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Big Data: The real state market

Javier Fernández Sánchez de la Viña, José Javier Ramasco,
Riccardo Gallotti, Rafel Crespi and Eduard Alonso

Instituto de F́ısica Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB)
Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain

Abstract

Modelling competition between hotel industry, Airbnb housing and long term housing, needs
to consider both horizontal (spatial) and vertical (quality) differentiation. We Will try to explain
how these markets are connected to each other, specially hotel and Airbnb, which although are not
totally substitutable, show a clear competition, which has been labeled by the hotel industry as
unfair. Some features about the relationship between short term (Airbnb) and long term housing
will be pointed out too. In addition, some ideas of the spatial formation of prices will be discussed
from the data.

1 Introduction

Due to the rise of peer-to-peer rental models for vacation housing, especially Airbnb, many crit-
icisms have been received. On one side from the hotel sector, which denounce a supposed unfair
competition, and on the other side from the ordinary rental claimants, who accuse Airbnb of caus-
ing a rise in rental prices that residents will have to bear. Our purpose will be to analyze, in the
island of Mallorca, how competition relationships are established, as well as the general welfare due
to the emergence of this business model, also considering positive externalities, such as the benefits
of the hotel trade. In addition, given the nature of the sectors, we will take advantage to develop
a model of space economy and, ultimately, to aspire to integrate in a single model the space-time
competition between the three sectors (including with themselves). From now on, in the theoretical
plane (models) we will refer to the vacational and no vacational housing market, but in our case
we will identify them with the Airbnb and Idealista platforms, respectively.

The report can be easily divided into two parts. The first one consists in a brief description of
the data. The second one is constituted by some approaches to theoretical models.

2 Data analysis

Most of the work has consisted of reading, cleaning and preparing the database, as well as making
the plots.

2.1 InsideAirbnb

The first database which we have worked with has been obtained in InsideAirbnb. We should point
out that the description is quite poor, given the nature of the data. These consist of the minimum
prices offered throughout 2017 for the homes announced on a certain day of 2017.

Although several different kind of housing are considered, we are only interested in the apart-
ments (around 30000), and we work with the variable price/(total number of available places). It
is an approximation, while the occupancy ratio varies with the number of available places, but we
will omit this fact for convenience, since the bias is committed globally in spatial terms.

Our first goal is trying to understand how Airbnb ”competes spatially with itself”. Then, we
need to look for a proxy in the process of formation of prices. It depends on the unknown tourist
demand. What we propose now is a naive model in which demand is approximated by the offer.

We consider that individuals want to go to a certain sector of the city with probability given
by the relative supply of the same. Thus, given an individual with a budget B (random and
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Figure 1: Airbnb average minimum prices (1 pixel=1km·1km). 2017

independent at the time of his stay decision), he may decide whether to rent in his first election,
(i, j), or in a neighboring sector that reports a loss of welfare that will be given by a function f of
the distance between sectors, whenever its budget allows it. We define the margin of the budget on
the effective price (sum of the price to be paid to the owner plus the cost that the lessee assumes
to get away from his first election) as

σ(i,j)(k, l) = B − (p(k,l) + f(i,j)(k, l)) (1)

where (k,l) refers to as many neighbors as be desired.
Thereby, for the simplest case, in which the lessee is only willing to move to an adjoining

neighbor:σ(i,j)(i, j) = B − p(i,j), σ(i,j)(i+ 1, j) = B − (p(i+1,j) + c), σ(i,j)(i− 1, j) = B − (p(i−1,j) +
c), σ(i,j)(i, j + 1) = B − (p(i,j+1) + c), σ(i,j)(i, j − 1) = B − (p(i,j−1) + c) , where c is the first
neighbors value of the distance between sectors function, and σ is not defined in any other case.
The final decision is made according to:

P(i,j)(k, l) =

{
σ(i,j)(k,l)∑

(k,l)∈A σ(i,j)(k,l)
if σ(i,j)(k, l) > 0

0 other case
, A := {(k, l)|σ(i,j)(k, l) > 0} (2)

Notice that P(i,j)(k, l) represents the probability of choosing (k,l) when the initial preference
of the consumer was (i,j). The idea of randomizing the decision is to try to leave behind the as-
sumption of perfect rationality. Otherwise, the decision would be deterministic, being the one that
maximizes σ. As soon as an agent decides to rent in a sector (k, l), the rental price in the sector
will increase by one unit. Thus, the process will consist of simulating market demand by iterating
a large enough number of times until price formation is appreciated.

We have represented (figure[2]) a simulation of this process for Palma de Mallorca with the
same data as in figure[1], but with a more refined grid, where the original price for every sector is
1, the simulation has been iterated 1000 times, and only first and second generation (8 in total)
neighbors have been considered in the second choice. For each iteration, the price is increased in
one unit because of the demand. So, the simulation constructs a price map equal to the offer map.
Both variables have been normalized and the function f has been taken as the euclidean distance
to the power n=0.5, 1 and 2.

It is easy to perceive in the real data that the supply follows more or less a continuous trend,
whereas in the price map any evident standard is observed. As it was expected, we can also see that
the smaller the penalty (power) of the function f, the more similar the simulation to the actual offer
map. Moreover, the offer map is replicated by the prices, and because of there is no relationship
between the real supply and price (as we have said, the reason is the ignorance of the demand),
prices are not replicated at all by this silly model.
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Figure 2: Price and offer space simulation. Top left: real data; top right: n=2; bottom left: n=1;
bottom right: n=0.5.
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2.2 Idealista

We have also worked with a database of Idealista consisting of the rents made from April to
December, in 2017. We have considered a rental has occurred if the same dwelling is not offered
on the platform for two consecutive months. In this case there has not been time enough to the
interpretation of the data. It may be suitable to measure spatial and/or temporal correlations.

(a) April (rents) (b) April (prices)

(c) May (rents) (d) May (prices)

(e) June (rents) (f) June (prices)

Figure 3: Mallorca. Map of prices and rents. Part I.
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(a) July (rents) (b) July (prices)

(c) August (rents) (d) August (prices)

(e) Semptember (rents) (f) September (prices)

(g) October (rents) (h) October (prices)

Figure 4: Mallorca. Map of prices and rents. Part II.



Proceedings of the SURF@IFISC (2018) 6

(a) November (rents) (b) November (prices)

(c) Decemeber (rents) (d) December (prices)

Figure 5: Mallorca. Map of prices and rents. Part III.
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We have thought of that an identical representation of Palma and Calvià regions could be
interesting. However, in this case we use a more refined grid : 1km per quadrant side instead of
3km per side, as the representations below.

(a) April (rents) (b) April (prices)

(c) May (rents) (d) May (prices)

(e) June (rents) (f) June (prices)

Figure 6: Palma & Calvià. Map of prices and rents. Part I.
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(a) July (rents) (b) July (prices)

(c) August (rents) (d) August (prices)

(e) Semptember (rents) (f) September (prices)

(g) October (rents) (h) October (prices)

Figure 7: Palma & Calvià. Map of prices and rents. Part II.
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(a) November (rents) (b) November (prices)

(c) December (rents) (d) December (prices)

Figure 8: Palma & Calvià. Map of prices and rents. Part III.

3 Theoretical model

In this section, some models for the two competence relationships mentioned will be discussed
separately.

3.1 Vacational and no vacational market

At first, we shall think of a simplified framework in which hotel market is not considered. Let
suppose that the renters can choose whether they participate in the vacational market or the no
vacational (i.e., long term rental) market. Typically, the housing offered in the second market will
not be renter all along the year. Thereby, the renter should compare his pay off in both markets:
r · PV , PNV ,where r is the rate of time in which the dwelling is rented in a year, as long as costs
assumed by the owner in both cases are equal (however, it is known that there exist tax benefits
which advantage the first choice, but we can also subtract this extra-cost to the renting price in
order to do the before comparison).

We start in an equilibrium point where both markets satisfy the demands with prices and quan-
tities PV0 , P

NV
0 , QV0 , Q

NV
0 , and the owners decide who to rent to according to the previous price

pair. Therefore, we say there exists equilibrium if both prices are equal, which is equivalent to
say that the owners have not incentives to change to the other market. Then, an increase in the
vacational housing demand from DV

0 to DV
1 will cause a excess of demand in the market that

would be compensated by an increase in prices from PV0 to PV0∗ Nevertheless, due to the free choice
assumption, together with the pair of prices in both markets, some owners will leave no vacational
market in order to face the bigger vacational demand and getting a higher pay off. After that,
a movement of both offer curves is observed, and the initial price rise will be reduced until PV1
(still bigger than PV0 ), while in the other hand prices in no vacational market increase until the
equilibrium is restored, in other words: r · PV1 = PNV1 (see figure[9]). To sum up, every raise in
vacational demand will induce an increase in the no vacational housing prices.

We should notice that this analysis is independent of the hotel market as long as the hotel offer
is rigid enough to consider that in short-mid term the offer is fixed, while the vacational demand is
not. In that case, the inclusion of the hotel market in the framework would involve studying how the
vacational housing demand is shared between hotel and private housing demands. Therefore, the
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Figure 9: Effect of a rise in the vacational demand on the (no) vacational market.

question as to whether both services are substitutes or have their own public does not, qualitatively
affect the discussion. Nevertheless, it is also important to point out that price rises may proceed
from the offer side, as via an increase in the IBI (“Impuesto de Bienes Inmuebles”). To contrast
this dependence (or fluxes) between both markets, it could be suitable to draw the evolution of the
equilibria, which in figure[9] are represented as the small light blue arrows connecting points 0 and
1. Obviously, due to the seasonal behavior in the demand, this contrast should be done in a several
years sample, according to the interannual magnitudes.

Another main of the research is the study of the net effect of the vacational renting model based
on the peer to peer business model of Airbnb. In accordance with the model proposed, it is obvious
the existence of a trade-off involving production surplus of the lessor and the hotelier. As well, two
externalities appear, one positive and one negative: on one hand, the raise in the tourism means
new opportunities for the industry focused on it (we ought to notice that it is not the case discussed
previously, in which the demand was exogeneous instead of induced by the vacational housing offer,
and fluxes between hotel and Airbnb do not necessary imply a bigger total vacational demand in
the equilibrium); on the other hand, hotel employment jobs are destroyed. However, One might
think that tourists replace the hotel with the rent for the sake of the efficiency of the first one
(cheaper and more comfortable for the client), and that, via demand, the sector would be forced
to be reinvented.

Furthermore, a third externality might be contemplated. In case of an over-specialization of the
economy and the offer of holiday homes, other productive activities could be discouraged. In that
way, it was paradigmatic what happened in Ibiza some months ago, when due to a lack of doctors,
it was necessary to call some doctors outside the island, but with their salaries, they were not able
to rent an apartment in the island, and the government had to intervene.

Nowadays, in Mallorca, the answer to this problem has consisted on limiting the number of
licenses for vacational renting. This measure grants priviliges to the few who had been renting
their apartments before the law was decided, so it does nor look like the most accurate decision for
the situation. An alternative could be based on agreeing on a number of new licenses every year,
which have to be allocated through an auction system. In this way, in addition to seeming to be a
more just solution, the Administration will have a higher income.

In short, it is a very difficult conflict to arbitrate for public institutions. In the first place, due
to the existence of pressure groups. And secondly (and perhaps the most complicated issue), by
the determination of social welfare derived from the different externalities and policies.

3.2 Peer to peer housing and hotel market

Modern theories of product differentiation have been very much influenced by Hotelling (1929)
who proposed to use a spatial framework to describe product and price competition in oligopolis-
tic industries.This and following models focus on transportation costs incurred by the consumer
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when he has to travel to the product or store. Thereby, in the simplest imaginable framework
(a duopolistic industry in a linear city in which consumers are uniformly distributed), the stores
choose to locate in the extremes of the city in order not to trigger a low price from the rival, and
thus price competition is softened. In other words, both firms decide to take advantage of their
local market power due to consumer transportation costs.

Nevertheless, the location space may also be considered as the range of potential variants of a
product, where a consumer’s location corresponds to his ideal product, and the transportation cost
is interpreted as the decrement of utility from not consuming the ideal product.

This kind of differentiation is called horizontal differentiation. More precisely, two products are
said to be horizontally differentiated when both products have a positive demand whenever they are
offered at the same price. On the other hand, two products are said to be vertically differentiated
if one product captures the whole demand when both are supplied at the same price. This second
differentiation may be related to a duopolistic industry composed by two firms which offer different
quality products, as Gabszewicz and Thisse showed (1979).

We shall leave spatial competition (i.e., horizontal differentiation) aside for a moment in order to
focus in the vertical differentiation model proposed by Gabszewicz and Thisse. They considered a
market in which consumers had identical tastes but different income levels; and where two brands
(A and B) are offered, being relatively close substitutes for each other. Each consumer has to
decide whether he buys one unit of the good/service A, of the good/service B, or he prefers to
buy nothing. The consumer budget is denoted by R, and utility is represented as a product of
utilities U(x, y) = U1(x)U2(y) = Ux · y, where U1 measures the utility of the obtainment of the
good/service, whereas U2 measures the utility due to the surplus budget. Let pA and pB be A and
B prices, as well as p0 = 0 for consistency; x ∈ {A,B, 0}, y ∈ {R − pA, R − pB , R}. So then the
decision problem consists of:

Arg max
A,B,0

U(X,R− pX) (3)

In some sense, the model proposed by Gabszewicz and Thisse assumes that one brad has more
quality tan the other (let suppose, w.l.o.g. UA > UB > U0 > 0), due to homogeneity en tastes.
Moreover, the income distribution is taken as uniform in [R0, R1]. With these simplifications,
maximum price that a consumer located in quantile t is disposed to pay can be calculated since
U(0, R(t)) = U(A|B,R(t)− pA|B), or U0(R0 +R1t) = UA|B(R0 +R1t− pA|B)
Then, we can write the reservation prices:

πA|B(t) =
UA|B − U0

UA|B
· (R1 +R2t) (4)

As linear functions of t, it is easy to check the demand of products A and B in the market given
prices pA, pB , as we show in the figure [10].

The sloping lines represent the magnitudes πB(t) and (UA/UB)πA(t).In this example, consumers
below tB do not buy anything; between tB and tA, they prefer to buy B than not to buy or buying
A; above tA both products are preferred than not to buy anything, but A is preferred than B if
and only if the consumer is above t. It is easy to check that U(A,R(t)−PA) ≥ U(B,R(t)−PB)⇔
UApA − UBpB ≤ UAπA(t)− UBπB(t), and that is why the quantity V is indicated in the figure.

Depending on the values of pA and pB , three situations were found: the first consists of both
sellers A and B are in the market but with potential customers who are not served; in the second
case again both sellers A and B are in the market and all customers are served and finally a third
region where seller B is out of the market. What Gabszewicz and Thisse where concerned about
was to find a price equilibrium, according to different values of UA, UB , UA0, R0 and R1, focusing
on which case of the three mentioned corresponds to the equilibrium.

Now, what we are taking appart is the duopolistic market consisting of two relatively substi-
tutable products, in order to study how is the competition between firms offering same products,
distributed along a city. Eventually, horizontal differentiation models are based on unidimensional
frameworks, in which the firms choose their locations simultaneously and given the locations, they
choose prices simultaneously, consisting of a two-stage game. We may ignore the first step, which
allow us to solve the model. Indeed, this omission should not worry us, because hotel offer is quite
rigid, and Airbnb does not decide where is a new apartment going to be offered, but each potential
renter will be who decides whether to rent his immovable apartment or not. Moreover, our model
should show competition in a real city, i.e., two dimensions. We shall think off the simplest situa-
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Figure 10: Distribution of the market share according to the budget.

tion: two firms located within the unit sphere. Let f be the density function of consumers in the
city, then the demand function in the covered market is deduced:

DA|B(pA, pB) =

∫∫
Ω

f(x, y)dxdy, Ω = {(x, y)|pA|B + d ((x, y), A|B) < pA|B + d ((x, y), A|B)} (5)

We denote as d(·) the transportation cost for a consumer located in (x,y) purchasing a product
from store A|B. Typically, this function is postulated as the product of a certain power of the
euclidean distance to the store and a constant which is related to the marginal transport cost.

For example, in the figure [11] we consider d(·) as the euclidean distance to the powers n = 1 and
n = 1.5, pA = 1.3 or 1.8 , pB = 1 , f = 1

π , and two stores A and B located at (-0.5,0) and (0.5,0),
respectively. So, lines drawn represent in each case the frontier between the areas of influence of A
and B. It is easy to check how the frontier turns perpendicular to the line linking A and B when n
goes to 2. We should point out that the density function is irrelevant in the frontier computation,
but it might be considered for the frontier in the equilibrium (both firms maximizing profits), in
the game in which A and B have to decide their prices. In this example, the area bounded by the
frontier is equal to the market share of each producer.

