδ1n (2.6)

where εu and εd are the bare energy levels, EC = 2q2C/
(
CΣuCΣd − C2

)
is the energy necessary

to add an electron to the unoccupied quantum dot when the other one is full, and U(Nu, Nd) =∑
i

∫ qNi
0

dQ′i φi(Q
′
i) is the electrostatic energy in the quantum dot system, with φi the potential in

each quantum dot, obtained by means of elementary electrostatic relations. The arguments of the
Fermi functions appearing in the tunnelling rates then read [8]:

µu,n − qV1 = εu +
1

CΣuCΣd − C2

[
q2

2
CΣd + q (CΣdC2V21 + CC3V31 + CC4V41)

]
+ ECδ1n (2.7)

µu,n − qV2 = εu +
1

CΣuCΣd − C2

[
q2

2
CΣd + q (CΣdC1V12 + CC3V32 + CC4V42)

]
+ ECδ1n (2.8)

µd,n − qV3 = εd +
1

CΣuCΣd − C2

[
q2

2
CΣu + q (CΣuC4V43 + CC1V13 + CC2V23)

]
+ ECδ1n (2.9)

µd,n − qV4 = εd +
1

CΣuCΣd − C2

[
q2

2
CΣu + q (CΣuC3V34 + CC1V14 + CC2V24)

]
+ ECδ1n (2.10)

that now depend only on voltage difference. Here, CΣu(d) = C1(2) + C3(4) + C. We take V12, V13

and V34 as the only independent biases, since the rest of voltage differences can be expressed as
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linear combinations of these.

As we have discussed at the beginning, we apply the Markov approximation to determine the
dynamics of the probabilities of finding the system in one of the four states. Specifically, we employ
the master equation formalism, where the time evolution of the system is governed by a master
equation that gives the probability distribution of the considered stochastic variables in terms of the
transition rates between the different states. Defining Γ±u(d) = Γ±1(3) + Γ±2(4), the following relations

are found:
ṗ0

ṗu
ṗd
ṗ2

 =


−Γ−u − Γ−d Γ+

u Γ+
d 0

Γ−u −Γ+
u − γ−d 0 γ+

d

Γ−d 0 −γ−u − Γ+
d γ+

u

0 γ−d γ−u −γ+
u − γ+

d




p0

pu
pd
p2

 (2.11)

We will exclusively be interested in the steady state. We can thus obtain the probabilities by setting
ṗi = 0. Imposing the normalisation condition

∑
i pi = 1, we obtain:

p0 =
1

α

[
Γ+
d γ

+
u

(
Γ+
u + γ−d

)
+ Γ+

u γ
+
d

(
Γ+
d + γ−u

)]
(2.12)

pu =
1

α

[
Γ−u Γ+

d

(
γ+
u + γ+

d

)
+ γ−u γ

+
d

(
Γ−u + Γ−d

)]
(2.13)

pd =
1

α

[
Γ+
u Γ−d

(
γ+
u + γ+

d

)
+ γ+

u γ
−
d

(
Γ−u + Γ−d

)]
(2.14)

p2 =
1

α

[
γ−u γ

−
d

(
Γ−u + Γ−d

)
+ Γ−u Γ+

d γ
−
d + Γ+

u Γ−d γ
−
u

]
(2.15)

with

α =Γ−u
[
Γ+
d

(
γ+
u + γ+

d

)
+ γ−d

(
γu + Γ+

d

)]
+ Γ+

u Γ+
d

(
γ+
u + γ+

d

)
+ Γdγ

−
d γ

+
u + Γuγ

+
d γ
−
u + (2.16)

+ γ−d
[
Γ+
u

(
γu + γ+

d

)
+ γ−u γd

]
and Γu(d) = Γ+

u(d) + Γ−u(d) (similar for γu(d)).

The electrical current I1 that flows between the first lead and the upper dot, which we will from
now on call drag current, is obtained by weighting the transition probabilities with the electron
charge q. The result is

I1 = q
(
Γ−1 p0 − Γ+

1 pu + γ−1 pd − γ
+
1 p2

)
(2.17)

Because of electric charge conservation, we immediately know I2 = −I1 for the current between the
second terminal and the up dot (we assign a + sign whenever the current flows from a lead into a
dot, and a − sign otherwise). Under the assumption of strong coupling between the dots and the
reservoirs we can also compute the heat current by weighting the transitions with the amount of
transferred energy,

J1 = µ̃u,0
(
Γ−1 p0 − Γ+

1 pu
)

+ µ̃u,1
(
γ−1 pd − γ

+
1 p2

)
(2.18)

where µ̃u,n = µu,n− qV1. Again, J2 = −J1 to ensure energy conservation. We immediately observe
that an easy way to stall both I1 and J1 at the same time is to consider γ1 = 0 (Γ1 = 0), i.e.
electrons can only tunnel in and out of the top-left reservoir if the lower dot is empty (occupied).
This observation will be used later in our investigation of the non-equilibrium relations.

In Ref. 8 it is deduced that, when the equilibrium condition V1 = V2 is imposed between the
upper leads, the drag current I1 only appears if Γ1γ2 6= γ1Γ2. This means that the current in
the lower terminals (drive system) induces an effective current between the upper terminals (drag
system), without the existence of direct electron transport from one quantum dot to the other.
Here we address the issue of whether the opposite phenomenon is possible, i.e. if we can achieve
a configuration with V1 6= V2 in which the drag effect causes the stalling of I1 as a consequence of
the appropriate tuning of the potentials Vi.

2.2 Detailed balance and behaviour at equilibrium

It is convenient to understand the behaviour of systems near thermodynamic equilibrium before
generalising it to situations far from it. Near equilibrium, all existing currents in a system tend to
zero on average. This behaviour is called global detailed balance. According to statistical mechanics,
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systems in these conditions enjoy a special property: the regression of spontaneous fluctuations and
the dissipative response to external perturbations obey the same rules, which was primarily known
as Onsager’s regression hypothesis [4]. This important statement is the heart of the fluctuation-
dissipation theorem (FDT). If we consider an arbitrary physical current Jα (such as a heat current
or a charge current) and its conjugate force hα (which in these cases would correspond to a gradient
in temperature or electrical potential, respectively), the theorem can be expressed as

∂hαJα (xeq) = Dα,α (xeq) (2.19)

where Dα,α is a generalised diffusion constant proportional to 〈JαJα〉. The vector x contains all
the parameters the current may depend on, and satisfies Jα (xeq) = 0 for all currents in the sys-
tem; their conjugate forces are evidently also required to vanish. The previous equation can be
generalised in such a way that it expresses the FDT for the combination of two currents and their
conjugate forces by changing one index α for a different one and symmetrising both sides of the
expression (see complementary material of Ref. 4).

Onsager’s reciprocal relations (RRs) are another major result in thermodynamics close to equi-
librium. These actually follow from the FDT if the system enjoys the property of being time-
reversible [7]. In the following, we will restrict ourselves to relations between heat and charge
currents, following Onsager’s original article [6]. For a system where transport of these quantities
exists, the mechanisms are usually not independent but interfere with each other, leading to the
well known thermoelectric effects. If we consider a system at equilibrium, small fluctuations or
external perturbations may allow for the transport of small quantities of charge and heat while the
system is returning to its original state. Onsager established that, in these situations, the responses
of a current due to a variation of the other current’s conjugate force are equal, i.e. the heat cur-
rent responds in the same way to a variation of the electrical potential as the charge current to a
temperature fluctuation. This result is best visualised by writing the currents in matrix form:(

Jcharge
Jheat

)
=

(
L11 L12

L21 L22

)(
δ (∆V )
δ (∆T/T )

)
(2.20)

where L11 and L22 are the electrical and thermal conductances, and L12 = ∂∆T/TJcharge and
L21 = ∂∆V Jheat represent the electrothermal and thermoelectrical coefficients that arise from the
interference of the two transport mechanisms. Onsager’s statement is then equivalent to the re-
quirement that the conductance matrix be symmetric, L12 = L12. In addition to these relations,
scattering theory ensures that both the thermal and the electrical conductance are semipositive.

Despite these theorems being major cornerstones in our understanding of the behaviour of
systems obeying global detailed balance, most complex systems live out of equilibrium. Accordingly,
similar relations have been sought for systems where detailed balance is explicitly broken, since their
finding would allow us to characterise and study systems out of equilibrium in a similar manner as
when detailed balance is satisfied.

2.3 Local detailed balance and equilibrium-like relations

A central assumption in stochastic thermodynamics far from equilibrium, when global detailed bal-
ance is not satisfied, is local detailed balance (LDB). It relates the forward and backward transition
rates w into and out of a state A by means of a mechanism ν and reads [10]

wνA→B
wνB→A

= e−βν∆ε (2.21)

where βν is the inverse temperature of the reservoir involved in the transition and ∆ε is the differ-
ence between the energies of states A and B. It can be easily checked that the rates 2.1–2.4 indeed
satisfy the LDB condition.

In Ref. 4 it was reported that, if LDB is satisfied in a system driven arbitrarily far from equi-
librium, its response to a perturbation or a spontaneous fluctuation may obey a relation similar
to the equilibrium FDT if certain additional conditions are fulfilled. More precisely, it has been
established that a current Jα in such a system obeys eq. 2.19 with xeq replaced by xst, where xst

corresponds to a configuration of the parameters of the current such that Jα (xst) = 0, i.e. the
considered current stalls. This is valid if the force hα couples exclusively to those transitions that
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contribute to the conjugate current Jα. It is important to notice the difference between this state-
ment and the first FDT, valid only near equilibrium, since we now only require a given current to
stall internally. This may be a consequence of the appropriate tuning of the rest of the currents in
the system, which are not required to vanish anymore and can, in fact, assume arbitrary magnitudes.

Similarly, Onsager’s reciprocal relations have also been extended to non-equilibrium situations,
under the condition of a marginal time-reversibility [11]. Again, it is required that the currents
stall for the RRs to hold far from equilibrium.

3 Results and discussion

In this section, we present the main results of our work. As a first analysis, we consider the case
where the double dot system cannot accommodate two electrons in the whole system because of
the large Coulomb interaction. Then, we move to the four-state case, verifying the RRs and the
FDT for a complete understanding of the impact of stalling currents in coupled conductors.

3.1 Three-state model

In Ref. 8, the appearance of a drag current for V12 = 0 was found only in the case where our
considered system has four charge states. Since in our work the bias V12 is not necessarily zero, and
the currents are highly nonlinear in the thermodynamic forces, it would theoretically be possible
to stall the current I1 in a system consisting of only three states. In this section, we prove that our
system must have four possible distinct states so that the drag current can be non-trivially nullified
if the temperatures of the two top reservoirs are equal. We now consider that the intradot Coulomb
interaction is so strong that only one electron can occupy the quantum dot at a time, and thus the
only available states are |0〉, |u〉 and |d〉. Obviously, it is not possible to have energy-dependent
tunnelling rates in such a three-state model. The rate equations are reduce to ṗ0

ṗu
ṗd

 =

 −Γ−u − Γ−d Γ+
u Γ+

d

Γ−u −Γ+
u 0

Γ−d 0 −Γ−u

 p0

pu
pd

 (3.1)

And the steady state solutions read

p0 =
Γ+
u Γ+

d

Γ+
u Γ+

d + Γ−u Γ+
d + Γ+

u Γ−d
(3.2)

pu =
Γ−u Γ+

d

Γ+
u Γ+

d + Γ−u Γ+
d + Γ+

u Γ−d
(3.3)

pd =
Γ+
u Γ−d

Γ+
u Γ+

d + Γ−u Γ+
d + Γ+

u Γ−d
(3.4)

Here, the current between the first lead and the upper quantum dot assumes the simple form

I1 = q
(
Γ−1 p0 − Γ+

1 pu
)

=
qΓ+

d Γ1Γ2 (f1 − f2)

Γ+
u Γ+

d + Γ−u Γ+
d + Γ+

u Γ−d
(3.5)

which requires f1 = f2 in order to stall at non-zero temperature, so that

εu + U(1, 0)− U(0, 0)− qV1

T1
=
εu + U(1, 0)− U(0, 0)− qV2

T2
(3.6)

and therefore if T1 = T2 we get the trivial solution V12 = 0, independent of the potentials of the
bottom leads. However, we observe that the presence of both thermal and electrical biases would
indeed lead to a non-trivial stalling current with V12 6= 0.

3.2 Roots of the drag current

From now on, we perform our analysis on the four-state system described in §2.1. Our study aims
to verify the generalised non-equilibrium RRs and FDRs. As we already discussed, they require
that the involved currents be at stall in order to hold arbitrarily far from equilibrium. We will
exclusively focus on situations where the stalling currents are those between the upper dot and the
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first lead, i.e. the ones in the drag system. Since I1 = −I2 and J1 = −J2, it is enough for our
purposes to seek for roots of I1 and J1.

As we have said, the electric current I1 (eq. 2.17) is a highly nonlinear function of the biases
V12, V13 and V34. Consequently, the solutions to I1 = 0 must be found by means of numerical
analysis in order to verify the FDRs and the RRs. To this purpose, we set Γi = γi = Γ except for
γ1 = 0.1Γ, kBT = 5~Γ, q2/Ci = 20~Γ, q2/C = 50~Γ and εu = εd = 0. Furthermore, we consider
natural units where ~ = −q = kB = Γ = 1. Unless otherwise mentioned, these parameters will be
used in the rest of the article.
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Figure 2: Visualisation of the roots of I1 plotted as a function of V34 for different values of V13. In all cases,
qV12/~Γ = 0.372.

It is also clear from the figure that an expansion of the electric current for small biases cannot
be used to find approximate solutions to I1 = 0, since even a small, non-zero value of V12 already
shifts the stalling biases V13 and V34 far from the region of validity of the low-order perturbative
scheme. Physically, this means that the effect of a natural bias V12 between the upper leads, however
reasonably small, will always dominate over the effects of the biases between other terminals. In
other words, the Coulomb drag effect is much less significant to the creation of a charge current
between leads 1 and 2 than a voltage difference directly applied between them, which is intuitively
expected. The need for a numerical analysis of this system is hereby justified. In order to find the
roots of the currents for a given set of parameters, we have implemented a bisection algorithm (see
Appendix A).

3.3 Onsager reciprocity relations

Since there is no magnetic field present in our system, its dynamical evolution is time-reversible.
Accordingly, microreversibility ensures that the RRs should be satisfied for stalling currents far
from equilibrium as discussed in Ref. 7. In this section, we analyse both the case when the charge
and heat currents stall at the same time, as well as the scenario when they do not necessarily vanish
for the same configuration of generalised forces.

We begin by setting Γ2 = γ1 = 0. In this case, the charge and heat currents through the
first lead are proportional and stall for the same set of voltage differences. Physically, this setting
implies that electrons can only tunnel in and out of the first lead into the upper dot if the lower
one is empty, and similarly with the second lead if the lower dot is occupied. At the stalling points,
we compute the off-diagonal elements of the conductance matrix associated with the first lead,

L12 =
∂I1
∂T1

, L21 =
1

T1

∂J1

∂V1
(3.7)

Here, we consider as conjugate forces the absolute potentials and temperatures. This is justified
since the thermodynamic variables of the quantum dots do not show up in the currents, and thus
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differentiating them with respect to the gradients Ωi−Ωdot yields the same result as differentiating
with respect to Ωi (where Ω represents either a voltage or a temperature). In Fig. 3 it is shown
that the reciprocal relation L12 = L21 is indeed satisfied at all the points for which I1 = J1 = 0.
We show the matching of the Onsager coefficients for different values of V12 as a function of V13.
It is understood that the value of V34 at each point corresponds to the one where stalling has been
found by our numerical program.

We now consider the case where Γ2 = Γ and γ1 = 0.1Γ, for which the charge and heat currents
do not, in general, vanish for the same set of biases. Firstly, we notice that the RRs are satisfied
at the configurations where the current I1 stalls (Fig. 4), with J1 generally different from zero ac-
cording to eq. 2.18. On the other hand, considering the stalling points of J1 for this configuration,
in general we do not observe an agreement between L12 and L21 (Fig. 5). However, there are some
exceptions, as in the third panel of this figure where a good correspondence is observed. These
facts seem to point towards an asymmetry between the heat and charge currents, which we do
not fully understand yet. One may argue that, since the charge FDRs (which are not satisfied for
non-vanishing charge current) imply the RRs, we cannot expect the RRs to hold. Unfortunately,
this hypothesis does not explain situations like the one in the third panel of Fig. 5. Moreover,
the same argument should be valid for Fig. 4: according to the FDT for the heat currents, which
requires them to vanish in order to imply the RRs, the symmetry of the conductance matrix should
not be expected for J1 6= 0. In this sense, the unexpected behaviour is actually the perfect agree-
ment found in Fig. 4. This result, at the moment rather contradictory, is a question we leave
open at the end of this work. As a remark, we mention that the discontinuities in panel 3 of
Fig. 5 are due to the fact that our algorithm has found roots that are far apart from the rest for
some values of V12, and should not be confused with discontinuities in the derivatives of the currents.

Finally, in Fig. 6, we show the Onsager coefficients for biases such that I1 and J1 are far from
stalling (again, Γ2 = Γ and γ1 = 0.1Γ). In this case, we obtain the expected behaviour, since we
clearly see L12 6= L21.

During our investigation, we have explored the validity of the RRs for plenty of other parameters
of the system. The results for the different physical situations have always been of the same nature
as in our description above. We do not show them all in this report since their inclusion would
lengthen it unnecessarily. The recipes for the relevant computations should be clear and the results
can be easily reproduced by the sufficiently interested reader. The fulfilment of the RRs when
both of the involved currents vanish (as in Fig. 3), as well as the fact that they break down in
situations where both currents are of finite magnitude (as in Fig. 6), strengthen the hypothesis
that a symmetric conductance matrix is a signature of stalling currents under microreversibility
conditions.
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Figure 3: Off-diagonal Onsager coefficients for stalling I1 and J1.
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Figure 4: Off-diagonal Onsager coefficients for stalling I1 and non-stalling J1.
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3.4 Fluctuation-dissipation relations

In this section, we focus on the second part of our work, which consists in studying the validity of
the non-equilibrium FDRs. In this case, we only consider the FDT for the charge currents, so the
results are expected to be the same for vanishing I1 and J1 as for only a vanishing I1. Firstly, we
give explicit expressions for the relations, for which it is instructive to first consider the FDT near
equilibrium. We consider the following voltage expansion of the currents around the equilibrium
point Vi = 0:

Iα =
∑
β

Geqα,βVβ +
∑
β,γ

Geqα,βγVβVγ +O
(
V 3
)

(3.8)

where the nth order conductances Geqµ,ν1...νn = (∂nIµ/∂Vν1 ...Vνn)Vi=0 are related to nth order FDRs.
For instance, at second order the equilibrium FDRs read

Seqαβ = kBT
(
Geqα,β +Geqβ,α

)
(3.9)

and the third-order ones establish

Ceqαβγ = (kBT )
2
(
Geqα,βγ +Geqβ,γα +Geqγ,αβ

)
(3.10)

where Sαβ = 〈IαIβ〉 are the second-order cumulants (also called current-current correlations) and
Cαβγ = 〈IαIβIγ〉 are the third-order cumulants [12].

The generalised FDT establishes that the previous relations must hold far from equilibrium if
the involved currents stall as a result of the appropriate tuning of the parameters of the system,
with Geqα,β replaced by Gstα,β , etc. Therefore, we set out to verify them for our four-state double
quantum dot system. In order to compute the cumulants Sαβ and Cαβγ we employ the Full Count-
ing Statistics formalism (FCS) for which a sketch is provided in Appendix B. A more detailed and
thorough discussion of this method is provided in Refs. 13,14.

Again, we start by considering Γ2 = γ1 = 0, i.e. the heat current J1 is proportional to the
charge current I1. In Figs. 7 and 8, we show both sides of eq. 3.9. Clearly, the FDT in this form
holds for α, β = {1, 2} but not otherwise, which means that the non-equilibrium FDRs hold when
all the currents involved are stalling (we remind the reader of the fact that I2 = −I1).

We obtain similar results when Γ2 = 10γ1 = Γ, as can be visualised in Figs. 9 and 10. In this
case we have also computed some third-order cumulants, and verified the third-oder FDR in the
form of eq. 3.10. The results are shown in Figs. 11 and 12, where Aαβγ in the legend stands for
the expression on the RHS of 3.10. We mention that for the FDT for the charge currents, the state
of the heat currents is indifferent, as they do not appear in eqs. 3.9 and 3.10. Thus, in this case
there exists no conceptual difference between the situations Γ2 = γ1 = 0 and Γ2 = 10γ1 = Γ.

Finally, in Figs. 13–16, the second and third-order cumulants are compared with the symmetric
expressions on the right of 3.9 and 3.10 at points where I1 is far from stalling. As expected, the
FDRs clearly do not hold, validating that the FDT only requires stalling configurations in for its
fulfilment, as stated in Refs 4, 7.
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Figure 7: Second-order cumulants involving I1 and I2 and symmetric conductances for I1 = 0, with Γ2 = γ1 = 0.
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Figure 8: Second-order cumulants involving I1, I3 and I4 and symmetric conductances for I1 = 0, with Γ2 = γ1 = 0.
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Figure 9: Second-order cumulants involving I1 and I2 and symmetric conductances for I1 = 0, with Γ2 = 10γ1 = 1.
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Figure 10: Second-order cumulants involving I1, I3 and I4 and symmetric conductances for I1 = 0, with Γ2 = 10γ1 = 1.
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Figure 11: Third-order cumulants involving I1 and I2 and symmetric conductances for I1 = 0, with Γ2 = 10γ1 = 1.
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Figure 12: Third-order cumulants involving I1, I3 and I4 and symmetric conductances for I1 = 0, with Γ2 = 10γ1 = 1.
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Figure 13: Second-order cumulants involving I1 and I2 and symmetric conductances for I1 6= 0, with Γ2 = 10γ1 = 1.
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Figure 14: Second-order cumulants involving I1, I3 and I4 and symmetric conductances for I1 6= 0, with Γ2 = 10γ1 = 1.
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Figure 15: Third-order cumulants involving I1 and I2 and symmetric conductances for I1 6= 0, with Γ2 = 10γ1 = 1.
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Figure 16: Third-order cumulants involving I1, I3 and I4 and symmetric conductances for I1 6= 0, with Γ2 = 10γ1 = 1.

4 Conclusions

As we have discussed, we have provided evidence of the validity of the fluctuation-dissipation the-
orem and Onsager’s reciprocal relations far from equilibrium. In the case of the FDT, the results
are expected and completely satisfactory in all situations, since it appears to be satisfied if and
only if the involved currents are in a stalling configuration. For the RRs, the obtained results
are satisfactory when both currents or none of them are null, since they are found to be fulfilled
in the former situation but break down in the latter. Given the perfect correspondence of these
results, which hold for all cases that we have considered, the conclusions for these particular sit-
uations seem quite generalisable to the entirety of the parameter space. This is good news, as it
confirms that there are indeed some situations in which a system driven far from equilibrium enjoys
near-equilibrium properties, and can therefore be analysed by means of the well-known theoretical
models of equilibrium thermodynamics.

However, we have obtained another set of apparently contradictory results. In every case where
the charge current vanishes, but the heat flow does not stall, the RRs are found to be fulfilled
without any doubt. On the other hand, the opposite situation yields different results, since we
find situations where the RRs hold (at least in a region) as well as other cases where they clearly
break down. This finding appears to indicate an asymmetry between both physical currents in
our system, which we have not been able to understand yet. The resolution of this paradox is
thus the first important extension that we can propose for this work. As a first step, it would be
instructive to explicitly check the FDT for the heat currents, and use the heat FDRs to reconstruct
the necessary conditions for the fulfilment of the RRs.

Other possible lines of future investigation could include the computation of higher-order cu-
mulants and the verification of their respective FDRs. However, in the case of the FDT, all results
have been satisfactory and seem generalisable; for this reason, such an analysis would most cer-
tainly demonstrate the validity of these relations. Alternatively, the system we have considered
could be subject to a study of the cotunnel regime in a similar manner to the one proposed in this
article. In this way, one could investigate the behaviour of stalling currents and the validity of
the non-equilibrium relations in cases where the system exhibits purely quantum effects, such as
quantum transport under the preservation of phase coherence.
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Appendices

A Bisection method

In order to find the roots of the drag current at a certain point of parameter space, we have made
extensive use of the bisection algorithm. Firstly, we fix the value of the biases V12 and V13. We
are now interested in finding V34 such that I1 (V12, V13, V34) = 0. Let f(x) = I1 (V12, V13, x). We
iteratively seek two points a and b such that f(a)f(b) < 0. Since I1 is continuous, this implies there
is a root lying in the interval (a, b). To find this root with a tolerance ε once we have localised such
points, where ε represents the largest value for the width of the interval centered at the point that
we ultimately accept as a root, we proceed as follows:

1. We define c = (a+ b)/2.

2. If f(c) = 0 or (b− a)/2 < ε, we accept c as a root and stop.

3. Otherwise if f(a)f(c) < 0, we redefine b = c and return to step 1. If not, we redefine a = c
and return to step 1.

Even though the width of the interval decreases only linearly with this method, thus making
it rather slow, it is always ensured to converge if there is a root lying inside the original interval.
Furthermore, for a highly non-linear function which may present a behaviour that is difficult to
picture, such as the drag current, this method is far superior to non-fixed interval algorithms such
as the Newton method.

B Full Counting Statistics and computation of cumulants

Despite this method being extensively discussed in refs. [13, 14], a good understanding of it has
been crucial for this work. Moreover, several different approaches are found in the literature, and
thus we consider it adequate to clarify the precise path we have taken.