The key is to formulate an appropriate density function, which typically could be built from
a few hotspots, as a sum of exponentials, gaussians or other functions which decay from these
hotspots. Note that which this function do is to reflect the preferences of the tourists in the city.

Let point to the main problems of these two models. Firstly, horizontal differentiation suppose
a complete market, i.e., demand is always satisfied and no limits in the offer are contemplated. As
well, these kind of models, which are usually developed from Hotelling’s, suppose that consumers
necessary purchase to one firm, whereas vertical differentiation model admits the situation in which
consumers prefer not to buy anything. This point is really important, because it could distinguish
whether Airbnb customers are former hotel customers or Airbnb gains new consumers who would
have decided not to trip otherwise. It is also true that some models combining these two kind of
differentiation have been developed (see, e.g., [4]) formulating distinct transportation costs in order
to represent the quality of the products, but these models focus specially in how much consumers
are willing to change their preferences (more or less, the idea is similar to consider together the two
interpretations we have mentioned in Hotelling model). Moreover, vertical differentiation could be
more complex if we interpret that Airbnb and hotel do not only offer services of different quality,
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Figure 11: Local market power in a space economy framework.

but they have also their own demand in some cases. For instance, it is known that old people prefer
traditional services. It is also common to stay in a hotel for work reasons: price and quality do not
explain everything.

What we propose is to consider two business models (hotel and Airbnb), as Gabszewicz and
Thisse did, together with several offers distributed throughout a space frame in such a way that
an Airbnb offer can compete with a hotel non immediately next (as long as for this particular
consumer both services are considered as relatively substitutable). Furthermore, it may be useful
to join some close Airbnb as a big producer (a hotel in this case). This method could even be
applied to hotels, and then a hotel and an Airbnb offer (with their respective total available rooms)
may represent the whole offer for a certain zone. In that case, the work might be simplified, and
the problem would be treated in a grid (e.g., one may think of a city broken into identical squared
pieces as the represented in descriptive plots [3-8]). As always, the prediction of the model ought to
consist on the optimization of Airbnb and hotel profits pA|B ·DA|B in a one stage game (choice of
price) in the way considered in figure[11], but also regarding at vertical differentiation and a finite
number of rooms/products offered.
The combination of these two perspectives could be too hard, and the problem might should
be abandoned, looking for some other alternatives, as a Lokta-Volterra Model consisting of two
predator species (hotel and Airbnb), with intraspecific and interspecific competition, and a priest,
representing customers, related to the load capacity of the system, probably variable because of
demand shocks.

4 Conclusions

As we have marked before, this work consists of a first inspection on the problem of the competition
between Airbnb, long term housing and hotel industrie. Due to this, this naive study needs a more
rigurous and formal extension, but one may think off this work as a set of intuitions which could
be taken in consideration in a future research.
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Abstract

We consider an out-of-equilibrium, dissipative qubit interacting with an external bath. Assum-
ing we have no way of measuring the dynamics of the qubit itself, we introduce a probe (an object
the dynamics of which we can study) consisting in a second, non-dissipative qubit which is coupled
to the first qubit. Exploiting the phenomenon of quantum synchronization emerging between them
and reported in Ref [1], we use machine learning techniques to infer the form of the bath by just
having access at the evolution of the probe. The machine learning algorithm works better when
the frequency of the probe lies in a range within which the synchronization phase depends on the
form of the bath. We also verify that the algorithm’s precision lowers in the presence of noise in
the trajectory of the probe.

1 Introduction

In this report we study an open quantum system formed by a single, out-of-equilibrium spin, which
we will refer to as qubit, interacting with an environment formed by a (potentially infinite) set of
harmonic oscillators, so-called bath. Assuming that we have no way to perform direct measurements
on the system, we introduce a second qubit, so-called probe, which is coupled to the first qubit and
the dynamics of which we are able to study. We assume that the probe does not interact with the
bath, and thus suffers no decoherence, and that we can control both its natural frequency and the
coupling strength between the qubit and the probe. Exploiting the phenomenon of quantum spin
synchronization emerging between them, we might be able to infer the shape of the bath spectral
density to some extent from only looking at the evolution of the probe over time. Assuming a
particular form of the bath, this problem of inference reduces to a parameter estimation problem
and under certain assumptions can be solved deterministically. However, the aim of this project is
to apply machine learning techniques to obtain a model-independent estimation process. For this
reason, let us first give a short introduction to machine learning.

1.1 Machine learning. Supervised and unsupervised learning. QML

Machine learning (ML) is a very broad term, generally referring to the design of algorithms and
techniques that are able to extract information from, and make predictions about, certain input
data [2] [3]. It is convenient to understand machine learning as the actual cognitive process of an
artificial subject; the entity which is fed with the data and is expected to accomplish a certain task
or goal (specified by the user) is commonly called agent in literature; the system over from which
the agent has to infer information is called environment.

Traditionally, there are two types of ML: supervised learning and unsupervised learning.

• Supervised learning deals often with classification tasks: that is, given a certain number
of data examples, each of them with its corresponding label, and the specified set of possible
labels, the agent should be able to correctly classify each of the data points to its correct
label. In general, we work with a so-called training set, which is a set of labeled points (or
training examples) {(xi, yi)}Ni=1 where xi denote the data points and yi their respective labels.
Being provided with these data, the task of the agent is to infer a labeling rule, the so-called
classifier, i.e. a function that given any new data point (usually called test example) xk cor-
rectly maps it to its label yk. Within this type of learning, there are two common methods:
classification and regression. Classification methods deal with problems in which the labels
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are discrete values (or classes) from a finite set of possibilities, and the task of the agent is to
assign to any new example the correct label from the same finite set. In regression problems,
however, the task of the agent is not to classify the test examples into one of a previously fixed
set of classes, but to estimate numerically the value of the label, which is now a continuous
variable. Thus, the labels of the training examples are in this case numerical values, and not
classes.

• Unsupervised learning often deals with data mining problems, in which the data points
are not labeled and the main task is to identify certain features of the data set structure. One
of the most common examples of unsupervised learning is clustering, in which the task is to
gather the data points in different groups in a manner that a certain aim is achieved, com-
monly minimizing the within-group distance and maximizing the distance between different
groups.

1.1.1 Quantum machine learning

Quantum machine learning (QML) can be thought of as the field of interaction between the notions
of quantum computing and artificial intelligence [5]. The interest in such discipline has raised in the
last decades and we have already experienced significant advances in both directions of influence:
on the one hand, quantum-based algorithms have been proved to speed up many machine learning
methods and also facilitate interaction between the agent and the user; on the other hand, classical
machine learning is already being used in many cutting-edge technologies, including those based on
quantum information settings (such as quantum state estimation, see [4]). Any machine learning
setting i can be classified into one of the four following categories, regarding to whether the agent,
the environment, or both are fully quantum systems:

• CC. Both the agent and the environment are treated as classical. This may refer to any
standard ML problem without a quantum database.

• QC. The agent uses quantum-based algorithms to study a classical system. It is the case of
quantum annealing approaches.

• QQ. Quantum machine learning setting in which environments or databases are quantum-
accessible.

• CQ. Classical techniques of machine learning are used to study a fully quantum system.

Specifically, this work fits in the last class as we use a specific classical supervised learning method,
a feed-forward artificial neural network, in order to infer information from a quantum setting.

1.1.2 Artificial neural networks

Artificial neural networks (ANNs) or simply neural networks (NNs) are structures used to tackle
machine learning problems. Their basic components are the so-called artificial neurons (ANs),
which are real-valued functions AN : Rk → R parametrized by a vector of real weights ~w = (wi)i
which determine the connection strength between neurons and an activation function ϕ : R → R
and defined as following [5]:

AN(~x) = ϕ

(∑
i

xiwi

)
(1)

where ~x = (xi)i ∈ Rk is the vector of input data which the neuron receives from other neurons or
directly from the training set. The task of the training is to optimize the weights ~w and, possibly,
the parameters that determine the activation function ϕ of each neuron, as to minimize the error
in the classification of the training set.

By combining different ANs we get a neural network. In this work we will use a specific kind of
ANN, the so-called multilayer perceptron (MLP), which is formed by an input layer, one or more
hidden layers (here we will focus on the use of a single hidden layer) and an output layer. The
most common activation functions used in this kind of network are the sigmoid functions, such
as the logistic function which we will use: ϕ(x) = 1

1+exp(−x) . The weights of the neurons in the

hidden layer can be understood as the strength of the connection with each of the nodes in the
input layer. These weights are then trained, for example using a so-called gradient descent iterative
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method, in order to find a local minimum of the total error produced in the entire output, introduc-
ing corrections for each new training example. For further details on how this method works, see [6].

The computational capabilities of this kind of network is determined only by the number of
neurons in its hidden layer. It can be shown that if sufficiently many neurons are available, a three-
layer network can be trained to learn any dataset [7]; however, increasing the number of neurons
has a cost in terms of computational time. All of this will be studied in section 3.

2 Theoretical model

2.1 General description

We consider a qubit q dissipating into an environment modeled by independent harmonic oscillators.
The evolution of the system is governed by the following Hamiltonian:

H0 =
ωq
2
σzq +

∑
k

Ωka
†
kak +

∑
k

gk(a†k + ak)σxq (2)

where the first summand represents the energy of the qubit, the second represents the energy of
the bath and the last one represents the interaction between the qubit and the bath, being σiq Pauli
matrices for i ∈ {x, y, z}. For each of the energies Ωk of the bath (we set ~ = 1 throughout this

work), a†k and ak represent the correspondent creation and annihilation operators and the coefficient
gk determines the strength of the coupling between the qubit and this mode. The function mapping
each frequency ω > 0 to this coupling strength across the bath’s full frequency spectrum is the
so-called spectral density of the bath, which enters in the description of the reduced dynamics of the
system and is given in this case by J(ω) =

∑
k g

2
kδ(ω−Ωk). Throughout this work we will assume

a spectral density of the form J(ω) = γ0ω
s, where γ0 is a scaling factor representing the coupling

strength between the qubit and the bath and the parameter s characterizes the form of the bath’s
spectrum. We also assume that the system qubit interacts with an accessible probe through an
Ising-like coupling, thus the Hamiltonian of the total system (qubit, probe and bath) is

Htotal = H0 +
ωp
2
σzp + λσxq σ

x
p (3)

where ωp is the frequency of the probe and λ represents the coupling strength between the qubit and
the probe; we assume that we can control both of these quantities. Considering the Hamiltonian of
the system formed by the qubit and the probe, given by Hqp =

ωq

2 σ
z
q +

ωp

2 σ
z
p + λσxq σ

x
p , we can find

its eigenvalues, which are related with the frequencies of each qubit and the coupling constant λ.
The coupled system (qubit and probe) has two normal modes or frequencies of oscillation, which
are associated to the energies E1 and E2 given by the equations:

2E1 =
√

4λ2 + ω2
+ +

√
4λ2 + ω2

−

2E2 =
√

4λ2 + ω2
+ −

√
4λ2 + ω2

−

(4)

where ω± = ωq±ωp. The eigenvalues of Hqp are given by {±E1+E2

2 ,±E1−E2

2 }, and the correspond-
ing eigenvectors constitute the so-called non-local basis. Our aim now is to calculate the density
operator matrix of the system formed by the qubit and the probe, ρ̂ = [ρab]ab. To do so, the usual
procedure is to perform a partial trace over the total density matrix in order to eliminate the de-
grees of freedom of the bath [8]. Considering the Born-Markov regime and under other theoretical
assumptions such as the weak coupling between the qubit and the bath (γ0 � 1), we get to the
following master equation for the elements of ρ̂:

ρ̇ab = −iωabρab −
∑
m,n

Rabmnρmn (5)

where ωab = Ea − Eb are the differences between the eigenvalues of Hqp and Rabmn the elements
of the Redfield tensor, which are given by

Rabmn = δbn
∑
r

SarSrmΓ+(ωrm)− SamSnbΓ+(ωam) + δam
∑
r

SnrSrbΓ
−(ωnr)− SamSnbΓ−(ωnb)

(6)
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being Sqij =
〈
i|σxq |j

〉
the coefficients of the Pauli-X matrix associated to the qubit written in the

non-local basis, and Γ±(x) = π
8 [J(x)− J(−x)]

[
coth

(
βx
2

)
∓ 1
]
, where β = 1/kBT is the inverse of

the temperature of the bath, and it will be set to T = 0 throughout this work.

Once found the density operator matrix ρ̂(t), one can calculate the expected value of the local

variables by tracing
〈
σkx(t)

〉
= Tr

(
ρ̂(t)Ŝk

)
for k ∈ {q, p}, where Ŝk is the Pauli-X matrix associated

to the qubit or the probe, written in the non-local basis.

2.2 Evolution of the system

As discussed in Ref. [1], the system described above can either end up in a synchronized state, in
which both the qubit and the probe oscillate at a common single frequency in a long time limit, or
in a non-synchronized state, in which both of the normal modes of oscillation survive and thus the
evolutions of the qubit and the probe appear irregular and different between them. In the case of
synchronization, we can either find that the two qubits oscillate in phase, what we will refer to as
in phase synchronization, or in antiphase, what we will refer to as antiphase synchronization1.

(a) In phase synchronization (b) Non-synchronization

(c) Antiphase synchronization (d) Correlation factor

Figure 1: (a), (b) and (c) show the evolutions of three systems exhibiting in phase synchronization,
non-synchronization and antiphase synchronization, respectively; the blue line represents 〈σxp 〉 and the
green line represents 〈σxq 〉 in all cases. In 1a, we have used ωp = 1.25 and s = 0.5. In 1b, ωp = 1
and s = 1. In 1c, ωp = 0.75 and s = 2. All cases are calculated using the parameters γ0 = 0.01
and λ = 0.2ωq, and the initial state is |ψ(0)〉 = (|0〉+ |1〉) (|0〉+ |1〉) /2 written in the local basis. (d)
shows the Pearson correlation coefficient as a function of time (setting ∆t = 50ω−1

q ) for the three
trajectories: the blue line corresponds to 1a, the green line to 1b and the red line to 1c.

One of the main results in Ref. [1] states that the condition for the absence of synchronization
is satisfied along a line in the diagram ωp —s, which corresponds to the yellow stripe in figure 3,
top. We will refer to this line as the transition region (or transition line) as it separates the regions
of the diagram which correspond to in phase and antiphase synchronization. One can quantify the

1If not specified, the units of ωp must be read as multiples of ωq and the units of time as multiples of ω−1
q throughout

this work.
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synchronization between the two qubits with the so-called Pearson correlation coefficient function,
defined by the following expression [9]:

Cf,g(t,∆t) =
δf δg√
δf2 δg2

(7)

where the upper bar stands for the mean in the time interval [t, t+ ∆t], that is:

f =
1

∆t

∫ t+∆t

t

f(u)du (8)

and δf = f − f . With this definition, using
〈
σxp
〉

and
〈
σxq
〉

as the functions f and g, and choosing
convenient values of t (over the relevant transient before synchronization takes place) and ∆t (it
must average over several oscillations), this correlation factor serves as a measure of the synchro-
nization between the two qubits. If C ' 1 (or -1) there is in phase (or antiphase) synchronization,
while C ' 0 denotes lack of synchronization.

In figure 1 we can see examples of in phase and antiphase synchronization, and non-synchronization.
We can see that in Fig 1a, both qubits

(〈
σxq
〉
,
〈
σxp
〉)

evolve into in phase synchronization within
a few oscillations, while in Fig 1c they end up oscillating in antiphase although the transient time
is longer; Fig 1b represents the behavior of a non-synchronized system. Finally, Fig 1d shows the
evolution of the correlation coefficient for each of the trajectories: the blue line shows a rapid
evolution towards C = 1 (in phase synchronization), the red line evolves slowly towards C = −1
(antiphase) and the green line stabilizes to an intermediate value, denoting lack of synchronization.

For further details on the model and results see [1].

3 Results and discussion

Assuming a bath spectrum with a power form J(ω) = γ0ω
s for ω > 0, our aim now is to estimate the

parameter s by just looking at the probe evolution, 〈σpx(t)〉. For this, we prepare a training set con-
sisting of a set of N trajectories with their respective known labels, and use a multilayer perceptron
with a single hidden layer (namely, the model MLPClassifier of the module sklearn.neural network
in Python programming language), we build a classifier which should be able to correctly map any
new given trajectory to its class of bath spectrum, characterized by the parameter s. In particular,
we want our agent to be able to differentiate among the cases s = 0.5, s = 1 and s = 2; that
is, sub-Ohmic, Ohmic and super-Ohmic spectra of dissipation. Thus, we prepare a sample of N
trajectories for each value of s and we allow the probe frequency ωp to run over different values,
ranging from a certain value ωmin to ωmax and uniformly distributed, while fixing ωq = 1. The

input features to our machine learning model are the M points of the Fourier transform f̂(ω) of the
evolution of 〈σpx(t)〉 in the interval {0, tmax} (we will use tmax = 100ω−1

q throughout this work). In
figure 2 we can see how the information the agent ”receives” looks like. In this case the sample was
distributed in the interval ωp ∈ [0.9, 1.15], so we choose the minimum number of points such that
both ”peaks” (which are the normal modes E1 and E2 from equations 4) are well represented. As
the discretization in the frequency ω is fixed by the inverse of the time window length, in this case
tmax = 100ω−1

q , the plot has a limited resolution ∆ω = 1/tmax = 0.01ωq. Thus, the differences
among the Fourier transforms for each value of s are mainly determined by the slight difference in
the height of the peaks f̂(E1) and f̂(E2), as we can see in the figure.
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(a) (b) (c)

Figure 2: Fourier transform in the interval [0, 100ω−1
q ] for each value of s, for (a) ωp = 1.15ωq , (b)

ωp = ωq and (c) ωp = 0.9ωq. The resolution in the frequency scale is given by ∆ω = 1/tmax = 0.01ωq,
and the set of points which characterize the Fourier transform has been chosen as to represent both
”peaks” (the normal modes E1 and E2 in equations 4) with the minimum possible number of points,
considering that the sample used for the learning is distributed in the interval ωp ∈ [0.9ωq, 1.15ωq] and
λ = 0.2ωq. The qubit-bath coupling coefficient is γ0 = 0.03 in this case, in order to better visualize
the differences between the trajectories for each value of s.

We can distinguish the two normal mode peaks in all of the spectra show in figure 2. However,
in Fig 2a the higher energy peak dominates over the other, meaning that for ωp = 1.15 the system
ends up in a synchronization in phase for the three values of s. In contrast, in Fig 2c it is the
low energy peak which is higher, meaning that the system ends up in antiphase synchronization.
Finally, in Fig 2b both peaks are of a similar height, and the one that dominates depends on the
value of s: if we were representing the Fourier transform for a longer time, we would see that for
s = 0.5 only the high energy peak would survive, while for s = 2 it would be the low energy peak
and for s = 1 both peaks would survive, as it corresponds to a non-synchronized dynamics. Also,
one can see that, within each figure, the trajectory for s = 2 exhibits a higher peak for E1 and
the trajectory for s = 0.5 has a higher peak for E2. After preparing all the sample trajectories, we
randomly choose a given fraction P of the sample to be the training set and use the 1− P left as
the test input. As we have generated the whole sample controlling the parameters, we know the
correct labels of the test examples, so after the agent performs its prediction on this set we can
compare this to the correct test classification and thus quantify its efficiency using the percentage
of error.

3.1 Error as a function of the detuning: influence of the phase-antiphase
transition

Our main aim here is to determine whether the machine learning classification efficiency is enhanced
by the sharp transition between phase and antiphase synchronization (corresponding to the yellow
stripe in figure 3, top), which is one of the main results in [1]. That is, we want to study if the agent
performs better if trained (and tested) with the values of ωp for which different values of s deter-
mine whether the higher energy mode E1 or the lower E2 dominates over time (yielding in phase or
antiphase synchronization, respectively). For this reason, we generate 7 different sample sets, each
of them consisting of N = 301 trajectories corresponding to values of ωp uniformly distributed in
the interval Ik = [0.5 + 0.15 · (k − 1), 0.5 + 0.15 · k] for k ∈ {1, . . . , 7}, the central interval of which
roughly corresponds with the transition region, and calculate the error in the agent classification
(see figure 3, bottom).
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Figure 3: At the top, the absolute value of the correlation factor C, fixing t = 80ω−1
q and ∆t = 20ω−1

q .
The yellow band corresponds to lack of synchronization (C ' 0), while the region at the left of the
band corresponds to in phase synchronization (C > 0) and the left region corresponds to antiphase
(C < 0). At the bottom, the histogram of the fraction of error (number of errors in classification
divided by number of test examples) produced by the agent in the classification between s = 0.5,
s = 1 and s = 2, for different intervals of ωp and for different values of the coupling γ0. We have
used (approximately) 3 (values of s) · 301 (values of ωp) · 0.8 (fraction of training) ' 720 training
examples and 3 ·301 ·0.2 ' 180 test examples and a single hidden layer of 200 neurons with the logistic
activation function. The upper limits of the blue, green and orange bars correspond to the fraction of
error with γ0 = 0.02, γ0 = 0.01 and γ0 = 0.005, respectively.

One can see from the figure that in the region of the sharp discontinuity between phase and
antiphase synchronization (yellow stripe) the agent performs better in the classification, indepen-
dently from the value of γ0 used, while the error grows as we get to values of ωp far away from the
discontinuity region. In addition, for a fixed interval the error lowers as the value of γ0 grows. This
result is due to the fact that the scale of time within which the system falls into synchronization
is inversely proportional to the damping rate (quantified by the coefficient γ0); equivalently, as the
damping grows, the Fourier transforms for different values of s and the same time window are more
differentiated, because the fading peak loses height at a higher velocity. The asymmetry in the
histogram can be due to the influence of the initial conditions on the enhancement of one of the
normal modes; however, it can also be a statistical inexactitude or just the result of an asymmetric
binning along the synchronization region. It would be possible to establish how the details of the
histogram in Fig 3 change when assessing these factors.

3.1.1 Performance as a function of the number of training examples and the
number of neurons.

Our goal in this section is to study how the efficiency of the agent depends on the parameters of
the machine learning setting. Namely, we want to see how does the error in classification change
as we vary the number of training examples used and the number of neurons in the hidden layer of
our multilayer perceptron. Intuitively, as both of these magnitudes grow, the error will lower, but
also the time and complexity of computation will grow considerably as the agent needs to process
more information. That is why it may be interesting to study these variations, to determine up to
which point it is worthy to raise the complexity of the setting, given a certain goal (for example, a
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desired maximum of the error rate). In figure 4, a 3D bar plot of the already mentioned function
is displayed.

Figure 4: Fraction of error in the classification among s = 0.5, s = 1 and s = 2 as a function of the
number of training examples, or training size (’Size’ axis) and the number of neurons employed in the
hidden layer of our MLP (’Neurons’ axis). We have taken as sample the trajectories for 501 uniformly
distributed values of ωp ∈ [0.9, 1.15] and each of the three values of s, choosing randomly a certain
percentage of the trajectories to be training examples and using the rest for test.

We can see that, as expected, increasing both the number of neurons and the size of the training
set leads to a reduction of the error produced in the classification. However, if sufficiently many
examples are used, one can see that increasing the number of neurons has a limited impact, as little
precision is gained in expense of a notable rise of the computational cost. For instance, we can see
from the figure that when using a training set of 1200 examples, already less than 1% of error is
produced using only 200 neurons. Doubling the number of neurons leads to a barely smaller error
while almost leading to a threefold increase in the computational time.

3.2 Classification with noise

A step forward one can take in order to prove the efficiency of machine learning is to include noise
in the trajectories of

〈
σxp
〉
, setting a general and more realistic case; this is also needed thinking in

experimental data. This noise is considered to be white, independent and gaussian, with a mean
value of 0 and a standard deviation that can be expressed as a percentage of the total amplitude of
the function over which it is applied. Therefore, we have added random noises to our trajectories
and studied how the error in the classification varies as a function of the amplitude of noise applied.
In Fig 5 we can see the results.

Figure 5: Mean error in the classification between s = 0.5, s = 1 and s = 2 as a function of the
percentage of noise. In the legend, L denotes the number of neurons used and N the size of the
training. The values of ωp used to calculate the sample trajectories are uniformly distributed in the
interval [0.9, 1.15]. The percentage of noise represents the relation between its amplitude (understood
as the standard deviation) and the total amplitude of the function

〈
σxp (t)

〉
.
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One can observe that the differences in the error among the different values of L and N are
negligible in comparison to the dependence on the noise. The error tends to grow linearly or even
superlinearly for low values of the noise, but eventually it saturates because in any case it should
not surpass the error for a random classification, which would be of 66.7% (two thirds).

3.3 Regression as a function of the noise

In this section, we present the results of the performance of the agent in the regression of the
parameter s. Thus, as explained in section 1.1, the task of the agent is no longer to classify the
trajectories into three groups according to their value of s, but to estimate the value of s. For this
reason, we calculate the trajectories of

〈
σxp
〉

over time for different values of s and ωp, and prepare
the sample trajectories consisting of the Fourier transform in a certain interval, just as before, with
the sole difference that we don’t use just three values of s but we calculate trajectories for all values
of s ∈ {0.5 + 0.01 · i}1i=051, so as to have better precision in regression, and label each training
example with the exact value of s used. In this case we use the model MLPRegressor of the module
sklearn.neural network in Python to perform the regression task. We quantify the average error
by calculating the mean distance (module of the difference) between the value of s predicted by
the agent and the actual value of s for each of the test examples. Figure 6 shows the results of the
mean error produced by the agent for different numbers of training examples.

Figure 6: Mean error produced in regression as a function of the percentage of noise added to the
trajectories. We have used in all cases 50 neurons and calculated the trajectories for all values of
ωp ∈ {0.9 + 0.005 ∗ i}5i=001. The percentage of noise represents the relation between its amplitude
(understood as the standard deviation) and the total amplitude of the function

〈
σxp (t)

〉
.

One can see that the general trend is that the error grows with the amount of noise independently
of the number of examples, as expected; in fact, the number of examples has a negligible effect on
the error in comparison to the effect of the noise above a sufficiently large number of examples.
However, such as happened in the case of classification, the error saturates for high values of noise;
in this case, however, there is no natural limit to explain the saturation of the error, because
the regression task could yield, in principle, any real value of s. Nonetheless, supposing that the
regression values must be contained in the interval [0.5,2], as it is logical to think, the error produced
by the agent must not surpass the error committed in randomly choosing a value in this interval,
which corresponds to an average distance of 0.5; that is, a third of the interval.

4 Conclusions

In this work we have studied the implementation of a machine learning method to predict a certain
feature of a specific quantum system, namely the power of the spectral density of the bath. We
have seen how, using a three-layered perceptron model, the agent is able to distinguish the different
values of the parameter s, performing especially well in the region of transition, the interval in ωp
where different values of s yield either in phase or antiphase synchronization. At the same time,
we have seen that higher values of γ0 yield better results in classification, as the system comes into
synchronization within a scale of time which is inversely proportional to the damping. We have
also verified the fact that the agent’s performance improves as we increase the complexity of the
algorithm (i.e: the number of neurons and the number of training examples). Finally, we have



Proceedings of the SURF@IFISC (2018)

seen how performance worsens when adding noise to the trajectories, both in classification and in
regression tasks.

This work can be extended in several directions: for example, one could study how performance
varies when changing certain parameters of the system (such as introducing a cut-off frequency ωc
in the spectral density) or of the data (such as enlarging or displacing the time window over which
we calculate the Fourier transform). Even more, one can switch the task and try to estimate γ0; in
fact, we have already performed discrete classification for different values of this parameter and got
results of a similar order of error as in the classification of s. Also, we could try to estimate at the
same time various parameters, such as γ0 and s and, ultimately, use a similar procedure to infer a
general polynomial-type spectrum; for example, fixing the degree n of the polynomial, the problem
would reduce to estimating the n+1 real parameters that define the polynomial. Finally, one could
consider the effect of changing the structure of the neural network itself, either by changing the
number of hidden layers used in the MLP, the number of neurons in each layer, or the activation
function of each neuron, among other variables. In short, this is only a simple and prototypical
model of a full-scale scenario of possibilities.
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Abstract

We studied the main properties of quantum transport in a quantum Hall bar connected to two
reservoirs and a quantum dot with different voltages. This system allows us, under some conditions,
to transport electrons against the bias without violating the second law of thermodynamics by
introducing a demon which works due to the chirality of the edge modes. We described the system
with some electrostatic approximations to end up with a more complete picture of the problem,
analyzing the range of voltages and the asymmetries necessary to establish an electric and thermal
current. We found that high voltages and quantum assymetries in the barriers of the nanostructure
are necessary but no electrostatic asymmetries are needed if we stay at low enough voltages.

1 Introduction

Quantum transport in nanostructures is crucial to new developments in technology so it has be-
come overwhelmingly important to study simple systems which could act as a simple machine but
requiring much less external work. The description of the problem could be rather complicated and
we need to study simplified systems to understand the main properties of the process. Thus, our
objective is to study a simple system which could be modified to become more complete but gives
an overall idea of the transport.

However, quantum transport theory in our system is almost closed so we need to find some
theoretical applications that may be implemented in the future. We aim to construct a thermal
machine by running an external agent in a nanostructure that does not require a lot of external
work. This external agent is sometimes called the demon, as a reference to the Maxwell’s Demon
Paradox [1]. Maxwell proposed a system which consisted of an ideal gas and a demon who is able
to discern and separate those particles which move faster and those which move slower. Then, in
one side there would be cold particles and in the other side there would be hot particles. Thus, the
entropy decreases in the system and the second law of thermodynamics is supposedly violated. The
paradox may be solved considering that there exists another physical magnitude, the information,
which generates entropy and must be taken into account in the balance. This demon could be
carried out in different systems, acting on different ways but with the same basic idea; it decreases
the local entropy by acquiring information from it. In summary, our aim is to implement a demon
similar to the above-mentioned in our problem [2].

2 Theoretical model

We start the description of a quantum Hall bar with a quantum dot inserted. This dot allows the
implementation of a external agent capable of driving a current against the bias or cooling a cold
reservoir with very little external work, absent if it is ideal, as a result of taking information from
the quantum dot. The interest of the studied system is that it could work as an efficient thermal
machine in some specific conditions. The existence of asymmetries in the system will be necessary
for the agent to work correctly.

We impose the particularity of having a one-level energy quantum dot for simplification [3].
The bar is connected to two reservoirs of electrons, each one at a different potential, so the system
is moved out of equilibrium. Thus, the quantum dot can be described by two capacitances and
two tunneling constants, depending on the features of the potential barriers which define the dot
[3] When a magnetic field is applied in a certain direction, electrons inside the bar will move in
a circle with a cyclotron frequency which characterizes the motion. However, near the edges new
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Figure 1: Picture of the problem system. A quantum dot is connected to two reservoirs with different potentials.
It is characterized by two capacitances and two tunneling constants in the simple electrostatic model.

modes appear as a consequence of the finite volume. These modes help electrons move through the
material as it is described in figure 1 [2, 3].

The key element of the project is the fact that these chiral modes are not invariant under the
inversion of the magnetic field. When the latter occurs, the edge modes change their polarity, and
electrons move just to the opposite directions, coupling with the quantum dot on a different way.
This leads to a change of the dot energy level which provides a fundamental tool to implement the
demon. From now to section 3.2 we are just reproducing the results obtained by G. Roselló [2] with
little changes in the values of the parameters.

2.1 Rate equations

Once determined the energies inside the dot, which will be found later, it is convenient to find some
expressions for the currents. First, we need to calculate the probabilities of finding an electron
inside the dot or not. Thus, we use the Master equation formalism that gives an interpretation of
the time evolution of these probabilities. In order to obtain the equations, it is only necessary to
express a balance of probabilities. The result is the following:

ṗ0 = (WL
1→0 +WR

1→0)p1 − (WL
0→1 +WR

0→1)p0 (1)

ṗ1 = (WL
0→1 +WR

0→1)p0 − (WL
1→0 +WR

1→0)p0 (2)

Here W
L/R
j→i are the transition rates. This can also be represented in matrix form:(

ṗ0

ṗ1

)
=

(
−W↑ W ↓
W↑ −W ↓

)(
p0

p1

)
(3)

To simplify we make use of the fact that we are in an stationary state. It can be proved that this
final state always exists as long as the parameters and coefficients that relate the thermodynamic
forces are constants. A stationary state implies:(

−W↑ W ↓
W↑ −W ↓

)(
p0

p1

)
=

(
0
0

)
(4)

Resulting in the following values for the probabilities:

p1 =
WL

0→1 +WR
0→1

WL
0→1 +WR

0→1 +WL
1→0 +WR

1→0

(5)
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p0 = 1− p1 =
WL

1→0 +WR
1→0

WL
0→1 +WR

0→1 +WL
1→0 +WR

1→0

(6)

Transition rates are calculated taking into consideration the Fermi’s golden rule, and using the
density of states, in this case the Fermi’s distribution, resulting in:

W i
1→0 = Γ0if(µ1i) (7)

W i
0→1 = Γ1i(1− f(µ2i)) (8)

In these relations, i represents the barrier associated, either left (L) or right (R). The use of
1,2 in the chemical potential are determined by the sign of the applied field, according to the
protocol that will be explained in the next section. To obtain Eq.(8), we have considered the holes
distribution in the reservoirs since we need a hole to be filled by the electron. Besides, f is the
well-known Fermi’s distribution:

f(x) =
1

1 + eβx
(9)

Furthermore we need the dependence of the tunneling constants with the energy, since that
is a needed condition to succeed in our theory. Their analytic expression comes from the WKB
approximation:

Γ0i = Γie
ki(µ1−Ei) (10)

Γ1i = Γie
ki(µ2−Ei) (11)

Γi are positive parameters of the potentials, Ei are their top energy and ki is a free parameter.