The central quantity we will be involved with is P ({n1, n2, n3, n4}; t) ≡ P ({n}; t), the prob-
ability that nj electrons have been transferred through the terminal j. The associated cumulant
generating function (CGF) F ({χ}; t) follows from

exp [F({χ}; t)] =
∑
{n}

P ({n}; t) exp

i∑
j

χjnj

 (B.1)

From the CGF we can obtain the desired cumulants by taking partial derivatives with respect
to the counting fields χj at χj = 0:

Cpqrs = ∂piχ1
∂qiχ2

∂riχ3
∂siχ4
F({χ}; t)

∣∣∣∣
χ=0

(B.2)

Then, the current cumulants in the long-time limit are simply given by

〈Ip1 I
q
2I
r
3I
s
4〉 = (−q)p+q+r+s dCpqrs

dt

∣∣∣∣∣
t→∞

(B.3)

In general, however, the expression for the CGF is difficult to obtain and handle, and must be
computed recursively. We first introduce the operator L(χ) as the Fourier transform of the entries
of our matrix L(0) ≡ L satisfying ρ̇ = Lρ. When only sequential tunnelling is considered, it is
obtained by adding counting fields to the off-diagonal entries of L, with a plus (minus) sign when
the transition corresponds to an electron entering (leaving) the corresponding lead (we skip the
details). For our matrix (2.11), it assumes the form

L(χ) =


−Γ−u − Γ−d Γ+

1 e
iχ1 + Γ+

2 e
iχ2 Γ+

3 e
iχ3 + Γ+

4 e
iχ4 0

Γ−1 e
−iχ1 + Γ−2 e

−iχ2 −Γ+
u − γ−d 0 γ+

3 e
iχ3 + γ+

4 e
iχ4

Γ−3 e
−iχ3 + Γ−4 e

−iχ4 0 −γ−u − Γ+
d γ+

1 e
iχ1 + γ+

2 e
iχ2

0 γ−3 e
−iχ3 + γ−4 e

−iχ4 γ−1 e
−iχ1 + γ−2 e

−iχ2 −γ+
u − γ+

d


(B.4)
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In the long-time limit, the CGF can be written as

F ({χ}; t) = λ0(χ)t (B.5)

where λ0(χ) is the minimum eigenvalue of L(χ) [13]. If we are able to compute it, then the current
correlations easily follow from (B.3) as

〈Ip1 I
q
2I
r
3I
s
4〉 = (−q)p+q+r+s ∂piχ1

∂qiχ2
∂riχ3

∂siχ4
λ0(χ)

∣∣∣∣
χ=0

(B.6)

In order to calculate λ0(χ), we have employed the method exposed in Ref. 14, which we discuss
now. First, we write L(χ) as

L(χ) = L+ L̃(χ) (B.7)

where L = L(0) and L̃(χ) = L(χ)−L. Next, we define operators P = |0〉〈0| and Q = 1−P, where

|0〉 = (p0, pu, pd, p2)
T

and 〈0| = (1, 1, 1, 1) are the left and right null eigenvectors of L. Clearly,
PL = LP = 0 and QL = LQ = L. In order to determine the CGF from (B.5), we must solve

L(χ)|0(χ)〉 =
[
L+ L̃(χ)

]
|0(χ)〉 = λ0(χ)|0(χ)〉 (B.8)

By choosing 〈0|0(χ)〉 = 1, it follows that

〈0|λ0(χ)− L|0(χ)〉 = λ0(χ) = 〈0|L̃(χ)|0(χ)〉 (B.9)

and using Q on |0(χ)〉 we also find

|0(χ)〉 = |0〉+Q|0(χ)〉 (B.10)

From (B.8), using that L and Q commute and Q2 = Q we obtain

Q|0(χ)〉 = Q [λ0(χ)− L]
−1QL̃(χ)|0(χ)〉 (B.11)

We now define
R [λ0(χ)] = Q [L − λ0(χ)]

−1Q (B.12)

and substitute (B.11) into (B.10) to find

|0(χ)〉 = |0〉 − R [λ0(χ)] L̃(χ)|0(χ)〉 (B.13)

so that finally

|0(χ)〉 =
{

1 +R [λ0(χ)] L̃(χ)
}−1

|0〉 (B.14)

Therefore, using (B.9) we arrive at

λ0(χ) = 〈0|L̃(χ)
{

1 +R [λ0(χ)] L̃(χ)
}−1

|0〉 (B.15)

We now Taylor expand the previous expression. In our case of four counting fields, L̃(χ) is
expanded as

L̃(χ) = L̃(1,0,0,0)(iχ1) + L̃(0,1,0,0)(iχ2) + L̃(0,0,1,0)(iχ3) + L̃(0,0,0,1)(iχ4)+

+
1

2!

[
L̃(2,0,0,0)(iχ1)2 + L̃(0,2,0,0)(iχ2)2 + L̃(0,0,2,0)(iχ3)2 + L̃(0,0,0,2)(iχ4)2+

+ 2L̃(1,1,0,0)(iχ1)(iχ2) + 2L̃(1,0,1,0)(iχ1)(iχ3) + 2L̃(1,0,0,1)(iχ1)(iχ4)+

+ 2L̃(0,1,1,0)(iχ2)(iχ3) + 2L̃(0,1,0,1)(iχ2)(iχ4) + 2L̃(0,0,1,1)(iχ3)(iχ4)
]

+O
(
χ3
)

(B.16)

where we have used L̃(0) = 0 as follows from the definition. Similarly we obtain for R [λ0(χ)] (with
R(0) ≡ R)

R [λ0(χ)] = R+R(1,0,0,0)(iχ1) +R(0,1,0,0)(iχ2) +R(0,0,1,0)(iχ3) +R(0,0,0,1)(iχ4) +O
(
χ2
)

(B.17)

where

L̃(p,q,r,s) = ∂piχ1
∂qiχ2

∂riχ3
∂siχ4
L̃(χ)

∣∣∣∣
χ=0

, R(p,q,r,s) = ∂piχ1
∂qiχ2

∂riχ3
∂siχ4
R [λ0(χ)]

∣∣∣∣
χ=0

(B.18)



Proceedings of the SURF@IFISC (2019)

From the definition (B.1) it follows that F({0}; t) = 0, so that λ0(0) = 0, and thus R = QL−1Q.
This operator satisfies LR = RL, RLR = R and LRL = L, and is called the Drazin pseudoinverse.
It can be shown that for a matrix of rank 4 it can be computed as

R = (a3)
−2 LB2

2 (B.19)

with the rules

L0 = 1 a0 = 1 B0 = I4 (B.20)

L1 = LB0 a1 = −Tr(L1)/1 B1 = L1 + a1I4 (B.21)

L2 = LB1 a2 = −Tr(L2)/2 B1 = L2 + a2I4 (B.22)

L3 = LB2 a3 = −Tr(L3)/3 (B.23)

Furthermore, it is possible to prove that the first derivatives of R, which are required for the
computation of the third-order cumulants, satisfy

R(1,0,0,0) = R2〈0|L̃(1,0,0,0)|0〉 (B.24)

R(0,1,0,0) = R2〈0|L̃(0,1,0,0)|0〉 (B.25)

R(0,0,1,0) = R2〈0|L̃(0,0,1,0)|0〉 (B.26)

R(0,0,0,1) = R2〈0|L̃(0,0,0,1)|0〉 (B.27)

Finally, we find λ0(χ) in the form of a power series,

λ0(χ) = 〈0|L̃(χ)
[
1−RL̃(χ) + (RL̃(χ))2 − ...

]
|0〉 (B.28)

or, explicitly,

λ0(χ) = 〈0|
{
L̃(1,0,0,0)(iχ1) + L̃(0,1,0,0)(iχ2) + L̃(0,0,1,0)(iχ3) + L̃(0,0,0,1)(iχ4)+

+
1

2!

[
L̃(2,0,0,0)(iχ1)2 + L̃(0,2,0,0)(iχ2)2 + L̃(0,0,2,0)(iχ3)2 + L̃(0,0,0,2)(iχ4)2+

+ 2L̃(1,1,0,0)(iχ1)(iχ2) + 2L̃(1,0,1,0)(iχ1)(iχ3) + 2L̃(1,0,0,1)(iχ1)(iχ4)+

+ 2L̃(0,1,1,0)(iχ2)(iχ3) + 2L̃(0,1,0,1)(iχ2)(iχ4) + 2L̃(0,0,1,1)(iχ3)(iχ4)−
− 2L̃(1,0,0,0)RL̃(1,0,0,0)(iχ1)2 − 2L̃(1,0,0,0)RL̃(0,1,0,0)(iχ1)(iχ2)−
− 2L̃(1,0,0,0)RL̃(0,0,1,0)(iχ1)(iχ3)− 2L̃(1,0,0,0)RL̃(0,0,0,1)(iχ1)(iχ4)−
− 2L̃(0,1,0,0)RL̃(1,0,0,0)(iχ2)(iχ1)− 2L̃(0,1,0,0)RL̃(0,1,0,0)(iχ2)2−
− 2L̃(0,1,0,0)RL̃(0,0,1,0)(iχ2)(iχ3)− 2L̃(0,1,0,0)RL̃(0,0,0,1)(iχ2)(iχ4)−
− 2L̃(0,0,1,0)RL̃(1,0,0,0)(iχ3)(iχ1)− 2L̃(0,0,1,0)RL̃(0,1,0,0)(iχ3)(iχ2)−
− 2L̃(0,0,1,0)RL̃(0,0,1,0)(iχ3)2 − 2L̃(0,0,1,0)RL̃(0,0,0,1)(iχ3)(iχ4)−
− 2L̃(0,0,0,1)RL̃(1,0,0,0)(iχ4)(iχ1)− 2L̃(0,0,0,1)RL̃(0,1,0,0)(iχ4)(iχ2)−

− 2L̃(0,0,0,1)RL̃(0,0,1,0)(iχ4)(iχ3)− 2L̃(0,0,0,1)RL̃(0,0,0,1)(iχ4)2
]

+O
(
χ3
)}
|0〉 (B.29)

We can now apply (B.2) to compute all cumulants recursively. To first order we get (except for
a factor of t)

C1000 = 〈0|L̃(1,0,0,0)|0〉 (B.30)

C0100 = 〈0|L̃(0,1,0,0)|0〉 (B.31)

C0010 = 〈0|L̃(0,0,1,0)|0〉 (B.32)

C0001 = 〈0|L̃(0,0,0,1)|0〉 (B.33)

To second order, we obtain

C2000 = 〈0|L̃(2,0,0,0) − 2L̃(1,0,0,0)RL̃(1,0,0,0)|0〉 (B.34)

C0200 = 〈0|L̃(0,2,0,0) − 2L̃(0,1,0,0)RL̃(0,1,0,0)|0〉 (B.35)

C0020 = 〈0|L̃(0,0,2,0) − 2L̃(0,0,1,0)RL̃(0,0,1,0)|0〉 (B.36)
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C0002 = 〈0|L̃(0,0,0,2) − 2L̃(0,0,0,1)RL̃(0,0,0,1)|0〉 (B.37)

C1100 = 〈0|L̃(1,1,0,0) − L̃(1,0,0,0)RL̃(0,1,0,0) − L̃(0,1,0,0)RL̃(1,0,0,0)|0〉 (B.38)

C1010 = 〈0|L̃(1,0,1,0) − L̃(1,0,0,0)RL̃(0,0,1,0) − L̃(0,0,1,0)RL̃(1,0,0,0)|0〉 (B.39)

C1001 = 〈0|L̃(1,0,0,1) − L̃(1,0,0,0)RL̃(0,0,0,1) − L̃(0,0,0,1)RL̃(1,0,0,0)|0〉 (B.40)

C0110 = 〈0|L̃(0,1,1,0) − L̃(0,1,0,0)RL̃(0,0,1,0) − L̃(0,0,1,0)RL̃(0,1,0,0)|0〉 (B.41)

C0101 = 〈0|L̃(0,1,0,1) − L̃(0,1,0,0)RL̃(0,0,0,1) − L̃(0,0,0,1)RL̃(0,1,0,0)|0〉 (B.42)

C0011 = 〈0|L̃(0,0,1,1) − L̃(0,0,1,0)RL̃(0,0,0,1) − L̃(0,0,0,1)RL̃(0,0,1,0)|0〉 (B.43)

and the same procedure is applied to higher-order cumulants. The expressions become rather
cumbersome, but the recipe is clear and easy to use with some algebra.
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Abstract

Electric power grids are complex interconnected networks in which demand and supply
have to match one each other at all times; as power grids are subject to fluctuations, control
mechanism are required to prevent the network breakdown. The subjects of this paper are the
secondary control, needed to restore the value of the frequency to its nominal value once some
disturbance is met, and the Braess’ paradox, a phenomenon that occurs when increasing loads
on some lines or adding new ones, where we are counter-intuitively decreasing the system
performance or destabilizing its operating state. Here we developed the work done in [1]
studying a simple eight-node system near to instability with imposed secondary control to
keep it in the working regime: we recreated the setup in [1] modifying then the way control
works over the system.

1 Introduction
Electric power grids can be described as complex interconnected networks in which demand
and supply have to match one each other at each time, since electrical power cannot be stored.
Power grids usually carry energy rotating at a reference frequency of 50 Hz, but this value
is subject to oscillations due to unscheduled mismatches, random fluctuations or external
disturbances. To deal with these oscillations, are required control mechanisms, which become
increasingly important due to the integration of renewable energies into the grid. The control
mechanisms implemented for the power grids act on different time scales: when an energy
unbalance is encountered, the first second the energy is taken from the spinning reserve of
the rotating turbines; within the next seconds primary control goes into action to avoid a
large frequency drop, stabilizing its value. To restore the frequency to its nominal value, the
secondary control is needed.

Within the next years, grid topology and control systems have to connect with renewable
energies generators end to adapt to their working mechanisms. The adaption of the grid
includes modification of the transmission lines, for example increasing the capacity to prevent
cascading failures. However, it is known that in a power grid, network modifications are
not always beneficial, contrary to expectations. Adding a new line or increasing the value
of the capacity of a line can lead to instabilities or breakdowns, depending on the network’s
topology: this is called Braess’ paradox. Braess’ paradox was first postulated by the German
mathematician Dietrich Braess in 1968, who observed that adding a road to a particular
congested road traffic network may not help, but increase the journey time. Braess’ paradox,
as we will see, can also occur in power grids.

Here, I will first study and reproduce the results of the article: “Curing Braess’ paradox by
secondary control in power grids“, which studies the effects of the Braess’ paradox on power
grids and how to prevent it implementing a secondary control that depends on the voltage
phase angle θ. I will then move on applying modifications on the model studied in it.