2.2 Implementing the demon

We are now in good conditions to implement the demon in our system taking advantage of the chi-
rality of the edge modes. We establish the next protocol, bearing in mind all the before-mentioned
description.

1. A magnetic field is turned on in the positive axis direction. This means that the edges are
the same as the ones in figure 1. Electrons moves, a priori, in the direction of the bias. There
is, nonetheless, a probability that one particle enters the dot.

2. When this occurs, the demon notices that the dot is filled, and changes the orientation of the
magnetic field, leading to a change of the dot energy level from µ1 to µ2. This is the most
important step and the one that allows the demon to work adequately. Moreover, this is the
reason why assuming an electrostatic asymmetry is crucial.

3. The edge modes have changed their orientation, and there is now a higher probability for the
electron to leave the dot towards the left reservoir instead of the right one, where it comes
from. This is actually true due to the increase of energy inside the quantum dot. When it
leaves, it can be said that the electron has been transported from right, where the electrostatic
potential is lower, to left, where the potential is higher.

4. Once the dot is empty, the demon changes again the orientation of the magnetic field, so that
energy is dropped and the system returns to the initial conditions again.

By repeating this protocol, we should be able to measure an electrical current going from right
to left, based on microscopic quantum effects. The implementation of the demon is not trivial since
we need a device which detects when the dot is filled, and changes the magnetic field instantly.
Indeed, this instantaneous change in the magnetic field was supposed in the section 4 when it
was assumed that −W↑ is associated with the chemical potential µ1 and −W↓ with µ2. The only
question left is whether this process violates the second law of thermodynamics, ultimately the
same problem that appeared when the Maxwell Demon Paradox was formulated. Apparently, it
does, but we will work deeper in the following section to demonstrate that, actually, no violation
exists if we introduce the information in the entropy balance.

2.3 Currents and information flow

The total current through the system is simply obtained from considering a balance equation. For
the rest of the section we are taking as positive all the currents and fluxes which enter the dot,
and negative the ones entering the reservoirs or leaving the dot. The current to the right may be
expressed:

IR = p0W
R
0→1 − p1W

R
1→0 (12)
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Substituting the expression 3.5 it results:

IR =
WL

1→0W
R
0→1 −WL

0→1W
R
1→0

WL
1→0 +WR

1→0 +WL
0→1W

R
0→1

(13)

Our aim is to establish a current against the voltage gradient, what means that IR > 0. This
happens when WL

1→0W
R
0→1 −WL

0→1W
R
1→0 > 0. If we take Γi = Γ ∀i we get to the condition that

kL > kR. Since, evidently, charge must be conserved in the system, we may express the current to
the left in terms of the previous current:

IL = −IR (14)

Now we proceed with the analysis of the heat currents, and afterwards, the entropy of the
system. We take the ideas used by M. Esposito [6]. The heat current to the left and to the
right are calculated considering the balance of energy transported by electrons. The expression is
therefore similar to the one written above but in terms of energy instead of probabilities:

IheatR = p0W
R
0→1µ1R − p1W

R
1→0µ2R (15)

IheatL = p0W
L
0→1µ1L − p1W

L
1→0µ2L (16)

If we sum both currents we obtain:

IheatR + IheatL = IR(V1 − V2) + µ1p0(WL
0→1 +WR

0→1)− µ2p1(WL
1→0 +WR

1→0) (17)

The first term in the last expression is a dissipating current because of the Joule heat gener-
ated by the electric current. In fact, the sign is negative, what indicates that the heat energy is
going outside the quantum dot. The current through the demon is also necessary to study the
whole problem. This energy current generates entropy irrespective of the heat currents. It can be
expressed in terms of a balance equation as well. The result, using the same agreement of signs as
before, is the following:

Jenergy = (µ1 − µ2)
(WL

0→1 +WR
0→1)(WL

1→0 +WR
1→0)

WL
1→0 +WR

1→0 +WL
0→1W

R
0→1

(18)

The entropy produced by the heat currents and the energy current in the demon is:

Sn =
Jenergy + JheatL + JheatR

T
(19)

Some easy computing shows that the entropy created by these phenomena decreases in time,
something that violates the second law of thermodynamics. This is controversial as this would
mean that either the second law is not universally closed or some assumption in our description is
erroneous. Nonetheless, we can use other means to calculate the entropy flow in the system which
will show that everything is correct and compatible with the theory of thermodynamics. This new
mean is using the Shannon formula [8] to calculate the entropy flow in the system [6, 7]. We only
need to know the currents and the rate equations to determine this quantity.

Ṡe = IR ln
WL

0→1W
R
1→0

WL
1→0W

R
0→1

(20)

It is important to highlight that using the entropy balance we find a simple expression for the
entropy production Si:

Si = −Ṡe (21)

Again, it is quite evident that this quantity differs from the previous one. This means that the act of
the demon is reflected on a mean flux of entropy. To account for this fact we assume that the demon
requires information of the system to run. That is to say, the extraction of information generates
a current that provides additional entropy so that the whole entropy production is positive. Thus,
the information current can be expressed as:

IF = Ṡe − Sn (22)
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3 Electrostatic descriptions and results

3.1 Electrostatic model with two capacitances

We first describe the system as it is shown in figure 1. One important remark is that we are imple-
menting proper conditions that prevent the device from accommodating more than one electron in
the same level. Therefore, electrostatic repulsion between electrons is large enough compared with
the chemical potential of the reservoirs. We can prepare the system on that way with a voltage
gate that allows us to control the energy level in the quantum dot. Consequently,the following
condition must be necessarily satisfied [3]:

KBT �
e2

C
(23)

Where C is the sum of the capacitances. This means that we can consider only one-electron
processes through the quantum dot as long as temperature is low enough so that electrons coming
from the reservoirs cannot overpass the electrostatic repulsion energy. Another possibility that
will be utilized later is that the capacitance C is almost zero. When an external magnetic field is
applied we distinguish two cases:

• B > 0. Electrons moves in the direction of the modes and Vi and Ci are coupled for i = 1, 2.
Thus, the chemical potential µ1 changes.

• B < 0. Edge modes change their direction and Ci is coupled with Vj , for i, j = 1, 2 and i 6= j.
Here, the edge mode raises the potential µ2.

It is always convenient to define a new dimensionless parameter which gives an easy physical
interpretation of the asymmetry between capacitances:

η =
C1 − C2

C1 + C2
(24)

Depending on the direction of the magnetic field we find two different energy levels in the
quantum dot:

µ1 = ε0 +
(C1V1 + C2V2)

(C1 + C2)
(25)

µ2 = ε0 +
(C1V2 + C2V1)

(C1 + C2)
(26)

This expressions may also be rewritten in terms of the parameter η:

• For B > 0:

µ1L = µ1 − V1 = ε0 +
1− η

2
∆V (27)

µ1R = µ1 − V2 = ε0 −
1 + η

2
∆V (28)

• For B < 0:

µ2L = µ2 − V1 = ε0 +
1 + η

2
∆V (29)

µ2R = µ2 − V2 = ε0 −
1− η

2
∆V (30)

To obtain these results we have used basic electromagnetism relations, considering charge is con-
served. We have neglected the quadratic term in charge (basically, the energy necessary to put
another electron in the dot) as we have used the condition (23). Furthermore, the difference be-
tween both energy levels gives a degree of efficiency, as the demon works better when energy levels
are more separated. It can be proved that this depends exclusively on the potentials and η:

µ2 − µ1 = η∆V (31)
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Figure 2: Potential difference for ε0 = 0. For η < 0 it is positive and for η > 0 it is negative.

If we represent the current for different values of the parameters that quantify the electrostatic
asymmetries in the system we can analyze how important they are to drive the current against the
spontaneity. This is shown in Fig.3. For Fig.3a it was assumed kL = kR, meaning no difference
between barriers are taken into consideration. The first evidence is that no positive current appears
independent of the conditions of our system. This means that electrons goes in the direction of
decreasing voltage and the demon is clearly not driving the current against the bias. Thus, potential
barriers in the dot must be undoubtedly different, that is, there must be a quantum asymmetry
apart from the electrostatic one. In the second case, we assume kL = 3kR, and we conclude that for
certain values of the parameters there is a positive current and the demon works correctly. Indeed,
this occurs for high voltage differences in the contacts and high differences between capacitances.
Finally, we studied the case kL = kR/3, in which no positive current exists so we can conclude that
kL > kR to make the demon work well as we deduced in section 2.

Figure 3: a)Representation of the current for kL = kR. b)Representation of the current for kL = 3kR
c)Representation of the current for kL = kR/3. For all of them it has been considered that kR = 0.1 and
T = 10hΓ. The barriers dependence is Γi = 1 and EL/R = 10hΓ.

The information current has also been represented in Fig.4. for all the cases studied before. We
prove that there exists a very little information current when kL = kR. In the case kL < kR the
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information current is found when voltage is high enough and the asymmetry in capacitances is
quite big, which corresponds to the region where there is an electric current in the direction of the
voltage gradient. However, the information current is generally low. The interest comes when we
analyze the case in which kL > kR. There, in the region where we could find a current against the
bias we find a high information current as well. Indeed, that information current is negative, what
means that the demon is extracting information from the system to make electrons moves against
the expected. The existence of such an information current makes our physical interpretation quite
plausible and the theory seems correct. However, we need to investigate whether this simple view
is enough to describe the behaviour of our system or making it more complete eliminates some
requirements for the demon to work.

Figure 4: a)Representation of the information current for kL = kR. b)Representation of the information
current for kL = 3kR c)Representation of the information current for kL = kR/3. For all of them it has been
considered that kR = 0.1 and T = 10hΓ. The barriers dependence is Γi = 1 and Ei = 10hΓ. The ground state
is E0 = 0.

3.2 Discretized electrostatic model in linear approximation

In the above sections we have studied the system considering the simple electrostatic model de-
scribed at the beginning; only two different capacitances account for the interaction between the
dot and both edge modes. Our objective now is to use all the formalism in the same way but
with a more exhaustive description of the electrostatic interaction between modes and dot. The
description is the one explained in references [9, 10]. On the other hand, we suppose that energy
interactions could be expressed, when the potential difference is not quite apart from equilibrium,
as:

U(−→r ) = Ueq +
∑
k

ukVk +O(V 2
k ) (32)

Where Ueq is the equilibrium energy and uk = ∂U
∂Vk

are the characteristic potentials. For the
rest of the project we are supposing that chemical potential in equilibrium is arbitrarily zero.

Hence, we will adopt another viewpoint of the system, dividing it in five regions, in each one
the energy U is different as a result of interacting distinctively with the quantum dot. The division
is shown in Fig.5, same used in [9, 10]. We have supposed five regions but the division could be
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Figure 5: Picture of the system divided into the five regions. In each one, the internal potential is
different as well as the coupling with the quantum dot

as complicated as we wished; five is enough for a more complete description with no complicated
equations that may distance us from the important physical deductions.

We use now the injectivities, defined as a charge density of states. These terms allows us to
establish a direct relation between charge and potential.

qj = e2
∑
k

Dik(Vk − Ui) (33)

The physical meaning of the injectivity is the following: it indicates the density of states existing
in one defined region as a consequence of the electrons coming from the i-th lead. The calculation
of these quantities is simple taking advantage of its simple physical interpretation. Hence, if the
electron coming from one lead has to be transmitted through the barrier to arrive to region i, we
have to weight the value of the i-injectivity by the transmission constant TQ. If it must be reflected
to end up in the region we will use the weight RQ = 1− TQ. If the electron cannot appear in one
region coming from that lead, then the associated injectivity will be zero [9, 5]. Thus, we obtain
eight of our injectivities for our problem:

D11 = D1 (34)

D21 = D2R
Q (35)

D31 = D3T
Q (36)

D41 = 0 (37)

D12 = 0 (38)

D22 = D2T
Q (39)

D32 = D3R
Q (40)

D42 = D4 (41)

Besides, for simplification it will be supposed that D1 = D2 = D3 = D4 = D. The transmission
and reflection coefficients can be deduced taking into consideration that the quantum dot can be
viewed as a double potential barrier,

TQ =
Γ1RΓ1L

ε20 + Γ2

4

(42)

The transmission rates Γ1/0(L/R) are different for each barrier and for low voltages we can
express:

Γ1/0L = ΓLe
kL(µ2/1−EL) = ΓL(1 +O(∆V )) (43)

Γ1/0R = ΓRe
kR(µ2/1−ER) = ΓR(1 +O(∆V )) (44)

Thus, we maintain the quantum asymmetry. When the magnetic field is inverted the transmis-
sion rates at first order remain constant as well. Then we can simplify notation assuming that we
use simply the first term in the series to calculate the internal potential in the dot Γ1/0(L/R) ≈ ΓL/R.
The reason why we can express the tunneling constant as the above expression is because the ex-
ponential term of the tunneling constants depends on the voltage which is being considered very
low. In addition, it has also been defined Γ = ΓL + ΓR.

For D51/2 we need to suppose that the electron only overpass one of the barrier but not the other,
so it end up in the region 5. Utilizing this argument we determine the two remaining injectivities,
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D51 =
TQ

2πΓR
(45) D51 =

TQ

2πΓL
(46)

In order to calculate the internal potentials we need another equation for the charge. We can
recover now the process followed in section 3.1 and define again the capacitances. As Coulomb
interaction is now different from one region to another, we find not only two capacitances but a
complete 5x5 geometrical matrix of capacitances:

qj =
∑
j

CijUj (47)

Assuming that our system has been prepared as it is indicated in figure 5 when B > 0, ca-
pacitances between regions are zero except the ones coupling with the dot. Here, we introduce
something new that differs radically from the first picture of the problem. We will consider that
all capacitances are equal, therefore, no asymmetry between capacitances exists and we will carry
out all the theory to account for the fact that possibly that asymmetry may not be required for
the demon to work.

Equaling both equations for the charge we find a linear system that can be solved analytically,
U1

U2

U3

U4

U5

 =


C +D 0 0 0 −C

0 C +D 0 0 −C
0 0 C +D 0 −C
0 0 0 C +D −C
−C −C −C −C 4C +A


−1

D 0
DRQ TQD
TQD DRQ

0 D
D51 D52


V 1

V 2

 (48)

Where A is defined as:

A = D51 +D52 =
TQΓ

2πΓRΓL
(49)

The internal potential in which we should focus for implementing the demon is the one inside
the quantum dot. Its formal expression is [10]:

U+
5 =

V1(4πDCΓRΓL + TQΓL(C +D)) + V2(4πDΓLΓRC + TQΓR(C +D))

8πCDΓRΓL + TQΓ(C +D)
(50)

The reason why we focus on this potential is that we need a variation of the energy when the
magnetic field is in the opposite direction, that is, we need energies to be different when edge modes
change their polarity. This argument was used in the first section too when we defined the two
chemical potentials µ1 and µ2, one for each polarization of the magnetic field. Therefore, ε0 + U5

will play the same role as those quantities. By analogy we define,

µ′1 = ε0 + U+
5 (51)

Where the + indicates that the magnetic field is positive and the prime indicates that this term
differs from the one calculated in section 3.1.

Once we have determined the energy level due to Coulomb interactions for a positive magnetic
field, we continue with the description of the same interaction for a negative magnetic field. Again,
the change of the system when the sign of the field is changed will be the key fact for the imple-
mentation of the demon’s protocol. The capacitances are the same as they depend only on the
geometrical distribution of the regions but the injectivities are modified since edge modes make
electrons move in the opposite direction. Hence, we find the following ten injectivities:

D11 = D1T
Q (52)

D21 = 0 (53)

D31 = D3 (54)

D41 = D4R
Q (55)

D51 =
TQ

2πΓL
(56)

D12 = D1R
Q (57)

D22 = D2 (58)

D32 = 0 (59)

D42 = D4T
Q (60)

D52 =
TQ

2πΓR
(61)
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Again we assume D1 = D2 = D3 = D4 = D. Using Eqs.(33),(47) we get to the formal result:
U1

U2

U3

U4

U5

 =


C +D 0 0 0 −C

0 C +D 0 0 −C
0 0 C +D 0 −C
0 0 0 C +D −C
−C −C −C −C 4C +A


−1

TQD DRQ

0 D
D 0

DRQ TQD
D51 D52


V 1

V 2

 (62)

The explicit expression for the internal energy in the quantum dot is [10]:

U−5 =
V2(4πDCΓRΓL + TQΓL(C +D)) + V1(4πDΓLΓRC + TQΓR(C +D))

8πCDΓRΓL + TQΓ(C +D)
(63)

And by analogy we define the new chemical potential for negative magnetic field applied:

µ′2 = ε0 + U−5 (64)

The energy splitting is shown in Fig.6 for different values of the capacitance and ζ. We have
defined ζ as a parameter which measure the asymmetry of the barriers,

ζ =
ΓL
ΓR

(65)

It is clear that when both barriers are equivalent we find no splitting as a consequence of
eliminating the asymmetry. When ΓL < ΓR we find that µ′1 < µ′2 so the positive current should be
found for values of ζ < 1. This does not mean that the right barrier needs to be higher than the left
one; it only needs to happen for low voltages when we approximate the exponential as a constant.
For high voltages the right barrier has to be lower than the left one as we proved in the previous
section. The contrary happens when ΓL > ΓR. This is quite coherent since, at first, this should
be an intuitive symmetry of the system. Besides, we prove that energies increase their difference
when the voltage is higher as we expected.