This report is structured as follows: first of all I will introduce the mathematical model for
the dynamic of electric power grids with the presence of secondary control, in section 2. Next I
will move to a first easy example of the application of the model on a two-node grid, in section
3. In section 4 I will move to the main results obtained by the cited article, reproducing the
dynamic model with control applied on an easy eight-node system with infinite control power.
In section 5 I will investigate how a limited amount of control modifies the behaviour of the
same grid, and finally in section 6 I will study the effect over the network of a different control
power availability over generators and consumers.
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2 Mathematical modeling of the power grid
The electric power grid can be modeled as an interconnected network consisting of nodes,
which represent effective power generators and the consumers, linked by power transmission
lines (edges). Each node of the network represents a local geographic area which has some
energy production and consumption, with net mechanical power input Pmi positive for effective
generators and negative for effective consumers. The reference frequency of the power grid is
fixed around fR = 50 or 60 Hz, and its angular velocity can be obtained as ωR = 2 ·πfR. The
dynamics of each node i of the system can be modeled with the following system of equations,
called Swing equation:

θ̇i = ωi (1)

ω̇i =
ωR

2 ·HiPGi

(
Pmi (ωi)− P ei (θi, ωi)

)
. (2)

So the state of each node is characterized by the voltage phase angle θi and the angular
velocity deviation ωi; Hi is the inertia constant of the generator and PGi is its nominal capacity.
In the chosen reference frame, ωi = 0 implies that the node is rotating at the reference frame
angular velocity ωR. P ei represents the total power consumed and transmitted at the node i:

P ei (θi, ωi) =

(
1 +

Di
ωR

ωi

)
P li +

n∑
j=1

Bijsin(θi − θj) (3)

The first term of this equation represents the total power consumed by the node and
depends on the value P li , which represents the load dissipated when the frequency is fR; the
term is divided in one part which is frequency dependent (through the parameter Di) and one
part which is not. The second part of the equation contains the total power transmitted by
the node i to the other nodes: each transmission is governed by the sinus of the difference
of the phase voltage angles between nodes, and depends of some parameters Bij containing
construction features of the power lines.

As already introduced, power grid is subject to fluctuations depending on the use of renew-
able sources, changing of demand or external disturbances. To deal with those fluctuations,
the power grid is controlled on different time scales: a faster control (primary) and a slower one
(secondary) are usually imposed. The primary control acts modifying the mechanical power
output given by the turbines in a way which is proportional to the deviation of the angular
velocity of the node ωi with respect to the reference one:

Ṗmi =
1

τi
[P si − Pmi −

PGi
RiωR

ωi] (4)

τi is the characteristic response of the primary control, P si is the spinning reserve power
and Ri is the governor speed regulation.

Secondary control is then applied to restore the frequency value to the reference one:

Ṗ si = − κi
ωR

ωi (5)

Integrating:

P si = − κi
ωR

θi + P iref (6)

Here P iref is the nominal spinning power and κi is the gain parameter of the secondary
control. As we can see, secondary control acts proportionally on the modification of the phases
θi. In this case the amount of control that can be applied by the system is infinite, as it can
vary indefinitely with the value of θi.

Let’s define the following quantities: Pi = ωR

2HiP
G
i

(P refi − P li ), αi = Di

2HiP
G
i
P li , βi = 1

2RiHi
,

γi = κi

2HiP
G
I

, and Kij = ωR

2HiP
G
i
Bij . α here acts as a damping constant, and Pi is the new

power generated or consumed by the node i: it is positive for effective generators and negative
for effective consumers. The terms Kij represent the capacity of each line, and P ci is the
control power with time constant τi. βi and γi give the magnitude of primary and secondary
control. We will absorb the βi terms into αi, and set τi = 0 meaning that the control will act
instantaneously. We can make this approximation because this will not affect the steady state
of the system: τ will change only the dynamic of the oscillations during the transient phase.

With those simplifications we get:
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θ̇i = ωi (7)

ω̇i = −αiωi − γiθi + Pi −
n∑
j=1

Kijsin(θi − θj). (8)

The control term has the form −γiθi, which will be then modified in my work to take a
more realistic form: control, indeed, can not have an infinite power capacity.

3 Two-node system

Figure 1: Time evolution of the angular velocity deviation ω for the generator and the con-
sumer nodes of a two-node system, obtained from simulations without control (left) and with
control(right). We can see that with control the system is able to come back to the value ω = 0,
which means that it is in phase with the reference frequency ωR.

Let’s start from the study of an elementary two-node system consisting in a generator
P1 > 0 and a consumer P2 < 0, with and without control. In the uncontrolled case we have
to set γ1 = γ2 = 0s−1, while in the controlled one γ1 = γ2 = 0.1s−1. The other parameters
are fixed as following: α = 1 = α2 = 0.1s−1 (homogeneous damping), K = 1.5s−1, P1 = 1s−1,
P2 = −1.2s−1.

The results about the trend of the angular velocity of the nodes obtained from the simu-
lation of this system can be seen in figure 1.

We can see that the system, after an oscillating transient, goes to stability both with and
without control, which means that in both cases the equations in 8 have a fixed point solution.
However, the value of the frequency in which the system without control stabilized is different
from the reference one, while with control the system returns to ωi = 0.

4 Eight-node system with infinite control power
In order to study in detail the problems arising from Braess’ paradox and how the control
works to prevent them, let’s move to a more complex example network made by eight nodes,
represented in figure 2. The network is made so that generators (squares) and consumers
(circles) are not distributed evenly: for example generator 4 is connected to two consumer
nodes, while generator 3 is connected to none of them. In this way we are able to arouse
instabilities and to analyze the capability of the control in repair them.

The network will be modified during the study adding one additional line or increasing the
capacity of one of the lines to introduce a desynchronisation between the phases of the nodes
of the network.

In figure 3 you can see the evolution in time of the phases of the network’s nodes in the
controlled and uncontrolled cases, starting from an initial condition of phases and angular
velocity all equals to zero. In the image I am comparing the three scenarios of the original
network, increasing the capacity of the line 3−4 or adding a new line between nodes 2−4. This
results is a reproduction of the same study made by the reference article, and it is consistent
with the ones obtained in it. from the figure 3 we notice that the original network is capable to
reach stability starting from the initial conditions without the help of the secondary control,
while the two modified networks are not.
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Figure 2: Illustration of the eight-node example network used to study the effects of the Braess’
paradox. It is made by four identical generators (squared) and four consumers (circles).

In the steady state case the system is formed by two mirroring subgrids, one composed by
the nodes 3, 4, 5 and 8 and the other one by the nodes 1,2,6 and 7. The capacity increasing
between nodes 3 − 4 traduces into a bigger coupling coefficient. In this way the term K34 ·
sin(θ3 − θ4) forces the phase difference between them to decrease. This leads to increase the
difference between nodes 4− 5 and 4− 8. This difference leads to a modification in the flow of
the current into the network, breaking the symmetry between the two subgrids that there were
formed in the steady state. The difference can be seen as a weak overall counter-clockwise
flow.

Figure 3: Phases as a function of time coming from the simulation of the behavior of an eight-
node network in a controlled (bottom images) and uncontrolled (upper images) scenario, in three
different cases: original network (images a, d), doubling the capacity of the line 3 − 4 (images b,
e) and adding a new line between nodes 2− 4 (images c, f).

The increasing in the capacity of the 3 − 4 line can lead to a breakdown of the system
(losing the fixed point solution) when the capacity is increased of more than ∆K ∼ 0.6s−2.
This results can be seen from figure 4. In this image we can see that while increasing the
capacity of the line 3 − 4, the phase difference between these two nodes decreases both in
the controlled and uncontrolled scenarios, while some other remain constant and others go
increasing. In the case in which no control is imposed, there is no fixed point after increasing
the capacity with a value ∆K ∼ 0.6s−2: the system goes into an oscillatory state in which
angles cannot stay in phase.

In this image the values for the difference of the phases are obtained leaving the system
evolve until it reaches the stationary state: the capacity of the line is slowly increased in a way
that the initial value of the θi and ωi variables for each capacity variation are the stationary
value obtained in the previous iteration. This is done because changing the parameters of the
system the fixed point should move a bit from the point where it is located (and so the values
for θi and ωi will be a little different), but if it still exists, it shouldn’t be too far away from
the previous one.

But when does, in general, happen that an increasing in the capacity of the line of a network
leads to a breakdown of it? To understand this, let’s take a look at the Swing equation with
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Figure 4: Trend of the difference between the values of the phases between some nodes as a function
of the increasing of the capacity on the line 3-4 of the network, in the two cases in which there is
no control imposed (left) and when there is (right); the left image is cut where the stability is not
reached anymore.

secondary control: if the system is in the stationary frame (fixed point solution ω̇∗ = 0), both
the terms −αiωi and ω̇ equal to zero. We have then:

Pi − γiθ∗i =

n∑
j=0

Kijsin(θ∗i − θ∗j ) (9)

This equations, without control γi = 0, do not always have a solution for θ∗. Imagine that
we are in a stationary situation without control, so:

Pi =

n∑
j=0

Kijsin(θ∗i − θ∗j ), (10)

and we increase the capacity of a line, namely 3− 4. What will happen is that the above
equation has no solution, and ωi for i = 3, 4 won’t be zero anymore. The angular velocity is
changing because the value of K34 is trying to decrease the distance between the phases of
the two nodes, as we saw from the above plots. This means that the difference of some other
phases are instead increasing. This discrepancy can be hold by the system only until a certain
point, as the term

∑n
j=0Kij · sin(θ∗i − θ∗j ) is trying to keep the difference between the phases

smaller and smaller, but if it keeps increasing, as we have no helping term −γiθ∗i , the phases
discrepancy will reach a certain value for which it is bigger than 2 · π and, this will cause a
jump for the phases of some nodes, which for a certain amount of time will be then again in
phase, to jump again after a certain period of time.

Instead, when we introduce control into the system, equation 9 always has at least a
solution, so this problems is not present anymore.

5 Eight node system with limited control power
Let’s move now from an infinite secondary power control to a real and limited one. To do
so, I modified the control in each node as Pmax · tanh(δ · θi), where Pmax represents the
maximum amount of power that can be provided by the control (so the maximum height of
the hyperbolic tangent curve), and the hyperbolic tangent has a shape which is consistent with
how the control really acts. The control is again dependent on the phase voltage angle.

The Swing equation with control now becomes:

θ̇i = ωi (11)

ω̇i = −αiωi − Pmax · tanh (δ · θi) + Pi −
n∑
j=1

Kijsin(θi − θj). (12)

We have now to study the functioning of the limited control as a function of the parameters
Pmax and δ.
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Figure 5: Hyperbolic tangent representation.

5.1 Variation of Pmax and δ

First of all we need to check if in first approximation the action of the new control is the same
of the infinite one we provided until now. So, in first approximation we can write:

Pmax · tanh(δ · θi) ∼ Pmax · δθi (13)
To check if the new control acts as the old one, I fixed the amount Pmax · δ = γ = 0.01,

the same value used until now. I then choose four values for Pmax, namely 0.2, 0.1, 0.02 and
0.01, computing δ each time as 0.1/Pmax.

I used those parameters to study the trend of the control added to every node as a function
of the increasing of the capacity on the line 3− 4. In figure 6 you can see the results obtained.

Figure 6: Control acting on each node of the network as a function of the increment of the capacity
on the edge connecting nodes 3-4, for 4 fixed values of Pmax. The last plot is cut in the point in
which the synchronized state becomes unstable.

For the first three values of Pmax selected, the stability of the system was always reached,
but the number of steps needed to reach the fixed point (so the total amount of time time)
was bigger for smaller values of Pmax. At a certain value of Pmax we expect the system to not
reach anymore the stability, as we increase the capacity: this happens indeed for Pmax = 0.01
around the value ∆K ∼ 0.62s−2.

I figure 6 we can also notice that, for smaller values of Pmax selected, the absolute value
of the total control acting on each node |Pmax · tanh(δθi)| is smaller. Moreover its value
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decreases with ∆K for all nodes except for the nodes 1 and 4, for which the control increases
in absolute value. As the capacity increases, the control for a fixed value of Pmax seems to
reach a maximum for all nodes (again, except 1 and 4), so then if we keep increasing the
capacity more and more, we won’t need to impose more control on these nodes.

As these values of the control, which are a function of the phase voltage angles, stay almost
constant for each the different plots we have here above, it is interesting to check if the values
of the phases are constant as a function of Pmax, for fixed values of the network capacities. So
I fixed the value of the capacity of the network first at the value of 1.03 s−2 for all the lines,
and then I doubled this value only for the line 3-4.

Figure 7: Variation of the phases θi as a function of the value of Pmax (and δ=0.1/Pmax) once
the system has reached the steady state. In the left figure the network had all lines with the same
weights, in the right one the weight of the line 3-4 was doubled. In the right plot the image is cut
where the stability is not reached anymore.

In figure 7, we can have a look at the trend of the phases of the different nodes as a function
of the variation of Pmax from a value of 0.2 until the point of breakdown for the system where
the fixed point does not exist anymore. Here the computation is made again following the
fixed point, but backward because in the case of a value of Pmax too small, increasing the
capacity we know that the system would not be stable anymore. Here we compute at each
step δ = 0.1/Pmax. As we can see as Pmax is incremented, the distance between the phases
of the nodes decreases, approaching to 0. This happens both in the original network and in
the one with doubled 3-4 line weight, where the phases are approaching even more. Seems
that, increasing the capacity, for a value of Pmax sufficiently large, the work that the control
has to do over the system is lower.