Figure 6: On the left, representation of the splitting µ2 − µ1 for C = 0.01. On the right, representation of the
splitting µ2 − µ1 for C = 1. In both cases we have taken D = 10 and E0 = 1hΓ

Figure 7: On the left,representation of the splitting µ2 − µ1 for ζ = 1/3. On the right, representation of the
splitting µ2 − µ1 for ζ = 3. In both cases we have taken D = 10 and E0 = 1hΓ
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Figure 8: Above, representation of the currents for C = 0.01. Below, representation of the currents for C = 1.
The rest of parameters are the same of the previous plots. To calculate the current it was been taken kL = 0.3
and kR = 0.1

If we apply all the mechanism described in the first part we can compute the currents driven in
the system. Now we have to take into account that the barrier tunneling constants depend on the
energy, so instead of working with the constant term in the series, it is convenient to use its whole
contribution for the compute of the master equations:

Γ1/0L = ΓLe
kL(µ2/1−EL) (66)

Γ1/0R = ΓRe
kR(µ2/1−ER) (67)

Indeed, the electric and information currents are depicted in Fig.8, again for different values of
the capacitance C.

We obtain that there exists a region where the current is positive. This region is found for
high voltages within the linear regime, ζ ∼ 0.2 and low capacitances. In fact, if we put a higher
capacitance no positive current is found and it becomes more negative as we increase the voltage.
This means that we need a high interaction between electrons in the dot to make the transport
effective. This high interaction needed will be used in the next section so it should be a remarkable
result. The value of ζ gives and idea of the features of the barriers that we need to impose to
transport the electrons against the voltage gradient. Since ζ < 1 we can conclude that the left
barrier must be weaker than the right one in first approximation. Then as we consider than
kL > kR, out of the constant approximation the left barrier should be stronger, as it happens
in the first formalism described in this work. Lastly, we should highlight that we have used an
approximation for low voltages in ΓL/R. This makes our implementation difficult because the
region where positive currents appear are high voltages in the range of work, so the approximations
(43) and (44) introduce more errors in the results.

We can also compare the efficiency of the current due to the change of parameters. Clearly, the
absolute value of the current is lower in this case than it was when we considered only two different
capacitances. Thus, the electrostatic asymmetry in the capacitances is not a necessary condition,
but if that difference existed we should be able to improve the work of the demon.

As we expected, the information current is more important when the current is going against
the bias, what means that the demon is extracting information from the system; the extraction is
reflected in the negative sign of the information current. Out of that zone, the information current
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Figure 9: Above, representation of the currents for ζ = 1/3. Below, representation of the currents for ζ = 3.
The rest of values are the same as the ones used before

is negligible, therefore the demon is not working. We may also plot the currents as functions of C
for different values of ζ (Fig.9).

On the other hand, it is convenient to analyze if the efficiency of our system may be improved
by changing the value of some capacitances. We now suppose that C1 = C2 = (1 + η)/2 and

C3 = C4 = (1− η)/2. If we do so, we easily get to an analytic expression for U
+/−
5 .

U+
5 = u1V1 + u2V2 (68)

u+
1 =

ΓL(4C2DΓR(1− η2) + 8CD2ΓRπ(1 +RQη) + C2TQ(1− η2) + 4D2TQ + 4CDTQ)

8C2DΓLΓRπ(1− η2) + C2TQΓ(1− η2) + 4CDTQΓ + 4D2TQΓ + 16ΓRΓLπCD2
(69)

u+
2 =

ΓR(4C2DΓL(1− η2) + 8CD2ΓLπ(1−RQη) + C2TQ(1− η2) + 4D2TQ + 4CDTQ)

8C2DΓLΓRπ(1− η2) + C2TQΓ(1− η2) + 4CDTQΓ + 4D2TQΓ + 16ΓRΓLπCD2
(70)

U−5 = u−1 V1 + u−2 V2 (71)

u−1 =
ΓR(4C2DΓL(1− η2) + 8CD2ΓLπ(1−RQη) + C2TQ(1− η2) + 4D2TQ + 4CDTQ)

8C2DΓLΓRπ(1− η2) + C2TQΓ(1− η2) + 4CDTQΓ + 4D2TQΓ + 16ΓRΓLπCD2
(72)

u−2 =
ΓL(4C2DΓR(1− η2) + 8CD2ΓRπ(1 +RQη) + C2TQ(1− η2) + 4D2TQ + 4CDTQ)

8C2DΓLΓRπ(1− η2) + C2TQΓ(1− η2) + 4CDTQΓ + 4D2TQΓ + 16ΓRΓLπCD2
(73)

We should focus on the case in which no barrier asymmetry is present so ΓR = ΓL = Γ/2 [10].

u+
1 =

2C2DΓπ(1− η2) + 4CD2Γπ(1 +RQη) + C2TQ(1− η2) + 4CDTQ + 4TQD2

4C2DΓπ(1− η2) + 2C2TQ(1− η2) + 8CDTQ + 8D2TQ + 8CD2Γπ)
(74)

u+
2 =

2C2DΓπ(1− η2) + 4CD2Γπ(1−RQη) + C2TQ(1− η2) + 4CDTQ + 4TQD2

4C2DΓπ(1− η2) + 2C2TQ(1− η2) + 8CDTQ + 8D2TQ + 8CD2Γπ)
(75)

u−1 =
2C2DΓπ(1− η2) + 4CD2Γπ(1−RQη) + C2TQ(1− η2) + 4CDTQ + 4TQD2

4C2DΓπ(1− η2) + 2C2TQ(1− η2) + 8CDTQ + 8D2TQ + 8CD2Γπ)
(76)
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Figure 10: a)Representation of the current for Γ1(L/R)/Γ0(L/R) = 0.1. b)Representation of the current for
Γ1(L/R)/Γ0(L/R) = 1

u−2 =
2C2DΓπ(1− η2) + 4CD2Γπ(1 +RQη) + C2TQ(1− η2) + 4CDTQ + 4TQD2

4C2DΓπ(1− η2) + 2C2TQ(1− η2) + 8CDTQ + 8D2TQ + 8CD2Γπ)
(77)

No positive current appears as we can see in Fig.10. This is a remarkable result, since we can
conclude that the quantum asymmetry is necessary to accomplish our objective. It is to say, we
need both barriers to be different and energy-dependent to implement the demon. Nonetheless,
the electrostatic asymmetry introduced in the first part of the project is not absolutely necessary,
even though it could, perhaps, favour the efficiency of the demon. However, we have not studied
the case with both asymmetries with this model in this project.

3.3 Non-linear electrostatic model

Our objective now is to give a more accurate description of the potential in the dot than the ones
used before to close the overall view of the electrostatic system.Firstly, we need to propose a model
that may quantify adequately the coulomb interaction. Basically, we are doing the same analysis
but the charge now will be described considering non-linear terms in voltage, and not only the
approximated injectivities. The concrete motivation and the deep formalism are explained in the
references [5]. Here, we are reproducing the results shown there for the internal potential so that
we can apply them to the implementation of the demon. Hence, to calculate the internal potential
in the quantum dot we utilize the following charge equation:∑

j

CkjUj = δq = qtot − qeq (78)

qtot =
e

π

∫
dε

ΓLf1L + ΓRf1R

(ε− ε0 − eU+)2 + Γ2
(79)

Where the second part comes from a more exhaustive calculation, using Green’s functions for-
malism, that, for simplicity, we will omit in this work [11, 5]. Besides,it might be assumed that
Ckj = 0 ∀k, j, what means that interaction is very high. This is coherent since we are considering
that the repulsion between electrons is really strong and thus, it is impossible to have two electrons
inside the dot. The equilibrium charge is the one that can be measured if there is not a voltage
difference between the reservoirs. It can be calculated taking into account that Fermi’s distribution
is ultimately the same in both leads if the system is in equilibrium, and using the equation 85 we
can express:

qeq =
e

π

∫
dε

Γf

(ε− ε0)2 + Γ2
(80)

We suppose again that µF = 0.Our purpose is to obtain the value of U+ that verifies δq = 0.
To do so, we calculate the analytic expression for the integrals [12],

qtot =
e

2
− e

π
I

(
ζ

1 + ζ
Ψ

(
1

2
+
i(ε0 + U − V 1)

2πT
+

Γ

2πT

)
+

1

1 + ζ
Ψ

(
1

2
+
i(ε0 + U − V 2)

2πT
+

Γ

2πT

))
(81)

qeq =
e

2
− e

π
I

(
Ψ

(
1

2
+

iε0
2πT

+
Γ

2πT

))
(82)
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If we represent the equilibrium charge and the excess charge for different temperatures we can
get an idea of how important the dependencies with it and with E0 are. Indeed, for the rest of the
problem we will consider a lower temperature than the one used previously to account for this fact.

Figure 11: Equilibrium charge and excess charge for different temperatures, taken eV = 5hΓ, ζ = 1/3 and
U = 1hΓ.

The equilibrium charge is modified with the Fermi’s distribution so when temperature is high
it is almost linear, but when temperature is increased, the behaviour of the curve differs from
linear. Moreover, the equilibrium charge tend to zero when the ground state is higher, and to
one when is lower. That means that only one electron should be able to enter the dot and the
mean charge depends on how high the state in the nanostructure is. The excess charge has a more
complicated behaviour but we can see that for low temperatures it changes completely from linear
to non-linear. Besides, in Fig.12 we can observe that there is always a value of U that makes zero
the excess charge, what means that a physical solution for our problem always exists.

Figure 12: Excess charge as a function of U for E0 = 1hΓ

Since this last equation is non-linear, the solution needs to be computed numerically. Once
we know the value of U, which corresponds to the one inside the dot, we need to repeat all this
formalism but describing the system for negative magnetic fields. The coupling between the dot
and the reservoirs is modified due to the change of the edge modes polarity. Therefore, the total
charge in the system may be expressed on a similar, but changing the Fermi’s distributions that
appears with the tunneling constants:

qtot =
e

π

∫
dε

ΓLf2R + ΓRf2L

(ε− ε0 − eU+)2 + Γ2
(83)

The bare charge or equilibrium charge is, evidently, invariant under inversion of the magnetic
field. Then the results are the same but digammas functions are multiplied by different weights:

qtot =
e

2
− e

π
I
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1

1 + ζ
Ψ

(
1

2
+
i(ε0 + U − V 1)

2πT
+

Γ

2πT

)
+

ζ

1 + ζ
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(
1

2
+
i(ε0 + U − V 2)

2πT
+

Γ

2πT
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(84)
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Figure 13: Internal potential in the dot for positive magnetic field on the left and negative magnetic field on
the right as functions of the potential. It has been taken T = 1, ΓR = 0.1 and ζ = 0.3

The solution of Eq.(78) for different values of E0 are depicted in Fig.13 for a concrete range of
voltages.

In the same figure the linear approximation is depicted using the formalism described in the
previous section, imposing C = 0 to the equations 50 and 63. The results are similar to the one
obtained in [5].The analytic expression for the linear behaviour is simple,

U±5 = ± 1− ζ
2(1 + ζ)

∆V +O(V 2
k ) (85)

As we can easily see, the linear approximation is independent of the value of E0 since all the
curves coincide near the zero voltage. Indeed, it depends only on the asymmetry between barriers
[5]. Besides, for higher voltages the curves differ radically one from the other. As we need high
voltages to implement a demon correctly, we should take into account this non linear terms if we
want to give a more accurate description. When the magnetic field is reversed, the chiral modes
couple differently with the quantum dot, but there exists a clear symmetry as it can be seen in the
same figure. The internal potential is an odd function of B and V, fact that can be deduced from
the schematic figures of the system shown in the first section.

Figure 14: Current to the right in the system. It has been taken T = 1, ΓR = 0.1 and different values of ζ

The current calculated using the master equations, as a result of using this method to obtain
the internal potentials, should be positive to accomplish our objective. Actually, there exists a
region where the current appears positive as it is shown in Fig.14. In fact, we can compare this
result to the one obtained using the linear approximation with C = 0.

As we expected, the curves in linear and non linear approximation coincide at low voltages
(Fig.15). However, for large voltages their difference is quite relevant even although their qualitative
behaviour is also similar. For both cases we find a positive current but with the non-linear terms
it is needed a lower voltage so the model is actually more efficient.
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Figure 15: Current to the right in the system for ζ = 0.1,T = 1 and ΓR = 0.1 in linear approximation for
C = 0 and non-linear model.

Figure 16: Current of information in the system. It has been taken T = 1, ΓR = 0.1 and different values of ζ

In terms of information, the demon extracts it when the current is against the bias, same
argument found before. In Fig.16 the information current is shown for different values of ζ. Con-
sequently, we have obtained very similar results using this auto-consistent method for different
parameters of the system considering the limit C = 0. Nonetheless, the extraction of information
happens at −eV > 8hΓ, voltages that are too high to satisfy perfectly the conditions of the previous
approximations.

4 Conclusions

The work developed in this project is undoubtedly fruitful since it allowed us to establish some
conditions that are absolutely necessary in the preparation of our system to accomplish the imple-
mentation of the demon. Thus, quantum asymmetry is necessary but electrostatic asymmetry may
not be necessary if we stick to a more exhaustive model even considering non-linear terms. However,
it is important to be cautious because we have assumed that only low voltages are applied to make
some approximations, but we have concluded that the demon only works at appreciable voltages.
Perhaps, studying the range in which our approximation for ΓL/R are valid (Eqs.(43),(44)), which
is the main mathematical tool used to obtain the results, may be fundamental in following works
to verify our theory. Therefore, these results are important for the advance of the the theory of
the quantum transport as well as future implementation of new nanostructures, as we believe that
these ideas could lead to implementations in real devices.

In terms of academic learning, this project was absolutely helpful to understand not only the
physical view of quantum transport in nano-scale but also to work with different software. Although
one month is a short period of time to develop a solid project, it is important to say that this work
was a first approximation to the theoretical work so the fellowship was useful to realize how this
kind of work is.
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Abstract

In this report a mixed approach combining aspects of reservoir computing and extreme learning
machines is used to perform machine learning in a minimal set-up using a Field Programmable Gate
Array (FPGA). Based on previous efforts by Quim Llorens[1], M. Häussler[4] and J. Striebel[5], we
have focused on the characterization of some recent experimental findings by studying the FPGA
and the Analog to Digital/Digital to Analog converter (ADA) in a more systematic way. This also
will serve for preparing the complete RC experiment, as the FPGA programming is prepared to
carry all the experiment stages in the same way. We finally prove that it is possible to predict the
short-term evolution of a temporal series using only an ADA attached to a FPGA and connecting
the analog output directly to the analog input, due to the ADA non-linear behaviour.

1 Introduction

Despite the term Machine Learning (ML) was born in the middle of 20th century, nowadays ML is
becoming a near-ubiquitous field in our society with a full range of practical applications. Inspired
in how the brain works, a recent and very powerful approach to ML are Neural Networks1. In
this framework, we will focus in two of the most popular so-called random-projection techniques[2]:
Reservoir Computing (RC) and Extreme Learning Machines (ELM). Both share their basic com-
ponents, with a similar three layers structure: an input layer, a hidden layer (the reservoir), and
an output layer. We here introduce the notion if layers and its components, the neurons or nodes,
as we will call them, since it is the terminology commonly used for neural networks.

Figure 1: Schematic representations of RC (on the left) and ELM (on the right). Figures adapted
from [3], [2] respectively.

Despite important differences between the connectivity within the hidden layer, RC and ELM
have in common a general scheme which can be seen in figure 1. Firstly, the input layer feeds
the reservoir by mapping the incoming or input signal through random weight connections. The
reservoir is the hidden layer of the system, usually consisting on a large number of non-linear nodes,

1For learning more about ML and Neural Networks I strongly recommend to visit https://ml.berkeley.edu/blog/

tutorials/.
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that is the reservoir nodes performs a non-linear transformation. Here comes the difference: while
in ELM there is no connectivity among the hidden nodes, in RC the reservoir nodes are randomly
interconnected creating a recurrent fixed network, with internal feedback loops. This difference is
also illustrated in figure 1. Then, the states (values) of the nodes are read and the result is given
through the output layer, performing a weighted sum.

These methods can solve complex problems such as time series prediction and classification
tasks2[3], in an efficient and widely adaptable process. Its flexibility lies on the fact that only
the output weights must be adjusted, so that the computed output weighted sum approximates a
target value. This keeps the reservoir dynamical properties unaltered since its internal connexions
remain fixed, being the same system applicable to several problems. Output weights are computed
(process called training) by minimizing the squared error between real target and predicted output
values. In our case, this corresponds to a simple linear regression.

These machine learning approaches face such complex tasks efficiently due to the non-linear
transformation performed by the nodes. The reservoir non-linearly transforms the input signal,
mapping it into a high-dimensional space in which the signal becomes linearly separable. This
rather abstract concept is illustrated in figure 2: in a low-dimension space we can not separate
with a linear function red from yellow balls, that is we can not classify them. When we apply
the non-linear transformation the response of each kind of ball is different, which adds an extra
information state. When representing this non-linear mapping another dimension corresponding
to this new value is added, obtaining a higher-dimension space in which the balls will be linearly
separable.

Figure 2: Representation of linear separation when mapping into a higher dimensional space. Figure
adapted from [3].

All these characteristics can be summarized in three requirements that the reservoir must fulfill
in order to be fully efficient[3]:

• The system must be able to map the signal into a high-dimensional space by non-linear
transformation.

• The non-linear function must be robust against noise. If it is too sensitive, similar inputs could
yield noticeably different values, leading to wrong classifications (it would be like separating
two slightly different yellow balls).

• In the particular case of RC, the recurrent network should show fading memory (short-term
memory). The reservoir states are influenced by recent previous inputs, but not by those from
the far past.

Regarding this report, the approach we present is a simplification of these models that lies
in between of RC and ELM. Instead of having physical nodes, we employ time-multiplexing for
defining virtual nodes[2]. The input data is multiplied by a random vector (the mask) of length
N, where N is the number of nodes we want to define. This way we are doing a random weighted
mapping over a chosen number of nodes, as it can be seen in figure 3. In fact, this procedure is
equivalent to that of a standard reservoir. In our case, data will be only sent and received, with no
explicit non-linear transformation in the process (we will prove that there is actually an effective
non-linear transformation). Our objective then is to predict a time-depending signal, particularly
a sin2, using this minimal approach.

2In fact, the ELM are suitable for prediction and classification problems and the RC works really well with time-
dependent data[2].
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Figure 3: Mask multiplication. τ is the time separation between signal points, and θ the time length
of a node; then it is fulfilled that θ = τ/N . Figure adapted from [3].

2 Experimental set-up and Methodology

The set-up for this experiment consists of two elements: the FPGA (Field Programmable Gate Ar-
ray) and the ADA (Analog to Digital/Digital to Analog converter) daughter card attached to the
FPGA. By connecting one analog output of the ADA directly to one of its analog inputs, we have a
self-enclosed experimental set-up. Although the complete RC experiment described in [1] uses the
optoelectronic circuit too, we chose to simplify it since previous attempts of closing the loop using
the optoelectronic system were not fully successful [1]. This simplified approach allows us to carry
out a more systematic study, just focusing on the FPGA and the ADA. More information about
these elements can be found in [1, 4]. In addition, figure 4 shows a picture with the main parts of
the set-up indicated.

Figure 4: Experimental set-up.

A key point of the experiment was how to properly program the FPGA, which was done using
Quartus II. The Quartus II projects are written in Verilog programming language, which is a HDL
(Hardware Description Language); in [4] are some tutorials for learning Verilog. It is worth to men-
tion that the FPGA has an internal clock that can be modified, and it executes the corresponding
code at every time the clock signal changes, according to the specified frequency. That leads us
to check carefully the timing of the experiment, the most challenging part of this project. Before
getting into detail of each part of the procedure, we will explain the general steps for running the
FPGA:

1. Once opened the Quartus II project we want to work with, the FPGA is programmed through
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the Blaster. Make sure the second switch, SW[2]3, is down. This switch controls when the
program is running, and every time is switched down the variables are reinitialized, so you
can run the FPGA multiple times without reprogram it every time.

2. Open SignalTap in case you want to visualize the state of the variables during the running.
This can be found in the Tools menu in Quartus II window. SignalTap is a tool that shows
the value of the selected variables, outputs or inputs set in your code at every clock of the
FPGA. It is really useful for both the collection of the results and the visualization of the
performance (and find out where the potential glitches occur). Run SignalTap, it will be
waiting for a trigger of SW[2].

3. Switch SW[2] on. Now the code starts to run. The FPGA LEDs are used as “control prints”
of the program: when some important steps are done one of the LEDs turns on, so that we
can easily visualize if there has been any problem during the experiment (for instance if not
all the expected LEDs are on, or they have done so in the wrong order). It is important to
bear in mind that SignalTap will receive data till its reserved memory space fills up, being
this one quite limited. So one needs to verify if all the process data is registered.

4. When all the LED lights are on the program has finished (usually takes less than a second),
then switch SW[2] off. The SignalTap window will now display the acquired data. If necessary,
the data can be exported to an EXCEL file.

Regarding the experiment, there are two main differences with the previous implementations in
[1, 4]. On the one hand, as we have mentioned earlier we did not use the optoelectronic devices,
connecting the DAC-B (Digital to Analog Channel B) directly to the ADC-B as it can be seen
in figure 4. Importantly, in this set-up there is no limitation of the number of nodes as it was
before matched to the optic fibre length [1]. Here we have chosen to use 500 nodes, but keeping
the 11 last nodes set to 0 for taking care of the delay between outputting and receiving the val-
ues introduced by the ADA. We will discuss later the choice of 500 nodes in more detail. We also
kept the time length of each node, θ = 50ns, matching the frequency of the FPGA’s clock, 20MHz.

On the other hand, and the most important difference with the previous designs, we are not
using the AWG (Autonomous Wave Generator) for introducing the signal data into the system. In
our implementation, the sin2 points, mask multiplied, are sent by the FPGA through the DAC-B
port in every step of the experiment. In this manner, it is possible to proceed with each step more
systematically as well as having higher control of the timing and, in particular, when the system
changes from the forced mode to the autonomous mode.

The experimental protocol has tree stages, or levels of complexity:

Training of the output weights

First of all we must generate the files with the sin2 data points and the 500 nodes input mask. For
the data, 20 points per sin2 period were selected and a total of 4000 points were generated using
data mif gen 500.py python code. These had to be divided into 20 files with 200 points each due
to FPGA’s memory limitation4. In this code you may notice that the sin2 data is rescaled and
then multiplied by two factors of 8192 and 1024. This adjustment, or “normalization”, was done
since the data must fit the 14-bits resolution of ADA converter and the FPGA works with integer
values. Also a factor was introduced as the voltage range of the AWG did not match the real ADA
voltage range (these points are widely discussed in Quim’s report [1]). Nevertheless, we did not
require this factor because we introduce the data points directly using the FPGA.

The 500 nodes mask is generated using codes mask gen 500.py and mask mif gen 500.py, which
generates a random mask with 6 possible values: −1, −0.6, −0.2, 0.2, 0.6, 1. The last 11 nodes of
the mask are set to 0 in order to keep those nodes to 0. All data files used by the FPGA must be
in the same format, a MIF file5, with extension .mif. Also they must be written in a binary base
that preserves sign (signed binary) which is called two’s-complement. This is due to the fact that

3Previous versions of the programs used SW[1] or SW[0] instead, but we realized that they were not working correctly
due to the excess of use.

4We must consider that the resulting file containing the received values will have 200× 500 = 100000 numbers. That
is what actually limits the space in memory.

5Quartus II note: Files used by the functions of the Verilog code in Quartus can be selected using MegaWizard tool,
as well as changing the clocks frequency.
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the FPGA works with two’s-complement integer values (more about this numerical system in [1, 4]).

Once the data and the mask are generated, the Quartus II project for this part is reser-
voir data to usb, in reservoir data to usb copy folder. The FPGA will send every 50ns a sin2

point multiplied by one value of the mask. When the 500 values (500 nodes) are sent, the process
starts again with the following data point. When the green LEDs 6 and 7, and the red LED 1 are
on, the program has finished. The code was originally designed to send the received data trough
a USB port attached to GPIO-pins, yet we decided not to use it since the connection often failed.
Instead we register the incoming data with SignalTap. The delay between outputting and receiving
can be easily seen here: with this set-up there is a 10 clocks delay, about 500ns.

Repeating the process for each data file, we get the training data. Using sine2 nodes data ev 500
crossval shuffle.py we obtain the trained weights. This Python code organizes the data into a ma-

trix of 500 columns, each one of them corresponding to one node, and cuts off the last 11 nodes
(they are set to 0). An extra column filled with 1 is added corresponding to the offset node: the
predicted value will be the sum of the nodes states times the weights plus the offset. Finally, this
code performs a linear regression with the next point of the original time series as target for each
row, so that given the state of the nodes we can calculate the next point of the time series. The
resulting .mif file contains the weight matrix.

Not all of the input data is used by the linear regression; an 80% is dedicated to training,
whereas the other 20% is kept for an error testing calculating the NMSE (Normalized Mean Square
Error) after applying these weights. Additionally, the script contains a cross-validation routine to
shuffle the data points used for training or testing, in order to make the methodology more consis-
tent [1, 5]. Several weights matrices are calculated each time therefore. I introduced a modification
such that the least NMSE weights were chosen, so as to have the best ones.

Afterwards, we also took advantage of this modification in the code for studying the relation
between the precision achieved and the number of nodes in training vs number nodes.py. This
program repeats the process of shuffling and calculating the weights so that an statistical study of
the mean NMSE as a function of the number of nodes can be done. It also provides a better result
for the weights leading to a lower NMSE value.

Real time prediction

This second step is not actually part of our main experimental objectives, so we will not present
results about it, but it is really useful for both understanding how the FPGA is working in order
to prepare the code for the next step, and check if the previous one has been successful. The Quar-
tus II project is weight multiplication in Weight multiplication folder. In the same way as before,
mask multiplied data points are sent every 50ns trough the DAC-B. When a sent value is received
through ADC-B, this is multiplied with the corresponding weight and added to a variable called
sum, with the offset previously added. When all 489 (500−11 final nodes set to 0) node states of a
sin2 point have been read, multiplied and added to sum, this variable will have the same value (or
at least should be similar to) as the following point of the time series (according to how we have
trained the weights).

After each cycle, the variable is reinitialized so that it can be done again with the following data
point. When green LEDs 6 and 7, and red LEDs 0 and 1 are on, the program has finished. Using
SignalTap it is possible to record the values of sum before being set to 0, which should match the
input data. Plotting them with the real time series provides a simple and fast way to check if the
code is doing what it is supposed to and if the weights were properly calculated. This procedure
also allows to visualize the calculated weights accuracy.

It is important to notice that these calculations are done on-the-run, meaning that no extra
time is required to perform the multiplication or the sum. At every clock the next node state is
received, multiplied and added, so when the last value comes in the variable sum has the value of
the next predicted time series point.
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Autonomous generation

The third one is the our actual experimental target, the autonomous generation of the time series
by the FPGA. As before, the Quartus II project is weight multiplication in HAL 9000 folder. In
this part the operation of the FPGA is equal to the previous step, yet with one difference that
leads us to divide the process into two parts: the forced mode and the autonomous mode. In forced
mode the FPGA sends data of the original time series, as done so far. After 40 points (two periods
of the sin2), it changes to autonomous mode. Now the time series point used to send the next
mask multiplied data it is not the real one but the calculated using the trained weights, stored
in sum. Consequently, there is no more need of the original data as the FPGA will generate it
autonomously. The LED colour codes to check the operation of this program is the same as the
previous one.

For the autonomous generation setting the last 11 nodes to 0 becomes mandatory. We have
said that there is a delay of about 500ns (10 nodes) between outputting the signal and receiving
it, introduced mainly by the ADA converter. In autonomous mode when the last node of a certain
time series point is sent, the first one of the following point must be ready for being outputted.
However, this point is calculated using all the node states once received, being the last one received
500ns after it was sent. In order to account for this latency gap, we kept those nodes to 0 using
the mask, as Quim did in [1]. In this manner, these node states are not needed to calculate the
next point of the time series, and the value is ready for being outputted on time.

The correct timing if this part together with the proper coordination of the transition from forced
to autonomous mode are quite challenging and two of the most delicate steps of this experiment.
That is why these points must be carried out accurately, determining the delay for each particular
case. The code works with using a delay that was measured experimentally using SignalTap, so
this empirical delay must be changed if the set-up is modified.

3 Results

In this experiment we are using a sin2 function as the time series we want to generate autonomously.
The point of using it rather than a more complex one is to study the FPGA and ADA behaviour
with this simple set-up. Originally, we did not expect the system to be able to carry out an
autonomous generation, since only by connecting the ADA board to itself we are not providing
the system with a recurrent connection to previous input steps. Hence there is no memory and,
moreover, any kind of non-linearity that could decrease the NMSE of the prediction. Despite of it,
we saw that achieving some autonomous generation is possible using only these two elements.

Figure 5: Weights values corresponding to each of the 489 non-zero nodes.
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First result comes out when plotting the weights values, which can see in figure 5. This figure
illustrates that the weights present some structure. This particular one shows the weights for 500
nodes, but this pattern remains independently of the number of nodes. When performing the linear
regression, more relevance is given to, approximately, the first half of the nodes than to the second
one. So there is more information in those initial nodes rather than in the last ones. It is interesting
finding out this structure, because it is a sign of the system not processing all nodes equally, which
should be the case according to the symmetry of the system.

Previous experiments were limited to use a maximum of 96 virtual nodes, which were defined
by the length of the optical fibre in the optical part of the set-up and the clock of the ADA [1].
Since we notice that the prediction performance could be hindered by the use of such few number of
nodes, we decided then to increase this number to 500, as there is no physical limitation to restrict
the length of the input mask in our case. We could verify that the lowest instance of the prediction
error in the cross-validation procedure decreased. Actually, for a larger number of nodes and the
best set of output weights, when plotting the real time calculated points with the real time series,
they matched considerably better. Nevertheless, we show in Figure 6 that the mean NMSE does
not decrease with the number of nodes, only decreases the prediction for the best set of weights.
In fact the mean NMSE is the largest for 500 nodes.

Figure 6: On the left side, mean NMSE against the number of nodes. On the right side, the least
NMSE achieved in the cross-validation process against the number of nodes.

In contrast to the mean NMSE, the least NMSE does decrease with the number of nodes. Since
we can choose to perform the testing with the best set of output weights obtained from the different
instances of the cross-validation procedure, we continue working with 500 nodes for the autonomous
operation. About these results, two things can be pointed out. First, we could expect that the
more nodes we use the better the prediction will be, which is what the right handed graph in figure
6 is showing. That means increasing the nodes can actually result in a smaller error for some
realizations. What is happening for the mean NMSE is that the linear regression performed by the
program is solving a linear system of equations minimizing the NMSE. Increasing the variables6

of course gives better chances of approximating the target data, but it is also a source of error as
we are making the numerical problem bigger and more complex. Hence the solutions given by the
regression will be more scattered when the number of nodes gets higher, as the standard deviation
indicates. Other regression methods may alleviate this problem.

In addition, notice that while the minimum NMSE reduces, we can not expect it to be reducing
continuously with the number of nodes. It can be observed in figure 6 that from 300 nodes forward
the values only change slightly. That means there is a precision limit which we can not overcome.
Taking into account that it is supposed to be a linear system, and that the electronic circuit itself
will always introduce some noise, it is reasonable to assume that such an error minimum exists.
We could use more nodes, yet we will not be able to reduce it. A more involved experimental
configuration would be necessary in order to do so. That is also a reason for not having more than
500 nodes in this report.

It is interesting to point out that this discussion can be included in a more general problem

6Keeping in mind that more variables will need more conditions for the method to converge, that is more training
data.
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involving RC or ELM, which is finding out the optimal number of nodes for an specific system.
This is not a solved issue, and I will not discuss about it, but it gives a glance of how wide this
problem can be.

Coming back to the experiment itself, we have mentioned that the system is supposed to be
linear, as it only involves the FPGA and the ADA. However when the second stage, real time
prediction, was carried out, we found out that it was able to predict the next point. According
to requirements of an operative reservoir mentioned in the first section, this should not be able to
happen since we are not having a non-linear transformation or memory. For understanding these
results better, consider two points of the same sin2 period, both with same value but different
history, as marked by the horizontal line in figure 7. As they have the same value, if just a linear
transformation were involved the prediction would not distinguish when the function is growing or
decreasing, i.e. the next point is higher or lower. Training would only reflect that half time is one
case and half time is the other, and in fact we would fail systematically in the prediction for this
kind of points.

Figure 7: Example of next sin2 point prediction.