5.2 Variation of Pmax with δ fixed
At this point we need to check what happens if, with the new control imposed, we vary only
the value of one of the two variables (Pmax and δ), keeping the other one constant. These two
variables can be translated into the amount of money needed to implement the control when
the system is constructed: Pmax represent the maximum amount of power that the control
system is able to provide, and can be thought of as proportional to the initial investment to
build the network; δ on the other side, represents how fast is the control system to react to
instabilities (the value of delta is the one that changes the slope of the tanh of the control), so
can be thought of as the investment done over the control system to keep the network working
in a problematic situation.

The value of δ was then fixed to 1.0 to check the variation of the trend of control and
phases as we increase the capacity on the line 3− 4. The values chosen for Pmax are the same
as before, so 0.2, 0.1, 0.02, 0.01. The result obtained are shown in figure 8. We can see that in
the case Pmax = 0.01 and δ = 1.0 the stability is not reached anymore as we keep increasing
δK over ∼ 0.8s−2 .
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Figure 8: Control as a function of the capacity variation on the line 3-4 for different values of Pmax

fixing the value of delta equal to 1.0. The last graph is cut where the stability was not reached
anymore.

5.3 Control as a function of delta
Let’s now check the behavior of the control on the system as a function of the δ parameter. I
fixed the value of Pmax to 0.2 and 0.1 and vary δ from 0 to 4.

In the graphs in image 9 you can see the behaviour of the control applied to each node (on
the left), and the sum of the absolute values of the controls (on the right), both as a function
of δ, for a fixed value of Pmax = 0.1 (figures on the top) and of Pmax = 0.2 (figures on the
bottom). The values on the image are obtained varying slowly the parameters of the system
and waiting until it reaches the steady state. As we can see, increasing δ the control imposed
over each node of the network seems so increase up to the maximum value given by Pmax.
The value of the control, moreover, is bigger on some nodes (2 and 5) than others, and seems
to work in a symmetric way on the system.

The same study was then repeated for the network with doubled capacity along the line
3− 4; the results are shown in image 10. We can see that for a value of Pmax = 0.1 and small
values of δ, as repeatedly noted, the system breaks.

In general, the behavior of the control over the two systems is very similar (except near
delta ∼ 0): the control increases as δ approaching the value of Pmax. However it acts with a
difference over some nodes, in the two cases: without doubled capacity, the control over nodes
5 and 2 increases increasing Pmax. When we doubled the capacity over the line 2 − 4, this
happens over nodes 1 and 4 instead. In both cases, we can see a sort of symmetry over the
behavior of the system.

To complete the study, I ran a simulation modifying both the values of Pmax from 0 to 0.2
and of δ, from 0 to 4, checking if the system is reaching the stability both in the original setup
and in the one with doubled 3 − 4 weight. In the figures 11 and 12 you can see the trend of
the sum of the absolute values of the controls over all the nodes as a function of both δ and
Pmax. We can see that increasing Pmax for a fixed value of δ, or δ for a fixed value of Pmax,
the action of the secondary control over the network is always increasing, both for the original
and the modified networks. Moreover, the total control effectively acting on the system with
doubled 3-4 capacity seems to be a little bigger than the one acting on the original network.

8



Figure 9: Trend of the control in the network as a function of delta for values of Pmax fixed to 0.2
(left) and 0.1 (right), for the basic network.

Figure 10: Trend of the control in the network as a function of delta for values of Pmax fixed to
0.2 (left) and 0.1 (right), for network in which the value of the weight in the line 3-4 was doubled.
The images with Pmax = 0.1 are cut around the value of δ ∼ 0.3, where the stability breaks.
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Figure 11: Surfaces of the total control imposed into the network in the original network.

Figure 12: Surfaces of the total control imposed into the network doubling 3-4 weight (right).
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6 Controlling generators and consumers in different
way
Until now we assumed that all the nodes in the network can be controlled in the same say.
However happens that consumer nodes have a limited generation capacity, and so the control
that they can imposed is limited. It was already tested the case in which secondary control
was available only at nodes with positive power generation, as in today’s usual power grids.
With this setup was observed that, depending on how the system was disturbed (so on the
system’s topology) the control could have been effective or not: for example was observed
that increasing ∆K34 and controlling only the generators, even with infinite power, the phase
differences δθ45 and δθ48 was increasing faster with control rather than without it, leading
to the fixed point disappearance with a lower value of ∆K34 (rather than if the control was
imposed over all nodes). Next, was considered an increasing of the capacity along the line
1− 6, this modification without control leads to the Braess’ paradox, but if control was added
only on the generators, in this case the breakdown could have been prevented completely.

Let’s consider now then the case in which we impose a different value of the control over
generator and consumer nodes: in particular the one imposed into the consumers is smaller
than the one on generators.

I studied the system in two cases: in the first one I imposed on the generators Pmax = 0.1,
and on the consumers Pmax = 0.01; in the second one the values were for the generators
Pmax = 0.01 while for the consumers Pmax = 0.001. I studied, for each of those two cases,
the trend of the effective value of the control imposed over each node, and the variation of the
difference between some node phases as a function of the increment of the capacity over the
line 3− 4.

Figure 13: Variation of the control (left) and the variation of the difference of angles between some
nodes (right) as a function of the increasing of the capacity over the line between nodes 3-4, for
values of Pmax 0.1 in the generators and 0.01 in the consumers (upper images) and Pmax 0.1 in the
generators and 0.001 in the consumers (bottom images). The images are cut where the system’s
stability breaks.

In figures 13 you can see the results. Some plots are cut around the value of ∆K ∼ 0.5s−2

because from that point the system is not stable anymore.
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7 Conclusions
In this report we improved the work made in [1], where they studied how to cure the Braess’
paradox in an easy eight-nodes power grid network, with four generators and four consumers,
with and without control.

Here we first reproduced the results obtained in the paper, which studied the system adding
a line or increasing the weight of a line with and without an unlimited amount of control
imposed over it, to show that with the control it is possible to cure the Braess’ paradox.

After that we modified the control imposed over the model so that it is limited, and follows
the behaviour of a real control, which is an hyperbolic tangent dependent on two parameters
which reflect how the model is constructed. We studied the behaviour of the grid with this
control, modifying the two parameters to see in which range of values the system is able to
reach the stability.

After that we modified again the model imposing a different amount of control over gen-
erators and consumers, and we found out that imposing less control over consumers than
on generators, we are still able to reach system stability for a certain range of values, while
without control over consumers was not possible to reach it.
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Appendix A Integration Method
To solve this problem, which involves the solution of an ordinary differential equation with
given starting conditions, we need an integration method. The idea of an integration method
is to solve the equations in small steps with a defined stepsize, therefore the goodness of the
obtained approximation will depend on the value of this fixed parameter.

To integrate the swing equation I used the Runge Kutta method, which is a family of
iterative integration methods widely used to approximate the solutions for ordinary differential
equations. The idea of Runge-Kutta methods is to propagate a solution over an interval
combining the information of some previous smaller steps, each one of those involving the
evaluation of the given ODE in a value point, and then using the information obtained to
expand a Taylor series of the function up to some predefined order 14. Runge-Kutta method
was chosen for its simplicity but high accuracy (error 10−5).

Figure 14: Runge Kutta.

To describe Runge-Kutta we will start from the Euler method:

yn+1 = yn + h · f(xn, yn) (14)

Where the error made at each step is of order O(h2). Euler method is not very recom-
mended because of the big error value made at each step, and because of its low stability.

By far the most often used is the classical fourth-order Runge-Kutta formula, which can
be described with the following set of equations:

k1 = h · f(xn, yn) (15)
k2 = h · f(xn + h/2, yn + k1/2) (16)
k3 = h · f(xn + h/2, yn + k2/2) (17)
k4 = h · f(xn + h, yn + k3) (18)

yn+1 = yn +
k1
6

+
k2 + k3

3
+
k4
6

+O(h5). (19)

A next point to be implemented may be a Runge-Kutta adaptive stepsize algorithm.
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1 Introduction

News, memes, and information propagate through social networks. Very often a few different infor-
mation compete for attention from many users at the same time. We studied this phenomenon in the
Twitter hashtags world, where hashtags compete for being retweeted all the time. Understanding this
mechanism could, for example, help to distinguish natural hashtags and hashtags that someone wants
us to spread. To do so, we simultaneously proposed an epidemic model that could explain the rise
and fall of hashtags popularity over time.

2 Simulations

2.1 Model

To model the competition between memes in a social network, multi-strain SIR model was proposed
where memes are infections. It was inspired by MA Nowak’s model for multi-strain HIV epidemic.

It was simulated as an agent base simulation with mean-field approximation. In each time step,
an infected agent can meet and infect k people at random from the whole population. Each agent can
be infected by only one disease at once and cannot be infected by the diseases he’d already seen.

The simulation consisted of 4 phases.

1. Shuffle agents so agents with lower indices are not prioritized in phase 2.

2. Every infected agent tries to infect k people from the population chosen at random. If a chosen
agent is not infected and he hasn’t seen this meme yet, he is infected with probability βi.

3. With probability r new meme is introduced to the system if there are susceptible agents.

4. Every agent that was infected coming into the time-step has pµ probability of getting cured.

In different simulations we were sampling betas from different distributions, each meme had different
βi.

2.2 Realisation of the simulation

First, the model was implemented in python and then optimized with the usage of numpy and cython
packages. To gain additional performance it was rewritten to C++17. Final simulation program
provides a convenient CLI interface for the user that is documented in the code.

1
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2.3 Simulation results

2.3.1 Simulation for r = 0.2

Figure 1: Time evolution of memes. Every meme has different color. r = 0.2

Figure 2: Time evolution of memes. Closer look so peaks are more visible. r = 0.2

2
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Figure 3: Total people affected by meme – infected by disease. r = 0.2

Figure 4: Distribution of peaks heights. r = 0.2
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Figure 5: Time intervals between ordered peaks. Peaks are count in order of diseases appearing.
r = 0.2

Figure 6: Time intervals between observed peaks. r = 0.2
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Figure 7: Absolute differences between following peaks (observed) heights. r = 0.2

Figure 8: Relative differences between following peaks (observed) heights. r = 0.2
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2.3.2 Simulation for r = 0.8

Figure 9: Time evolution of memes. Every meme has different color. r = 0.8

Figure 10: Total people affected by meme – infected by disease. r = 0.8
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Figure 11: Distribution of peaks heights. r = 0.8

Figure 12: Time intervals between ordered peaks. Peaks are count in order of diseases appearing.
r = 0.8
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Figure 13: Time intervals between observed peaks. r = 0.8

Figure 14: Absolute differences between following peaks (observed) heights. r = 0.8
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Figure 15: Relative differences between following peaks (observed) heights. r = 0.8

3 Twitter

3.1 Data

Every geolocalized tweet from years 2015-2018 in the UK has been analyzed. It is approximately 1%
of total tweets in the UK in these years.

3.2 Processing data

I’ve received 4 files of data from twitter, one per year with one tweet JSON per line, in total 273GB
of data. To be able to work with this amount of data I process data in parallel (16 threads) in chunks
on salmunia server. Results were stored two sqlite3 DB tables.

Table 1: Structure of table messages.
Column msg id user id timestamp
Type integer integer integer

Table 2: Structure of table hashtags.
Column msg id hashtag
Type integer text

Each chunk of data contained 20480 tweets. That amount worked best. It was a trade-off between
small chunks – fast data processing, a lot of IO1 operations, a lot of collisions when inserting to
DB2 and big chunks – slower data processing, a smaller amount of IO operations, a lower amount
of collisions. The final amount of data, only 8GB, allowed us to export everything to CSV files and
conveniently work on them in R. Each hashtag has been converted to lowercase. From 123 million
tweets only first tweet of the hashtag has been analyzed. That reduced number of tweets to 55 million.

1 Input/output – read/write on disk.
2Database
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3.3 Extracted knowledge

Data has been filtered so only hashtags used by at least 500 users are considered. For each hashtag,
data was aggregated in bins of 1 day.

Then the peaks were found. Peaks were considered in the period of tpeak ± k. Where k = 3 so it
was one week. To do so:

1. Global maximum for each hashtag h#max is find (in domain of time).

2. All points of this hashtag with height at least 0.2h#max are labeled as potential peaks.

3. For all potential peaks, but not often then every week), volume of the peak is calculated.

4. Peaks with peak coverage
Vpeak

Vhashtag
> 0.05 are considered.

Number 0.05 may seem very small but it worked good because some hashtags are a bit popular all
the time but also have really clear peaks from time to time.

Figure 16: Popularity of 500 most popular hashtags in 1st quarter of 2017.
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Figure 17: Total people affected by hashtag.

Figure 18: Distribution of peaks heights.
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Figure 19: Time intervals between peaks.

Figure 20: Absolute differences between the following peaks heights.
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Figure 21: Relative differences between the following peaks heights.

4 Conclusions

The proposed model replicates some features of hashtags data but it requires further development.
The problems that should be aimed in the feature:

• Distribution of heights of peaks (4, 11) is flat instead of being exponential 18.

• Distribution of hashtags/memes volume has very heavy tail (3, 10 vs 17).

• Distribution of peak heights differences is almost flat (7, 14) instead of being almost exponential
20.

• Distribution of time intervals between peaks is Poissonian in model (6, 13), what means that
it’s a random process. In twitter data we see that that’s not the case 19.

• Lack of memes noise (2, 16).

Some possible solutions to some of these problems:

• Different parameters of the model such as β distributions, size of the population, contacts per
person.