This made us suspect the ADA was not entirely linear and/or that we had some sort of im-
plicit memory. We decided to plot the received data against the sent one. Choosing some nodes
randomly, we have depicted their read states along the time-series points in function of their input
original value. The result can be seen in figure 8. The enlargements show in detail how the points
are scattered and they separate from linearity, represented by the dashed line. For instance, the
green dots are a good representation of the observed phenomena. For each input value two groups
can be seen, above and below the line, distinguishing the two types of points of the sinusoidal
discussed above. This shows that there is a non-linearity in the ADA and/or that we had some
sort of implicit memory.

Figure 8: Read nodes states vs. input data (sin2 points times the mask). For each instance of the data
there are 200 points. The enlargements show the detail of some points in a closer range.

The small fluctuations introduced by the ADA when converting from digital to analog an vice-
versa are introducing some error in the prediction calculus, but it is at the same time the reason
why we can predict. Those slight variations, fruit of a combination of noise and the analog trans-
formation, carry the information the weights need to distinguish which point is coming in, and
therefore which one must be the following one. If the distribution of the read nodes states were
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100% random, there would be no way to know where inside the periodic signal the point is located
in. This tiny deviation from linearity of the ADA converter is reflected into those fluctuations,
being enough for training the weights, and therefore for calculating the next point.

The hypothesis of this non-linearity origin, moreover of ADA’s own non-linearity associated to
its not-perfect electronic components, is more related with a kind of fading memory, which remem-
ber is the other important condition for RC. We were able to appreciate in the oscilloscope that the
signal was not going to 0 immediately when the outputted values did for the last 11 nodes, but it
took some time the signal to decrease. That means the response time of the ADA could be greater
than the nodes length (50ns); therefore the state of a node might be influenced by previous nodes’
states, which is a memory indeed. Furthermore, we have to bear in mind that the ADC does not
read strictly a DC constant voltage value, it detects signal in a sense of voltage variation. So in
the measure the previous node state is somehow involved, another reason for having this fading
memory. All this could explain why we observe the deviation from linearity in a supposedly linear
system.

Finally, an autonomous generation of the signal was tested and characterized. The output
weights used had a NMSE of 5.797 · 10−05 in the testing part of the training Python program. It is
the best error obtained in training stage. As it is presented in figure 9, an autonomous generation
of the signal could be achieved. From the point 40 where the system changes to autonomous mode,
two complete periods are successfully predicted with low error. From then on the predicted signal
amplitude decreases progressively, keeping the same frequency and sinusoidal behaviour throughout
the process. It is not till the last 200 points that the phase of the autonomous signal changes and
signals start to desynchronise.

Figure 9: Autonomous generation of a sin2 signal, and an enlargement of the first 200 points. In
green the original signal, in blue the generated one. The black line delimits where the transition from
forced mode to autonomous mode takes place.

4 Discussion and Outlook

The system used to run the experiment has proven to be able of dealing with an autonomous gen-
eration. There are, however, some aspects of the FPGA and the ADA that can make working with
them trickier than it seems. Some of their corresponding strengths and weaknesses are listed below,
with particular emphasis on those which in my opinion are important for future development of
this experiment.

Advantages:
A key factor here is the digital-analog conversion, that connects with the analog part of the experi-
ment. The ADA board attached to the FPGA gives us good control on sending and receiving data
from the analog system, which has to go through this conversion. In our case, the “analog system”
is just a wire, but focusing on RC using optoelectronic systems with delay, knowing how this con-
version is done is crucial. Also the FPGA has a fast processing due to its design for doing processes
in parallel. This is quite useful as you can program it for conducting different computations at the
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same time. The most important feature though is its clock; the internal clock reaches frequencies
of MHz, executing the given code at every cycle. By looking at the different variables in SignalTap
we can control pretty well the timing of the experiment, what sends, receives and calculates step
by step.

Disadvantages:
Even if we have such a control of timing, that does not mean it is easy to program. Quartus II
uses Verilog as a programming language, which is not a commonly known one. Learning how it
works is not as fast as someone would like, specially not having a background in similar languages
(like C or others HDLs). It also takes its time to get familiarised with the FPGA. The ADA turns
things trickier on top of that7, as it has a 14-bits resolution, added to the two’s complement binary
used by the FPGA, forces you to pay real attention to how the data is being handled. Last but
not least, the FPGA has a finite internal memory, which is a strong limitation in the data amount
you can manage at once. For example, I had to divide into 20 files the data for training, repeating
the same process for each file. It affects SignalTap too, so it is definitely an issue to bear in mind
when programming the FPGA.

Turning the attention back to the future development, I believe that some improvements and
extensions can be done since I am positive that better results are achievable. The main objective
of the whole complete project is connecting and running the optoelectronic system with delay for
testing the RC. Before taking this step though, some halfway experiments could be run in order to
advance keeping a systematic study.

Something we tried to test was introducing explicit memory to the system. That is giving a
multiple input: instead of calculating the next point using the nodes states of the previous point,
train it for doing so with the last two or tree last points (mask-multiplied) of the time series. That
should bring more information when training the weights so as to have a lower prediction error.
However, the training did not get better results than only using one point, so we focused on other
parts as few days remained. I had no time for revising and finishing the code for this test, so
perhaps it can still work if someone picks it up again.

The other point that might be interesting to study is adding to the FPGA+ADA system a
proper non-linearity that we can control. If possible, it could be a useful intermediate step con-
necting the ADA to a non-linear node (like the Mach-Zehnder-Modulator[1] but without the delay
loop), just to carry out the non-linear transformation of the data. This should reduce significantly
the prediction error, as it makes the nodes more distinguishable for the training. Furthermore, this
may help characterising the intermediate optoelectronic elements without the added difficulties of
a system with delay, which is in my opinion a necessary step.

Before concluding this report, I would like to set out a couple of questions regarding the first
phase of this experiment, the training, for which I was not able to give conclusive answers. First one
has already been discussed, it is why fitting the weights works numerically worse with high number
of nodes when clearly the minimum NMSE instance of the cross-validation procedure gets smaller.
It is remarkable too that results vary with the number of files used, that means with amount of
data for training. Obviously the method needs a minimum amount of examples to find a solution,
yet I checked that providing it with too many also has a negative impact (in fact, from 20 files I
used about half of them in training). While the training stage works correctly, paying attention to
these numerical issues may improve the results.

Secondly, we have explained that the received data by the ADA is read by SignalTap, then used
for training. It reads the values as binary numbers, and the training will only work if those values
are converted from normal binary, not two’s complement. This shocked me because the FPGA
performs all calculations and sends signed binary in two’s complement, while it seems that it is
reading the incoming signal as just unsigned binary. Even if the current procedure works, I did
not fully understand how the FPGA is processing the ADA’s income, which depending on future
applications may be interesting to find out.

7While is not so relevant for our case of study, it is worth to mention that the ADA also imposes a high-pass frequency
filter[4], which might be relevant in future applications.
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5 Conclusions

We have demonstrated that it is possible to get autonomous generation of a signal using only a
FPGA and an ADA, showing the power of machine learning methods with random projections
like RC and ELM, that can work efficiently even in their simplest form. This definitely paves the
way for a future expansion to RC using the optoelectronic system with delay. If the set-up is
extended progressively with systematic testing, the new approach that does not make use of the
AWG can solve the problems that came up in previous versions. The Quartus II projects should
be ready for working in these new experiments, with few adjustments but preserving their structure.

In my opinion the most challenging part of this work is dealing with the Verilog programming
of the FPGA, as well as getting used to previous people’s work and code. In this way and following
Quim’s premise[1], I have tried to leave everything as organized and commented as possible, so that
next students spend the least possible time in organization. I hope this work may help to whoever
comes next to continue and luckily finish this project.
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Abstract

The power grid is a socio-technical system where users and machines interact on a network
supervised by the system operator. Traditionally, the control is applied at the supply side, such
that power plants adapt continuously their power to deliver all the energy demanded by the users.
This model is however very expensive, as it requires fast response idle power plants to ensure
the supply at demand peaks consuming very expensive fuels. The increase of the demand and
the integration of renewable energy sources are also increasing the fluctuations of the system due
to fast demand-supply unbalances, challenging the traditional system operation. Control systems
applied to the demand side, such that users adapt their energy consumption to energy availability,
have been proposed. In this project, we will explore the dynamics of the power grid under demand
side control methods introducing a daily variation. We find that a fluctuation in the switching on
probability rate affects the number of pending tasks. We also conclude that a proportional variation
in the ε1 value is not a good solution for decreasing the number of pending tasks.

1 Introduction

Power grid frequency control is a very important and expensive issue nowadays due to the increase
of electric demand and the renewable sources dependence. This controlling can cause expenses to
the power plants. For that reason, several approaches have been attempted in order to reduce the
fluctuations in the frequency in a way that the power grid does not need to have too extra energy in
case a peak of demanding is generated. Several approaches have been attempted, such as sending a
real time price signal from your consumption to figure out if you may switch on or off some devices
depending on the frequency. On one hand, if the frequency decreases, the price rises, inducing
customers to switch off them. On the other hand, if the frequency rises, the price decreases. Our
method, that is explained in this report, is taking into account directly the frequency instead of
the price. [1, 2]

In the following, we are describing how to model a power grid and then, how to implement a
controlling system in the demand side in such a way that certain appliances modify their operation
to adapt to the power availability studying, for instance, its effect on the frequency. This method
is called dynamic demand control (DDC), where smart devices are able to delay when they are
switching on or off depending on the frequency of the system. The power plant equations and one
stochastic model for the demand are introduced in this model. [1, 2]

Nevertheless, one of the problem that can arise from this method is the synchronisation of
all the appliances to switch on (off) once the frequency is above (below) a threshold we have
introduced. This condition can lead to a peak in the demand provoking an oscillatory instability in
the frequency. To address this issue, randomisation of the switching rate of each smart appliance
is also included. [1]

All these effects can be studied with the model studied here. Nevertheless, this work has been
done by Eder Batista et al in [1]. There, the probability of switching on or off of an appliance is
the same (p = q, with p the switching on rate and q the switching off rate). Thus, fluctuations
along the day cannot be studied. Our work is implementing a generic algorithm of DDC in Python
to study if the constraints need to be adapted to the daily demand variations or not.

First of all, we must check our model to figure out if the program itself is running well or not.
For that, we are comparing some examples with the same parameters as the ones done by Eder
Batista et al in [1] to see if the results obtained are the same. It turns out that our algorithm is
able to reproduce them with a quite similar equivalence.

This report is organised as follows. In Sect. 2, we describe the standard power plant model,
the stochastic model for demand and the model for dynamic demand control. In Sect. 3, we show
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the results obtained in the comparison with the examples already studied ([1]) to figure out the
validity of our algorithm and we also introduce the effects of the variance of p and q on frequency
fluctuations taking into account the daily demand variations. Finally, in Sect 4, we indicate the
implications of our results and some possible extensions of this method.

2 Theoretical model

This model is formed by a generator and a governor, where the generator is producing the electricity
from some energy resource such as solar panels, fuel or gas, and the governor is the specific control
method for adapting the energy generation depending on the demand.

By applying the Newton law on the turbine, the well-known swing equation describing the
dynamics of the generator can be derived [1]:

dω

dt
=

ω

2HPG
(Pm − Pe) (1)

where PG and H are the nominal capacity and the inertia constant of the generator, Pm is
the mechanical power generated by the turbine (or other means), and Pe is the total power of the
electric current that the demand needs.

The total electric load Pe can be divided into two parts: a non frequency-sensitive load and
frequency-sensitive load, such that:

Pe(ω, t) = (1 +D
ω − ωR

ωR
) (2)

where ωR is the grid reference frequency, D is proportional to the fraction of the load which is
frequency sensitive and P (t) is the load at ω = ωR.

With both equations (1) and (2), we can observe that since the electrical power increases because
of the demand and, in consequence, is larger than the mechanical power, the frequency of the system
comes down. Conversely, if the governor is telling the generator to produce more mechanical power
than system demands, the frequency rises. That is why the governor must restore the frequency
to its reference value (ωR), and it does so in two steps. First, it tends to stop the fluctuation in
the frequency by increasing (or decreasing) the mechanical power. This process takes around ten
seconds. After that, a second step is taken. Extra energy to the generation from a spinning reserve
is incorporated in order to reestablish the frequency to its reference value ωR. These primary and
secondary regulations are taken into account with the following differential equations:

dPm

dt
=

1

τg
[Ps − Pm −

PG

RωR
(ω − ωR)] (3)

dPs

dt
= − K

ωR
(ω − ωR) (4)

where R is the governor speed regulation, Ps is the spinning reserve power used at a given time,
K is the gain of the secondary controller and τG is the time constant of the turbine.

Once our model for the power plant is explained, now we can introduce the stochastic demand
model to reproduce the main statistical properties of real demand fluctuations. For that, we
consider N appliances where each of them can be either in the on state (with a rated power P0)
or in the off state with no consumption. We assume that a device running would switch off with
probability rate q. This probability rate is such that qdt is the probability itself that the on state
appliance is turned off in the time interval dt. Conversely, a device in the off state would switch
on with probability rate p. For the sake of simplicity, p = q is taken, but in our work these two
rates are modified in different ways to consider daily demand patterns and to be able to obtain
new data about the optimal values of the constraints we present in the next pages. Thus, the time
dependent load of appliances i, is given by:

Pi(t) =

{
P0, on state at time t

0, off state at time t
(5)

The total load of the system is given by the addition of the load of the N devices:

P (t) =

N∑
i=1

Pi(t) (6)
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This stochastic model comes from a Markov process[3] for a system composed of N particles
each one making transitions between two states (on, off) with rates p and q. When there are
not interactions between the appliances and both probabilities rates are the same, then, we can
confirm the average power demand is < P >= NP0/2. Once the stationary regime is reached, the
fluctuations are proportional to

√
N . The variance at all times is:

σ2
P (t) = NP 2

0 [µ(t)− µ2(t)] (7)

where the probability µ(t) of finding a device on is given by:

µ(t) =
1

2
(1− e−2pt) + µ(0)e−2pt (8)

Once this model is implemented in Python and we have checked the well-working with the
parameters used by [1], we need to implement the Dynamic Demand Control (DDC).

With this controlling system, we are delaying the device switching on or off depending on where
the frequency is. If a device is supposed to be switched on randomly , first the frequency is checked.
Thus, now we are working with smart devices. When the frequency is within a suitable range, then,
the appliance turns on. Nevertheless, if the frequency is below a threshold ( ω < ωR−ε), this action
is prevented. Conversely, a smart device in the on state that randomly would switch off effectively
do so only if the frequency is not above a threshold ( ω > ωR − ε).

Otherwise, all these actions prevented are taken into account as pending task in order to be
recovered later in periods of favorable frequency conditions. We define the pending tasks Qj of
smart device i as the absolute value of the energy that this device has consumed in excess or in
shortage with respect to the reference case of no applying any DDC. Total pending tasks on the
whole grid are given by:

Q =
∑
j

Qj (9)

Those energy-consuming pending tasks can only be recovered if the frequency is above a sec-
ond threshold (ω > ωR + ε1), while energy-saving pending tasks can only be recovered when the
frequency is below another threshold (ω < ωR − ε1). Smart devices with pending tasks monitor
the frequency continuously for that, but actually they do so with probability γ in order to avoid
simultaneous switching-on (off) of several appliances.

To prove how good the control is, we can calculate the complementary cumulative distribution
R(∆ω), which corresponds to the probability of having a frequency fluctuation with absolute value
larger than ∆ω. We get a set of value ∆ωk at discrete times tk, k = 1, ...,M from numerical
simulations. Then, this set is reordered from the smallest to the largest value ∆ωi, so that i is the
rank of ∆ωi, i = 1, ...,M. The mathematical expression is presented as:

R(∆ωi) = 1− i− 1

M − 1
(10)

3 Results and discussion

Throughout our work, we are taking the same values in the differential equations presented in
the Sect. 2 ((1), (3) and (4)) for the constants. These values are the ones used in [1], that is,
PG = 37320 MW and H = 4s, ωR = 50 Hz and D = 0.026, K = 6600 MW/s and τG = 0.78 s.
For the stochastic model, we are taking p = 6.55 · 10−4s−1 first to check its validity. After that, we
are changing its value periodically to check how the fluctuations are affected.

For the number of devices, we are selecting N = 1000. With that, the proper values obtained
by [1] to achieve efficient DDC operation are ε = 0.05, ε1 = 0.06 and γ = 1, 2 · 10−3.

First of all, we are calculating the response of the system after a sudden load increase that takes
place at time t = 1 minute, as we can see in the figure 1. Once we introduce this change in the
system, the frequency decreases suddenly. Then, the primary regulation is activated and within ten
seconds approximately, the frequency stops decreasing. After that, it is stabilised at a value below
ωR (ω = 49.937Hz). Once this is happening, the secondary regulation starts to work recovering
the frequency to its reference value ω = 50Hz within about 12 minutes, which corresponds to the
response found in [1].
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Figure 1: Frequency Response after a sudden increase of the demand.

Once we have checked that our model for the power plant is working well, we need to figure
out if the stochastic model implemented in Python is doing so as well. For that, we focus on the
fluctuations in the total load.