• Complicating model with an idea of topics.

• Looking only at some part of twitter data. For example on all the data or only on popular
hashtags.

This are only preliminary results. Work will be continued under my master thesis in the following
months.
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Abstract
In this report we review some of the well known method for the identification of coherent,

evolving structures in turbulent fluid flows (Lagrangian Coherent Structures). Namely, Finite Size
and Finite Time Lyapunov exponents. We try to identify similar structures in the solution of
an advection-reaction-diffusion equation for phytoplankton in the frame of the burning invariant
manifolds theory, which describes the phenomenon in terms of the front or "border" of the plankton
patch. It is observed that some characteristic features of the structures are correctly shown, but
important parts of it are missing.

1 Introduction

The emergence of spaciotemporally coherent structures has been long observed in many kinds of fluid
flow. These persistent structures evolve with the flow and thus should be studied from a Lagrangian
point of view. They can be visualised in many situations such as plankton patches or clouds, and
are a useful tool in the characterisation of turbulent, chaotic flows. The impact of fluid dynamics in
the propagation and evolution of chemical and biological front has been a subject of investigation for
quite some time. In an analogous way to the study of the previously mentioned Lagrangian coherent
structures (LCSs) (Haller, 2015), the aim of this project is to study similar coherent structures that
arise in the propagation of such reactions (Hernández-Garcıa and López, 2004).

In the first part we will try to characterise the flow structures (LCSs) with methods typically used
in dynamical system theory that have already been proven successful (Ser-Giacomi et al. (2017) and
Haller (2015)). Namely, we will calculate and compare finite time and finite size Lyapunov exponents,
and see how successful they are at predicting the formation of said structures.

In the second part, we will consider a simplified predator-prey plankton model in a turbulent open
flow. In particular, we will focus on the results obtained by Hernández-Garcıa and López (2004)
regarding an excitable system of these characteristics. For the sake of simplicity but without any
major effects on the study, we will suppress the presence of zooplankton and we will only consider
phytoplankton. Thus, the system will not be excitable, but will still have propagation of fronts. We
will try to explain the structures observed in the integration of the plankton model, which were already
observed by Hernández-Garcıa and López (2004), in the frame of the burning invariant manifolds
theory (Mitchell and Mahoney (2012) and Mahoney et al. (2012)), and see to what extent this theory
is applicable to this system.

2 Theoretical background and methodology

2.1 The flow and plankton models

In this report, following Hernández-Garcıa and López (2004), we will consider a two-dimensional
incompressible, time-dependent flow, which contains a chaotic region (which will be the one of interest
to us). The flow can be written in terms of a streamfunction Ψ(x, y, t) which gives the velocity field
through the expressions:

vx =
∂Ψ

∂y
, vy = −∂Ψ

∂x
(1)
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The streamfunction we have used is

Ψ = Ψ0 tanh
(y
d

)
+ µ exp

(
−(x− L)2 + y2

2σ2

)
cos(k(y − vt)), (2)

which represents a jet of width d and maximum velocity Ψ0/d centered around y = 0, travelling
towards the positive x direction, with a wave-like perturbation of maximum amplitude µ centered at
(x, y) = (L, 0) in a region of size σ with wavenumber k and phase velocity v. Throughout this report,
we will consider the case of a rectangular domain [0, L]× [−L,L] with the parameters Ψ0 = 2, µ = 3,
L = 9, σ = 2 and d = k = v = 1, so that the (periodic) perturbation has period T = 2π

kv = 2π
(Hernández-Garcıa and López, 2004).

(a) (b)

Figure 1: (a) shows the position at t = 6T = 12π of 40,000 fluid particles which at t = 0 were located at
x0 = 0.3L = 2.7. We observe that those with |y| & 3 have experienced almost no displacement, while
those located in the central region have entered the chaotic region and trace the unstable manifolds of
the saddle (the exit trajectories). At sufficiently long times, almost all of them will have abandoned
the region (except those which follow the stable manifolds exactly). (b) shows the state of the plankton
patch at t = 110. We observe that the structures of the inner part of the patch can be identified with
those observed in (a), but some additional structures (the ‘outer envelope’) are not reflected by the
fluid particles’ trajectories alone.

For the plankton growth and distribution, we have used a FKPP-like equation with the addition
of the advective term (advection-reaction-diffusion equation):

∂P

∂t
+ v ·∇P = rP (1− P

K
) +D∇2P (3)

where r is the inverse of a characteristic timescale of the growth of plankton conentration P , K is
the maximum plankton conentration, D is the diffusion coeficient and v is the velocity field given
by equations (1) and (2). Again following Hernández-Garcıa and López (2004) we choose r = 4.3,
K = 1 and D = 10−5, and a (delimited) gaussian patch as the initial condition: P (x, y, t = 0) =

exp
(
− (x−x0)2+y2

l2

)
for (x − x0)2 + y2 ≤ 2l2, with x0 = 0.3L = 2.7 and l = 0.11L = 0.99, and P = 0

elsewhere.
The behaviour and evolution of a FKPP equation (identical to (3) but suppressing the advective

v · ∇P term) is well known. If we ommit the diffusive term, we observe that the equation Ṗ =
rP

(
1− P

K

)
has two fixed points: P = 0 and P = K, the former being unstable and the latter, stable.

Thus, an initial perturbation to a ground state of P = 0 will increase up to saturation, P = K. The
role of diffusion is to propagate the perturbation: neighbouring regions to the perturbed zone will
eventually experience a small perturbation, which will in turn grow, and so on, thus propagating the
reaction (in this case, the plankton concentration) at a characteristic speed v0 = 2

√
Dr (Neufeld and
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Hernández-García, 2009). In this report, we will study how the addition of the advective term changes
this behaviour.

For the calculation of the fluid particles’ trajectories, as for all ODEs appearing throughout this
report, we have employed a Runge-Kutta 4 method, with time step δt = 0.4.

Figure 2: Illustration of the semi-Lagrangian method. Black nodes correspond to the points of the grid
at t = t0 + δt, and grey nodes (the deformed grid) correspond to the position of those points (which
have been advected by the flow) at t = t0. The concentration in the grey points is interpolated from
the (known) concentration of the grid points at t = t0.

To solve the advection-reaction-diffusion equation we have used a semi-Lagrangian method, which
splits the equation in three parts: the trajectories (hence Lagrangian), the non-linear term, and the
diffusive term. First of all, we have discretised the domain in square cells of size 0.02 × 0.02 and we
have integrated the trajectory of each point of the grid one time step backwards, so as to obtain a
deformed grid. Then we have interpolated the value of the plankton concentration to each point of the
deformed grid via bilinear interpolation, and then we have integrated the equation Ṗ = rP

(
1− P

K

)
(again, with a RK4 method) for these values one time step forward, so that the new values correspond
to points on the original grid. Lastly, we have solved the diffusion equation ∂P

∂t = D∇2P on the new
values of the grid with an explicit algorithm. For this equation we have taken δt = 0.2 (it is good to
note that the stability condition for the explicit algorithm is fulfilled: D δt

δx2
= 0.005 < 1

2).

2.2 Characterisation of the flow structures

As shown by Haller (2015), Ser-Giacomi et al. (2017) and Bettencourt et al. (2013), Lyapunov exponents
have been proven a useful and computationally efficient (although not the only) technique to identify
LCS. Here, we have used and compared the Finite-Time and Finite-Size Lyapunov Exponents (FTLE
and FSLE). Given two infinitesimally close initial conditions, Lyapunov exponents, λ, are quantities
that characterise the rate of separation of two particles with those initial conditions in the following
way:

|δr(t)| ≈ eλt|δr0| =⇒ λ = lim
t→∞

lim
δr0→0

1

t
ln
|δr(t)|
|δr0|

(4)

The value of the Lyapunov exponents depends on the orientation of the initial separation vector,
δr0, so that a set of Lyapunov exponents, {λi}, exists for every point. However, the Lyapunov exponent
is the term normally used to refer to the maximum Lyapunov exponent, since it is the dominant term
at asimptotically long times. That is, at long times, particles (or fluid) will be most stretched out in
the direction associated with λ = max{λi}.

Similarly, one may define the FSLE as follows:

λ =
1

τ
ln
|δrf |
|δr0|

, (5)

where τ is the time it takes for two particles with initial conditions differing by δr0 to become separated
by a distance |δrf |. That is, for FSLE the final separation is fixed manually (and accordingly to the
characteristic dimension of the physical problem).

For the case of FTLE the expression is somewhat more complicated. First, we need to consider the
Lagrangian function, r(t) = Φt

t0(r0) of the dynamical system. That is, the function which gives the
position at time t of a point which at time t0 was located at r0. For the present case, this function is
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obtained by solving the initial value problem ṙ = v(r(t), t), r(0) = r0. Then, the evolution (to first
order) of two points with similar initial conditions is given by:

δr(t) = Φt
t0(r0 + δr0)−Φt

t0(r0) = ∇Φt
t0(r0) · δr0 +O(δr20) (6)

Therefore,

|δr(t)|2 = (∇Φt
t0(r0) ·δr0)T ·∇Φt

t0(r0) ·δr0 = δr0 ·(∇Φt
t0(r0))T∇Φt

t0(r0) ·δr0 = δr0 ·C(r0, t0; t) ·δr0
(7)

Where ∇Φt
t0(r0) denotes differentiation with respect to the initial conditions (that is, the Jaco-

bian of Φt
t0(r0) with respect to r0), and C(r0, t0; t) is the Cauchy-Green stress tensor, defined as

(∇Φt
t0(r0))T∇Φt

t0(r0). Hence, if we write Λmax as the greatest eigenvalue of the Cauchy-Green stress
tensor, one may compute the FTLE for a fixed time t as

λ =
1

2|t− t0|
ln Λmax (8)

It is important to notice that the Lyapunov exponents are a field: they are a function of the
initial conditions and, if we consider either FTLE or FSLE, also of time. Therefore, one should write
λ = λ(r0, t0; t).

We may consider the cases in which t > t0 and those in which t < t0. This will give us the forward
and backward LE. The two fields will characterise, respectively, the stable and unstable manifolds of
the system: if we consider forward LE, ridges in the field will show regions where particles evolve far
from each other, whereas if we consider backward time LE, ridges in the field will show regions where
particles are attracted at long times. It is this last case which will be of most interest to us. The
product of both fields will show the location of the chaotic saddle; that is, the intersection between the
stable and unstable manifolds.

Since the main structure is localised in a region of size σ = 2 around (x, y) = (0, L) = (0, 9), for the
calculation of all the LE we have considered a smaller domain, D = {(x, y)| − 6 ≤ y ≤ 6, 0 ≤ x ≤ 16},
which we have discretised in cells of size 0.1 × 0.1. For the forward LE we have set t0 = 0 and
t = 6T = 12π, while for the backward LE we have considered t0 = 6T = 12π and t = 0, and time step
δt = 0.4.

Again, for the FSLE we have used the Runge-Kutta 4 method to integrate the particle trajectories
up to a final separation of |δrf | = 4. We have compared the trajectories of each point in the grid with
that of its four immediate neighbours (top, bottom, left and right), and we have taken the FSLE at
that point to be the maximum of the four LE obtained in each calculation. For the FTLE, we have
numerically computed the gradient tensor using a central formula for the partial derivatives, and we
have obtained the eigenvalues of the Cauchy-Green tensor analytically.

2.3 Burning invariant manifolds

We will attempt to characterise the coherent structures observed in the integration of (3) in the
context of the burning invariant manifolds theory, as found in Mahoney et al. (2012) and in Mitchell
and Mahoney (2012). In this approach, the evolution and propagation of the chemical (or, in this case,
biological) reaction is described solely in terms of the front, which separates the already ‘burnt’ region
from the ‘unburnt’ one (hence the name).

The front’s own propagation velocity, v0, is taken to be constant and perpendicular to its surface.
Thus, each point in the front evolves according to the following system of ODEs:

ẋ = vx + v0 sin θ

ẏ = vy − v0 cos θ (9)

θ̇ = −2vx,x sin θ cos θ − vx,y sin2 θ + vy,x cos2 θ

where the notation ,x denotes partial differentiation with respect to x, v0 is the front’s propagation
velocity, v = (vx, vy) is the flow velocity (which is taken to be incompressible, so that vx,x = −vy,y)
and θ is the angle between the front’s surface and the x axis (see Figure 3).
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Figure 3: Schematic drawing depicting the evolution of the front. u is the fluid velocity, r and ṙ are
the front element’s position and velocity, n is the unit normal and g the unit tangent. Extracted from
Mitchell and Mahoney (2012)

In Mahoney et al. (2012) it is shown that, in an analogous way to the invariant manifolds of the
fluid flow, which act as barriers to the fluid’s trajectories, there are structures, different from the former
ones, which characterise the front’s propagation. These structures, however, act as one-sided barriers:
they are permeable to the front in one direction but not in the other. The aim of this project is to
determine whether these are enough to explain the persistent structures observed in Figure 1b.

3 Results

3.1 Flow structures and Lyapunov exponents

Here we present the results obtained for the Lyapunov exponents using the two methods described
previously.

In Figure 4 we observe that both techniques yield similar results. Values of the Lyapunov exponents
are not exactly the same but are of the same order, and the structures that appear resemble those
of Figure 1a. However, the FTLE show a much richer and detailed structure than the FSLE, which
only highlight the strongest ridges of such structures. This could be attributed to several factors. The
width, intensity and number of filaments that appear on the FSLE depends on the choice of final
separation |δrf |, but also on the integration time limit: in certain regions flow speed is so small that
it would take neighbouring particles an enormous amount of time to distance themselves so much. If
the integration time exceeds the time limit, the Lyapunov exponent for that point is set to 0 (hence
the black uniform background). Since we wanted to explore the structures that appear after a time
interval of 6T , this is the value we have chosen for the integration time limit. On the other hand, the
method used for the calculation of the FTLE ensures that we stay in the linear regime, thus making it
more sensitive to small values of the Lyapunov exponents, as opposed to the case with FSLE described
before.

As we have pointed out in the previous section, backward and forward Lyapunov exponents show
the location of unstable and stable manifolds respectively. That is, the trajectories that fluid particles
follow in the t→∞ and t→ −∞ limits. The intersection of both manifolds reveals the location of the
chaotic saddle, whose location can be obtainted by calculating the product of forward and backward
Lyapunov exponents, as seen in the last row of Figure 4. Thus, at sufficiently long times we expect
to observe no particles located where forward Lyapunov exponent’s ridges are, and expect to see an
accumulation of particles along the structures defined by the backward Lyapunov exponent’s ridges. As
we can see in Figure 5 this is indeed the case, and backward Lyapunov exponents successfully indicate,
with minor discrepancies, the location of particles after a sufficiently long time. A better agreement
between flow simulation and Lyapunov exponents’ calculations is observed for FTLE than for FSLE
(see Figure 5), which appear to be displaced by a consistent distance. This is most probably due to
an error in the implementation of the algorithm or plotting.

3.2 Plankton growth and burning manifolds

Here we present the comparison of the evolution of the plankton patch as predicted by equation (3)
and that of the front, according to equations (9).
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Figure 4: Left column corresponds to FSLE, right column corresponds to FTLE. From top to bottom:
backward LE, forward LE, and product of backward and forward LE.

Figure 5: Superposition of the backward Lyapunov exponents (left: FSLE, right: FTLE) and the
location of 120,000 fluid particles at time t = 6T .
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In Figure 6 it is observed that initially, the plankton patch is rapidly advected by the flow, thus
forming very similar structures as the ones found in figures 1a and 5. However, there are some
remarkable differences which later evolve into characteristic features of the plankton patch. Namely,
the two lobes on the left of each horizontal branch and the cusp located roughly in the middle of the
upper branch’s upper boundary.

The agreement between the front (eq. (9)) and the plankton simulation (eq. (3)) is quite good
at short times, when advection by the flow dominates. The front model fails to properly recreate the
characteristic lobes mentioned before, and displays some discrepancies in the end region on the right,
where the front advances faster than the plankton patch. However, the front model successfully shows
the characteristic cusp in the upper branch, and generally follows the shape and evolution of the patch
(aside from the differences which have already been mentioned).

The major difficulty we have encountered in implementing the front model is the choice of the
front’s propagation speed. If the behaviour is assumed to be that of the FKPP equation, a propagation
velocity of v0 = 2

√
Dr ≈ 0.013 should be expected. However, the effective diffusivity in the simulation

is higher than the value assigned to D . This is a result of discretising the domain and interpolating
the values of the concentration. We have attempted to measure the actual propagation speed in the
simulation in different cases. Assuming a completely flat front, we have obtained a value of v0 ≈ 0.027.
This already shows that the numerical diffusivity is indeed noticeable. In the case of the simulation
shown in Figure 6 we have tracked two points in the boundary of the plankton patch between t = 75
and t = 110: one located in the upper left lobe, at around y = 4, and the other located left of the
upper cusp, at around x = 7. We have obtained values v0 ≈ 0.027 and v0 ≈ 0.059 respectively.

This discrepancy between the values propagation velocity shows that, contrary to the assumption
implicit in equations (9), curvature effects are indeed important. We do not know whether curvature
alone is enough to explain the inability to recreate the two left lobes on either branch of the plankton
patch, but we may conclude that curvature effects are indeed noticeable. As a first solution to this
issue, for the simulation of the front shown in Figure 6 we have taken the average between the two
measured values, v0 ≈ 0.027+0.059

2 = 0.043.

4 Conclusions

In the fist section, as it was expected, we have verified that Lyapunov exponents are a useful and
relatively simple method to identify LCSs in a turbulent flow. In the comparison between FTLE and
FSLE, it is observed that FTLE show a greater level of detail and predict fluid particle’s location more
accurately than FSLE. These, in turn, ommit the smaller values of the Lyapunov exponents and only
show the more pronounced ridges. In the light of previous evidence, such as Ser-Giacomi et al. (2017),
the obvious gap between fluid particles’ position and FSLE observed in Figure 5 should probably be
attributed to some error in the calculation.

In the second section it is seen that the burning invariant manifolds theory successfully predicts
some relevant features of the plankton patch’s evolution and shows general qualitative agreement in its
shape and propagation. However, there are some characteristic regions which the front simplification
fails to properly describe. This could possibly be attributed to curvature effects, which have been seen
to be relevant to the propagation speed. Perhaps finer tuning of this velocity could yield somewhat
better results.

It is now to be seen whether similar techniques to those used in the first section for the character-
isation of LCSs can successfully identify the location and features of these other kind of structures, as
it is seen in Mitchell and Mahoney (2012).
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Figure 6: Snapshots of the evolution of the plankton patch between t = 0 and t = 105 at time intervals
of ∆t = 15. White dots correspond to the front described by eq. 9. 160,000 points were placed at the
boundary of the initial patch.
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Abstract

The appearance of microblogging platforms in the last few years has provided sociolinguistics
with the possibility to have access to massive geotagged linguistic data. In this project, a study
on language variation over the United Kingdom is performed using a text corpus constructed
from geotagged tweets, in order to establish a correlation between the use of standard linguistic
markers and certain socioeconomic and cultural indicators. Additionally, a spatial analysis of the
use of British and American forms has been carried out. The different results obtained are globally
coherent and partially consistent with previous results. A correlation between a high socioeconomic
and cultural status and a tendency to the use of standard forms has been observed.

1 Introduction

Language variation consists in the existence of differences in the usage of language due to several
factors. The nature of the different causes may be highly diverse, ranging from geographical and
temporal to social and economic factors. The influence of the latter on language variation is precisely
the object of study of sociolinguistics, which analyses quantitatively the correlation between the
different socioeconomical causes and the variability in the different linguistic patterns.

Usually, linguistics research works on a text corpus, that is, a structured collection of texts or
other linguistic data containing some linguistic variables to analyse. The creation of such corpora
has traditionally been performed trough interviews or surveys, which provided the researcher with
a rather unnatural and standard response and a limited scope. However, the development of
new technologies in the last decades has allowed a completely different approach with multiple
advantages. In particular, geotagged microblogging data (Twitter data, for instance) permits the
automatic analysis of massive datasets, which can be obtained at real-time, for really large or
specific geographical areas and with a high spatial resolution. Furthermore, it addresses uses of
language which are closer to real speech. These new computational linguistics tools have been
widely used on Twitter data to perform sociolinguistic [1] and dialectometric studies [2, 3, 4].

The aim of this project is to perform a diatopic analysis on the language variation of English
in the United Kingdom using Twitter geotagged data. On the one hand, we will study the spatial
distribution of British and American forms in spelling and lexical alterations, phenomenon already
observed and quantified in [4]. On the other hand, we will analyse the correlation between the
socioeconomic and cultural status and the use of certain standard structures. The use of standard
variants is usually associated to high economic and cultural levels and to formal speech, whereas
non-standard variants correspond to informal situations or lower socioeconomic status. A temporal
analysis and a statistical study of the dataset has also been performed in order to verify the quality
of the corpus and the validity of the methods subsequently used.
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2 Methodology

2.1 Dataset

The dataset used to perform the language analysis consists of approximately 369 million geotagged
tweets generated in the United Kingdom over four years (from 2015 to 2018). Since the socioeco-
nomic study of language variation is to be carried out on English, tweets written in English must be
selected from the dataset. In order to detect the desired tweets, the Compact Language Detector
2 (CLD2) [5] has been applied to the dataset. The chosen threshold for the probability in CLD2
for language detection was 60%, where the performance of the CLD2 is especially reliable, as it has
been suggested in [3, 4].

Afterwards, using Twokenizer (O’Connor et al., 2010), a tool specially designed for Twitter
text in English, undesirable elements of the tweet, such as hashtags, at-mentions or emoticons;
have been removed.

Figure 1 shows the position of all the downloaded tweets. The main urban areas — such as
London, Manchester and Glasgow —, can be clearly observed.

Figure 1: Heatmap of the position of the geotagged tweets in the United Kingdom used in the analysis.

2.2 Linguistic variables

Three different studies have been performed on the resulting dataset to analyse the Americanisation
and the use of standard forms in English.

In order to examine the presence of British or American forms, two different factors have been
considered separately, namely spelling and vocabulary. A list of different concepts that can be
expressed in two different lexical alternations or two different spellings, either British or American,
has been used to determine the Americanisation of English in vocabulary or spelling, respectively.
The spelling and vocabulary lists were obtained from [4], and are included in the Supplementary
Material section (tables 1 and 2). On the other hand, the study of standard forms was based in
two different linguistic markers. In the first place, the use of the non standard forms ain’t and
ain’t got no in contrast with their standard equivalents (table 3) has been chosen as an accurate
linguistic variable for the analysis of standard forms of English. The second linguistic marker used
in the study of standard forms is the standard construction of the third person singular form in
the present, that is, the presence of the third person singular present inflectional marker -s. Table
4 contains a list of the 97 most common verbs considered to perform this analysis, obtained from
the British National Corpus (BYU-BNC) [6]. We notice that the verbs to do and to have, two of
the most used verbs in English, were dismissed because of their usage as auxiliary verbs to form
different verb tenses or verbal structures. Besides, verbs that remain invariant in their past and
past participle form (such as to cut), have also been ruled out.

Each pair of British/American or standard/non standard forms will be referred as a concept in
the following. The set of all the concepts of the same study will be referred as a list (namely the
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spelling list, the vocabulary list and the standard list).

2.3 Metrics

The spatial variation of the different linguistic variables considered above has been studied dividing
the country considered (namely, the United Kingdom) in a latitude - longitude grid of squared cells
of 0.25◦ × 0.25◦.

The polarisation for a concept w in cell c is defined as:

V c
w =

Bc
w −Ac

w

Bc
w +Ac

w

(1)

where Ac
w is the number of American forms and Bc

w is the number of British forms of the concept
w counted in cell c. Thus, polarisation consider values in the interval [−1, 1], where -1 corresponds
to a full use of American forms, and 1 corresponds to the presence of only British forms. Similarly,
in the analysis of the standard vs. non-standard forms, Ac

w denotes the number of non-standard
variants whereas Bc

w represents the number of standard terms in cell c. Therefore, the polarisation
again takes a value between -1 (fully non-standard language) and 1 (fully standard).

The polarisation of a cell c can be determined as the average polarisation over all the concepts
in one of the three lists analysed (spelling, vocabulary or standard):

V c =

∑
w V

c
w

W c
(2)

where W c is the number of concepts in the chosen list that appear in the cell.
The standard deviation associated to the average polarisation in cell c, used to show whether the

polarisation value differ significantly among the different concepts in a given cell, can be determined
as:

σc =

√
1

W c

∑
w

(V c
w − V c)2 (3)

2.4 Socioeconomic and cultural variables

In order to quantify the educational level of a region, an index comparing the number of students
that have reached the highest level of education to the global population will be computed. This
index is defined as the ratio:

Qct =
N ct

4

N ct
(4)

where N ct
4 is the number of persons that have reached level 4 qualifications1 and above and N ct

the total population in the county ct, according to [7]. The index Qct clearly takes values in the
range of [0, 1], and higher values of Qct correspond to regions with high educational level.

To analyse the socioeconomic status of the different regions in the United Kingdom, the mean
value of the total income Ict (in £) for each county ct will be considered (using data from [8]).

3 Results and discussion

3.1 Temporal variation

Before performing the spatial analysis of the dataset, some initial tests were carried out in order
to find out whether the dataset was acceptable for the purposes of the project.

Because the dataset used contained four years of geotagged tweets, we checked if there was a
significant variation in the values of polarisation for each concept over time. In order to study the
temporal evolution of polarisation, for each year (2015, 2016, 2017, 2018) and for each list (spelling,
vocabulary and standard), a histogram of the distribution of the values of polarisation of all the
United Kingdom over all the concepts of each of the three lists was plotted (figure 2).

The fact that the distribution of polarisation values does not change significantly over the years
allows us to ignore the temporal variable and to perform the spatial variation analysis considering
the tweets dataset.

1In [7], the population of a given county is divided in four educational levels, considering the highest level of quali-
fication they have achieved. Level 4 qualifications correspond to having obtained a Bachelor’s degree or equivalents, or
higher qualifications.
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Figure 2: Histograms showing the frequency of appearence of a certain value of polarisation V for
each year and for each list: spelling (first row), vocabulary (second row) and standard (third row).

Furthermore, the analysis of the value of polarisation for each concept permitted to detect
anomalous values for certain concepts, regarding expected values obtained from previous studies
and linguistic analysis. For instance, the concepts cot/crib, demister/defroster, trousers/pants
and wellington boots/rubber boots (initially considered to be part of the vocabulary list) were
studied separately and subsequently dismissed. The polarisation values of the concept cot/crib
were distorted because of the existence of an English musical band of the 2000. The concept
trousers/pants was ruled out because of polysemy reasons. The other two concepts were considered
invalid for being too specific.

3.2 Spatial variation

In order to determine to what extent is the study of the polarisation spatial distribution valid, the
spatial analysis of other parameters — the standard deviation σc, the number of matches with a
concept of the list2 N c, and the number of concepts that appeared in the given cell W c— was
perform. The maps resulting from this analysis are included in figure 3.

Obviously, the distribution of the number of matching tweets and the number of concepts
match with the distribution of population over the United Kingdom. Highly populated areas, such
as London or Manchester, match with areas with a very high number of tweets or concepts. They
also match with areas of low standard deviation, which can be explained regarding the high number
of samples. According to the central limit theorem, the mean value for polarisation (equation 2)
converges in distribution to a Gaussian distribution N(µc, (σc)2/W c), where µc is the expected
value of polarisation and σc is the standard deviation. Thus, cells with a high number of matching
concepts have also a low standard deviation value.

On the other hand, sparsely inhabited areas — namely The Highlands (Scotland) and the
western part of Northern Ireland —, which can also easily be identified in the N c and W c maps;
correspond to the most differing values of polarisation. This fact suggests that a threshold in the
number of matching concepts W c is required in order to consider the polarisation of a certain cell
valid. Regarding the results shown in 3 and the method used in [4]3, the optimal value for the

2Assuming that all the tweets contain at most one matching concept, Nc coincides with the number of matching
tweets. In any case, Nc might be understood as an approximation to the number of matching tweets.

3A threshold of 10 matching concepts per cell was chosen in this case.



Proceedings of the SURF@IFISC (2019)

threshold in the spatial analysis was considered to be 5 matching concepts per cell. This threshold
will be used in the subsequent work in the project.

The results obtained for the spelling and the vocabulary lists are partially consistent with
previous results in [4].

The values of polarisation are notably positive, denoting a strong use of British forms over
American forms. Besides, the polarisation values for the spelling list are higher than in the case
of the vocabulary list. However, in [4], urban areas and large cities correspond to low values of
polarisation, whereas in the obtained results this is not the case.
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Figure 3: Spatial distribution of the polarisation V c, the standard deviation σc, the number of matches
in the tweets N c and the number of matching concepts W c for each list: spelling (first row), vocabulary
(second row) and standard (third row).

3.3 Socioeconomic and cultural study

Afterwards, a comparison between the sociolinguistic results and the socioeconomic and cultural
data was carried out. Without taking into account the little populated regions (The Highlands),
a correlation between polarisation values and the economic and educational level can be observed
(figure 4).

Whereas in areas with lower educational level (western Northern Ireland, southern Scotland and
the East of England) correspond to regions where non standard forms are chosen over standard
ones, areas with a high educational level index (the surroundings of London and in particular the
South East England regions, the Scottish urban areas and Central Scotland and some London
boroughs) are associated to areas with a strong use of standard forms. Additionally, the West
Midlands and the urban area of Liverpool, Manchester and Sheffield also correspond to areas with
high polarisation values for standard concepts.

On the other hand, the regions with a high economic level (London and its surroundings, the
South East, Scotland, North Yorkshire and the southern North West) correspond to a standard
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Figure 4: Comparison between the educational and economic level and the polarisation spatial distri-
bution.

use of English, although regions with a lower economic level (The Midlands) also show a high
polarisation value.

Regarding the Americanisation of English study, the pattern is similar, but with a higher con-
trast between hihgly populated areas (with a tendency to the use of British forms) and their
surroundings (with a weaker use of British forms, although polarisation values are far from being
negative).

4 Conclusions

The aim of this project was to determine whether there is a correlation between the use of standard
forms in English and the socioeconomic and cultural status over the regions of the United Kingdom.
Furthermore, we analysed the Americanisation of English in the United Kingdom and to confirm
previous results on this matter. Using a dataset of geotagged tweets created in the United Kingdom
and sociocultural geographical data, a spatial analysis of the use of English was carried out.

On the one hand, the study of the Americanisation of English agrees with previous results to
a certain extent. Although global results are coherent, the tendency to standard forms in urban
areas is higher than expected. On the other hand, the use of a more standard English has been
confirmed to be correlated to high economic and, specially, educational level.

After a statistical analysis of the spatial distribution of polarisation, it has been concluded that
a threshold in the number of matching concepts per cell is required in order to obtain more reliable
results. The following steps in this project might include a study considering variations in the size
of the cells and a quantitative analysis on the correlation between the use of standard forms and
the educational and socioeconomic level.
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Supplementary Material

Word Lists

The following tables contain the word lists of the British and American forms used in the analysis
of the Americanisation of English in both spelling and vocabulary.

Table 1: British and American spelling variants (66 items)

British American

skilful skillful
wilful willful
fulfil fulfils fulfill fulfills
instil instils instill instills
appal appals appall appalls
flavour flavours flavour’s flavours’ flavor flavors flavor’s flavors’
mould moulds mould’s moulds’ mold molds mold’s molds’
moult moults moulted moulting molt molts molted molting
smoulder smoulders smouldered smouldering smolder smolders smoldered smoldering
moustache moustaches moustache’s moustaches’ mustache mustaches mustache’s mustaches’
centre centres centre’s centres’ epicentre epicen-
tres epicentre’s epicentres’ multicentre multicentres
multicentre’s multicentres’ sportcentre sportcentres
sportcentre’s sportcentres’

center centers center’s centers’ epicenter epicen-
ters epicenter’s epicenters’ multicenter multicenters
multicenter’s multicenters’ sportscenter sportscen-
ters sportcenter’s sportcenters’

metre metres metre’s metres’ meter meters meter’s meters’
theatre theatres theatre’s theatres’ amphitheatre
amphitheatres amphitheatre’s amphitheatres’

theater theaters theater’s theaters’ amphitheater
amphitheaters amphitheater’s amphitheaters’

analyse analyses analysed analysing analyze analyzes analyzed analyzing
paralyse paralyses paralysed paralysing paralyze paralyzes paralyzed paralyzing
defence defense
offence offense
pretence pretense
revelling revelled reveling reveled
travelled travelling traveled traveling
traveller travellers traveller’s travellers’ traveler travelers traveler’s travelers’
marvellous marvelous
plough ploughs ploughed ploughing plow plows plowed plowing
aluminium aluminium’s aluminum aluminum’s
jewellery jewellery’s jewelry jewelry’s
pyjamas pajamas
whisky whisky’s whiskey whiskey’s
neighbour neighbours neighbourhood neighbour-
hoods

neighbor neighbors neigborhood neigborhoods

honour honours honouring honoured dishonour dis-
honours dishonouring dishonoured

honor honors honoring honored dishonor dishonors
dishonoring dishonored

colour colours coloured colouring bicolour multi-
colour multicoloured discolour discolours discoloured
discolouring watercolour watercolours watercolourist

color colors colored coloring bicolor multicolor mul-
ticolored discolor discolors discolored discoloring wa-
tercolor watercolors watercolorist

behaviour behaviours behavioured behaviouring mis-
behaviour misbehaviours misbehavioured misbe-
haviouring behaviourismbehaviouralism behavioural
behaviouralist

behavior behaviors behaviored behavioring misbe-
havior misbehaviors misbehaviored misbehavioring
behaviorism behavioralism behavioral behavioralist

labour labours laboured labouring labourer labourers
belabour belabours belaboured belabouring

labor labors labored laboring laborer laborers bela-
bor belabors belabored belabored belaboring

humour humourless humoured humours humouring
humorous humourist humourists

humor humorless humored humors humoring humor-
ous humorist humorists
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Table 1: (Continued)

British American

favour favourite favoured favourable favourites
favours favourably unfavourable favouring
favouritism disfavour disfavoured disfavours dis-
favouring favourableness

favor favorite favored favorable favorites favors fa-
vorably unfavorable favoring favoritism disfavor dis-
favored disfavors disfavoring favorableness

harbour harbours harbouring harboured harbor harbors harboring harbored
tumour tumours tumourigenesis tumourigenic tu-
moural tumoured

tumor tumors tumorigenesis tumorigenic tumoral tu-
mored

vigour vigor
rumour rumours rumoured rumor rumors rumored
rigour rigours rigourous rigourously rigor rigors rigorous rigorously
demeanour misdemeanour misdemeanours de-
meanours

demeanor misdemeanor misdemeanors demeanors

clamour clamouring clamoured clamours clamour-
ings

clamor clamoring clamored clamors clamorings

odour odours odourless odourful odor odors odorless odorful
armour armoured armoury armourer armouries un-
armoured armouring

armor armored armory armorer armories unarmored
armoring

endeavour endeavours endeavoured endeavouring endeavor endeavors endeavored endeavoring
parlour parlours parlourmaid parlourmaids parlor parlor parlormaid parlormaids
vapour vapours vapourous vapor vapors vaporous
saviour saviours savior savior
splendour splendours splendoured splendor splendors splendored
fervour fervours fervor fervors
savour savoury savouring savoured savouries savours
savourly

savor savory savoring savored savories savors savorly

valour valours valor valors
candour candor
ardour ardours ardor ardors
rancour rancourous rancourously rancours rancor rancorous rancorously rancors
succour succoured succouring succours succor succored succoring succors
arbour arbours arbor arbors
catalogue catalogues catalog catalogs
analogue analogues analog analogs
acknowledgement acknowledgements acknowledgment acknowledgments
goitre goitres goitred goitrous goiter goiters goitered goiterous
foetus foetuses fetus fetuses
paediatrician paediatricians pediatrician pediatricians
oesophagus esophagus
manoeuvre manoeuvres manoeuvring manoeuvred
manoeuvrability manoeuvrable manoeuvrings

maneuver maneuvers maneuvering maneuvered ma-
neuverability maneuverable maneuverings

oestrogen oestrogens estrogen estrogens
anaemia anaemias anaemic anemia anemias anemic
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Table 2: British and American vocabulary variants (42 items)

British American

railway railways railwayed railroad railroads railroaded
ma dissertation ma dissertations ma thesis ma theses
doctoral thesis doctoral theses doctoral dissertation doctoral dissertations
draughts checkers
abseil abseils abseiled abseiling rappel rappels rappelled rappeled rappelling rappel-

ing
antenatal prenatal
anticlockwise counterclockwise
aubergine aubergines aubergine’s aubergines’ eggplant eggplants eggplant’s eggplants’
barrister barristers barrister’s barristers’ solicitor so-
licitors solicitor’s solicitors’

attorney attorneys attorney’s attorneys’

car park car parks car park’s car parks’ parking lot parking lots parking lot’s parking lots’
caster sugar icing sugar confectioner’s sugar powdered sugar
corn flour corn starch
cupboard cupboards cupboard’s cupboards’ closet closets closet’s closets’
drawing pin drawing pins drawing pin’s drawing pins’ thumbtack thumbtacks thumbtack’s thumbtacks’
father christmas santa claus
handbrake hand brake emergency brake
hire purchase installment plan
inside leg inseam
mobile phone mobile phones mobile phone’s mobile
phones’

cell phone cell phones cell phone’s cell phones’ cell-
phone cellphones cellphone’s cellphones’

motorway motoways motorway’s motorways’ expressway expressways expressway’s expressways’
freeway freeways freeway’s freeways’

nappy nappies nappy’s nappies’ diaper diapers diaper’s diapers’
notice board notice boards notice board’s notice
boards’

bulletin board bulletin boards bulletin board’s bul-
leting boards’

number plate number plates number plate’s number
plates’

license plate license plates license plate’s license
plates’

plasterboard plasterboards plasterboard’s plaster-
boards’

wallboard wallboards wallboard’s wallboards’
drywall drywalls drywall’s drywalls’ sheetrock
sheetrocks sheetrock’s sheetrocks’

polystyrene styrofoam
porridge oatmeal
perspex plexiglass
pushchair pushchairs pushchair’s pushchairs’ stroller strollers stroller’s strollers’
rubbish garbage
skirting board baseboard
sticky tape scotch tape
sweets candy
torch torches flashlight flashlights
tracksuit tracksuits tracksuit’s tracksuits’ sweatsuit sweatsuits sweatsuit’s sweatsuits’
valuer valuers valuer’s valuers’ appraiser appraisers appraiser’s appraisers’
windscreen windscreens windscreen’s windscreens’ windshield windshields windshield’s windshields’
lorry lorries lorry’s lorries truck trucks truck’s trucks’
chemist’s drug store drug stores
elastic band elastic bands elastic band’s elastic
bands’

rubber band rubber bands rubber band’s rubber
bands’

estate agent estate agents estate agent’s estate
agents’

realtor realtors realtor’s realtors’

off-licence liquor store
crayfish crawfish
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Besides, the table below presents the standard forms associated to the non standard forms ain’t
and ain’t got no.

Table 3: Standard equivalents to the non standard forms ain’t and ain’t got no

Standard Non Standard

am not
are not aren’t
is not isn’t ain’t
have not haven’t
has not hasn’t
do not have any don’t have any
haven’t got any ain’t got no
haven’t got a
does not have any doesn’t have any

Finally, the following table contains the list of the verbs used in the study of the third person
singular form in the present, during the analysis of the use of standard and non standard forms in
English.

Table 4: List of the most common verbs in English (97 items)

get go take happen
make see say come
give work tell try
talk find change win
ask start continue help
look keep play show
kill pay lose bring
stay use stop turn
hear want call move
vote live spend meet
become miss buy send
feel fight hold know
eat break throw stand
pick write like pass
think fall build walk
learn save create raise
solve lead add love
believe sell sleep provide
cause afford imagine understand
handle expect remember reach
produce serve offer begin
watch choose drink survive
control grow tweet forget
enjoy catch mean speak
trust
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