Nevertheless, we need to take care of the time scale. On one hand, if we go to short time scales,
the picture obtained is essentially a random walk with the exception that the number of appliances
is finite, so, in consequence, the random walk is bounded and fluctuations can not grow indefinitely.
This can be observed in the Fig. 2. On the other hand, at large time scales, the fluctuations look
more like white Gaussian noise, as we can see in the Fig. 3.

Figure 2: Demand fluctuations at short time scales for N = 1000 devices of power P =
132MW. The switching probability is p = 6, 55 · 10−4s−1
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Figure 3: Demand fluctuations at large time scales for N = 1000 devices of power P =
132MW. The switching probability is p = 6, 55 · 10−4s−1

Now we are testing the well-working mode of our DDC implemented in Python.
For that, we are taking a large trajectory in the first case (120 hours). In the Fig. 4, we are

showing the well performance of our DDC model. Our model is keeping the fluctuations of the
frequency within a range chosen with the parameters ε and ε1. Both threshold are overtaken only in
some periods. This is, actually, what we are looking for because those fluctuations give the chance
to recover pending tasks.

Figure 4: Time series of the frequency for a fixed value of p.

The pending tasks in last part of the trajectory (last 15 hours) are shown in the Fig. 5. This
range was chosen to be compared with [1] because it represents a stationary state. Effectively, the
pending tasks are fluctuating within a range up to 20 MWh. This result converges with the one
obtained in [1].
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Figure 5: Time series of the pending tasks for a fixed value of p.

Furthermore, the frequency variance is also shown in the Fig. 6. In this figure, we can observe the
coincidence of the increasing of pending tasks with low values of frequency variance and, conversely,
how the number of pending tasks decreases when high values of frequency variance are approached.

Figure 6: Time series of the frequency variance for a fixed value of p.

Since the time-consuming of this trajectory was quite high, we have considered to study our
model in short scales. Thus, for this second case, we are taking a shorter trajectory (50 hours).
Nevertheless, to get good enough values, we notice we need to go through the last hours of this
trajectory. Specifically, the last 24 hours are studied.

As we can observe in the Fig. 7, the statistical properties are almost equal to the ones obtained
before and in this case the run-time is less than before. So, more attempts can be approached.
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Figure 7: Time series of the frequency for a fixed value of p.

Also, as we can see in the Fig. 8, the number of pending tasks keeps within a range that can
be accepted, even though, it turns out we have more fluctuations. Since we are not in a perfect
stationary stage, this fact is normal.

Figure 8: Time series of the pending tasks for a fixed value of p.

Again, the frequency variance is keeping a proportional behaviour with the changes in the
number of pending tasks as we can see in the Fig. 9.

Furthermore, this choice is helping us afterwards to compare this result with the ones obtained
when we are changing the p value.

We are taking an the values of the frequency variance from three attempts and we are repre-
senting it in the Fig. 10, but, as we can check, they are not enough for representing a smooth
behaviour. For instance, we have discard to try that because of the time-consuming.
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Figure 9: Time series of the frequency variance for a fixed value of p.

Figure 10: Time series of the average of three different frequency variance for a fixed value of p.
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Now, once we have already checked our model is working well and we have the same statistical
properties that the ones obtained in [1], we are allowed to include a daily pattern in the value of p.

This pattern is introduced as a cosines function to represent the daily fluctuations found in
[4]. The function is restricted to have a period equal to 24 hours and a maximum fluctuation
(amplitude) of the 30 per cent of its optimal value. The fluctuations in the frequency are shown in
the Fig. 11.

Figure 11: Time series of the frequency for a value of p following a restricted cosines function. A
cosines function is represented (red thick line) to observe how the pattern affects the frequency.

We can observe that the pattern is affecting the fluctuations, but keeping a logical behaviour.
Nevertheless, as we said before, our study is focus on the laste 24 hours shown in the Fig. 12.

Figure 12: Time series of the frequency for a value of p following a restricted cosines function. A
cosines function is represented (red thick line) to observe how the pattern affects the frequency.
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We find that the pattern included in the p value is producing more peaks that cross the threshold
in certain times. When the p value is stabilised, the largest peaks appear. For instance, the number
of pending tasks decreases. This can be checked in the Fig. 13.

Figure 13: Time series of the pending tasks for a value of p following a restricted cosines function.
A cosines function is represented (red thick line) to observe how the pattern affects the number of
pending tasks.

Also, the frequency variance is behaving according to this analysis. A peak in the frequency
variance produces that the pending tasks decreases because it is representing the fluctuations of the
frequency in time windows of one hour. The last 24 hours of the frequency variance are represented
in the Fig. 14.

Figure 14: Time series of the frequency variance for a value of p following a restricted cosines function.
The average value (red line) is plotted.
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Furthermore, the number of appliances that are switched on are shown in the Fig. 15. We can
see that the pattern chosen is perfectly recognised.

Figure 15: Time series of the number of switched on appliances for a value of p following a restricted
cosines function.

The next step would be to adapt the value of the thresholds to this pattern. In our case, we
have included an attempt where the ε1 value is following the same pattern that the p value.

The result is shown in the Fig. 16. It can be checked that an unreal behaviour in the frequency
can be introduced. This is leading us to confirm that this trial is not a realistic one.

Figure 16: Time series of the frequency for a daily pattern included in the p and ε1 values.
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Furthermore, the number of pending tasks is also shown (in the Fig. 17 in this case to see how
a chaotic behaviour in the frequency can affect to this number.

Figure 17: Time series of the pending tasks for a daily pattern included in the p and ε1 values.

The frequency variance is also shown in the Fig. 18.

Figure 18: Time series of the frequency variance for a daily pattern included in the p and ε1 values.
The average value (red line) is plotted.
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Finally, the number of switched on appliances is also represented in the Fig. 19.

Figure 19: Time series of the number of switched on appliances for a daily pattern included in the p
and ε1 values.

4 Conclusions

We have implemented a simple model to study the effects of dynamic demand control on the
frequency of the power grid in Python successfully. This model has proved the well performance
of the differential equations for a power plant with primary and secondary regulation. Apart from
that, a stochastic model for the power demand has been achieved. It has been confirmed that
our model is able to reproduce the statistical properties of real measurements of the frequency
fluctuations adjusting a single parameter, namely the switching probability of the devices.

We have shown that the implementation of a daily pattern in this parameter can affect the
optimal results and, in consequence, the optimal constraints found by [1]. With that, we have
observed the realistic response given by the model to this perturbation. Once the switching on
probability of the appliances (p) increases, the power plants are not able to supply enough energy.
Then, the pending tasks rise up as well. Nevertheless, these pending tasks are recovered later when
the slope of the p is not that large.

For studying the new optimal values for those parameters, we tried to include the pattern
perturbation in the ε1 value (the threshold for recovering pending tasks). Nevertheless, the result
obtained was not the expected. The frequency starts to behave in a chaotic way at some point, so
it is unrealistic.

For instance, another good approach can be to modify the value of both thresholds or including
some parameter to take into account the value of the frequency variance.
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5 Appendix

5.1 Power Plant Equations as SDEs

With the help of [3], a study of Stochastic Differential Equations was approached. For instance,
we tried to introduce the noise produced by our stochastic demand model in the equations taking
into account the working mode of these theory.

A way to study this approach is to use a very simple white noise. The result is shown in the
Fig. 20.

Figure 20: Time series of the frequency introducing white noise in the Power Plant Equations.

As we can observe, the pattern in the frequency is quite similar to the one achieved with our
stochastic demand model. For instance, this result is leading us to think that, if it is possible
to define the noise produce by our stochastic demand model, we can introduce it directly to the
equations. However, this approach is beyond the scope of this work and will be considered elsewhere.
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Damià Gomila and Pere Colet.

This work was supported by the SURF@IFISC fellowship.

References

[1] E.B. Tchawou Tchuisseu, D. Gomila, D.Brunner and P.Colet, Effects of dynamic-demand-
control appliances on the power grid frequency Phys. Rev. E 96, 022302 (2017).

[2] E.B. Tchawou Tchuisseu, D. Gomila and P.Colet, Reduction of power grid fluctuations by
communication between smart devices (2018).

[3] R.Toral and P.Colet, Stochastic Numerical Methods: An Introduction for Students and Scien-
tists (2014). DOI: 10.1002/9783527683147

[4] https://demanda.ree.es/visiona/peninsula/demanda/total, 27/07/2018



Proceedings of the SURF@IFISC (2018)

Synchronization in a model of coupled neural oscillators

Javier Rivera Deán, Claudio R. Mirasso
Instituto de F́ısica Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB)
Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain

Abstract

The emergence of synchronization in brain networks is a fundamental issue in neuroscience. For
instance, when two or more neurons or neuronal populations are unidirectionally coupled, delayed
synchronization is expected. In this case, the sender predicts the dynamics of the receiver. However,
depending on the oscillation frequency between the nodes or the type of coupling, other types of
synchronization can be observed (zero-lag, anticipated, etc.). In this work it is proposed to study
the dynamics of a chain of coupled oscillators to better understand the mechanism that yield the
different kind of synchronization depending on the circuit structure. The results will be contrasted
against numerical simulations of a chain of coupled neurons.

1 Introduction

According to [5], it is said that two periodic pulses are synchronous when they occur at the same
time or with a constant phase shift. Synchronization phenomenons in neurons have very important
consequences in the whole brain’s workout, as locomotion processes, but also can lead to patho-
logical types of activities as epilepsy. Therefore, in this case, we will study systems constituted up
to two oscillators, employing Kuramoto model which emulates the behaviour of neurons and see,
depending on the kind of coupling (excitatory or inhibitory) and how it is (class 1 or class 2), under
which situations synchronization processes take place.

With this purpose, we will start by analysing the behaviour of an individual oscillator when
we apply a certain pulse over it at a given time t0 and, after that, we will introduce a sinusoidal
modulation. The purpose of introducing this functions is to emulate the coupling of this oscillator
to another ones without dealing with them, something that will be done in the subsequent sections.

As it was commented above, we will only study systems up to two oscillators and, as well, two
different configurations will be considered: the master-slave configuration which is an unidirection-
ally coupling, and a two mutually coupled system, employing for so different kind of couplings.

In all those cases we will restrict ourselves to the stable solutions as we want to obtain synchro-
nized results and, once discussed all those cases, we will modulate them by a sine function and see
if there are any circumstance that permits them to be stable.

2 Theoretical model

It is known that neurons are a certain kind of cells that constitute the fundamental bricks which
allows the transmission of information in most of the living beings, and this circulation is due to
electric pulses that are transmitted through them. Hence, consider a certain neuron like the one
depicted in appendix A. If nothing is done to it, its membrane has a certain electric potential called
stationary membrane potential and, under this conditions, an electrical current, and therefore
information, cannot pass through it, that is, this neuron is located at it stationary state. This
membrane potential exists thanks to the fact that a given concentration of different ions are located
inside and outside the membrane.

Under this equilibrium situation, suppose that we manage to alter that membrane potential in
such a way that we depolarize the neuron’s membrane. If a certain limit is reached, called excitation
threshold, the Na+ channels open suddenly allowing sodium getting to the interneuronal space, and
changing therefore the neuron’s potential. However, this situation does not hold for long, as the K+

channels also open allowing potassium to exit the neuron, obtaining again the stationary membrane
potential.
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Nevertheless, this process do not take place all along the axon, that is, it only affects the local
part of the neuron that has been excited and perturb its surroundings in such a way that the
excitation is transmitted all along the axon, giving rise to the known as electrical pulse.

In general, that excitation is caused by other neurons and, as it happens in many other fields in
Physics, the response of the other neurons is not just given by summing up all individual behaviours:
is a collective response. Indeed, that kind of answers are also obtained in very simple systems made
only by two coupled neurons, leading to synchronization phenomenons. In this case we are going
to use a very simple model in which the role of a neuron is played by an oscillator, representing
their phase the transmitted information.

2.1 Kuramoto model

The Kuramoto model ([1]), proposed by Yoshiki Kuramoto in 1975, describes the behaviour of a
large set of coupled oscillators and, for so, is widely used to study the conduct of neurons. It is
described by

θ̇i = ωi +

N∑
j=1

κij sin(θj − θi − δij), i = 1, ..., N (2.1)

where ωi is the natural frequency of each oscillator which is biased away because of its interaction
with the surroundings, represented by the second term, where κij is the coupling constant and
δij is a phase. As this set-up will represent a set of neurons, then κij can be either positive or
negative depending on the kind of synaptic coupling: excitatory or inhibitory, respectively. Also,
δij represents the delay of the information transmission between neurons and will be inside the
interval [−π, π]. As this quantity represents a time delay, it may seem appropriate to work with
positive values, but the results that we shall obtain along this dissertation can be discussed in a
more clearly way if we restrict ourselves to that range.

2.2 Excitatory and inhibitory couplings

The connection that a neuron establish with the others is called synapse and takes place in the
known as synaptic space, filled by extra-celular liquid that splits the presynaptic neuron’s membrane
from the postsynaptic one.

In these connections, a certain kind of substances known as neurotransmitters are interchanged
and, depending on its composition and concentration, we can talk about different kind of synaptic
couplings.

• Excitatory. The neurotransmitters open Na+ and K+ channels which induces de depolar-
ization of the postsynaptic membrane.

• Inhibitory. The neurotransmitters open K+ and Cl− channels that hyperpolarize the post-
synaptic membrane.

2.3 Class 1 and class 2 couplings

According to [6], in 1948, Alan Hodgkin injected steps of current of various amplitudes into excitable
membranes and looked at the resulting spiking behaviour. Depending on the average frequency of
such firing, Hodgkin identified two major classes of excitability:

• Class 1 neuronal excitability. Action potentials can be generated with arbitrarily low
frequency, depending on the strength of the applied current. Class 1 neurons fire with low
frequencies, covering a range of about 2 and 100 Hz.

• Class 2 neuronal excitability. Action potentials are generated in a certain frequency band
that is relatively insensitive to changes in the strength of applied current. The frequency of
class 2 neurons is quite limited, generally between 150 and 200 Hz but it can vary from neuron
to neuron.

3 Individual oscillator

Consider only one oscillator. Therefore, the system of equations shown in eq. (2.1) is reduced to

θ̇1 = ω1. (3.1)
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Assume now that a modulation of that oscillation is performed by a certain function f(t). In
that case eq. (3.1) is given by

θ̇1 = ω1 + f(t). (3.2)

In this section we are going to study what happens if we apply a certain pulse A during an
interval ∆t in such a way that f(t) is represented by

f(t) =

{
A, if t < t0, t > t1,∆t = t1 − t0
0, otherwise

, (3.3)

and what happens if that signal is modulated by an oscillating function as, for instance, a sine wave

f(t) = A sin(ωet) (3.4)

where ωe is the frequency of the oscillation introduced.

3.1 Modulation by a squared pulse

In order to study the modulation of our signal by a squared pulse, a relevant quantity for us is the
known as Phase Response Curve (PRC) which, according to [2] is characterized by

PRC = θ0 − θmod (3.5)

where θ0 is the phase without any modulation and θmod is the modulated one. However, in the
graphics shown in this section, we will call PRC to the quantity PRC/π.

The reason why the PRC is an important tool lies beneath the fact that these perturbations
can produce a delayed or an anticipated signal with respect to the one without any external input.
Therefore, depending on the sign of this magnitude, we can differ between a delay or an advance
of that signal.

3.1.1 Very low pulses (A << ω1)

All the numerical operations that appear in this section have been done employing Simpson’s rule
and, concretely for this part, we have considered a pulse of amplitude A = 0.1 rad·s−1, being the
natural frequency of the oscillator ω = π rad·s−1 so the period of the original signal will be T = 2.0
s. In the pictures shown in figure 1, the results corresponding to different durations for the pulses
are presented, where it can be seen that, while the perturbation is switched on, the affected signal
overtake the one which is unperturbed and, as the excitation is constant, it rises linearly with time.
The same behaviour as the one obtained for low pulses will be expected if we apply higher values
of that quantity, being the magnitude of the separation between signals the main difference.

3.1.2 Medium pulses (A ' ω)

By medium pulses, it is understood that the amplitude is quite similar to the natural frequency of
the oscillator. Nevertheless, for the representation shown in figure 2, we will work with A = π = ω.
As it was commented before, in those figures it can be seen that delays of a bigger magnitude than
the ones for low pulses are obtained. However, as we are working with A = π rad·s−1, if we stand
for time intervals ∆t = n · T with n ∈ Z, then, once the pulse is over, the phase of the perturbed
signal gets again in consonance with the unperturbed oscillation. In other cases in which A 6= ω
the same relationship is satisfied but then n is not necessarily always an integer number.

3.1.3 High pulses (A >> ω)

Finally, in this case, a pulse A = 15 rad·s−1 is applied being the results obtained shown in figure 3.
As it can be seen there, they verify what has been commented above. However, a little difference
appears here and is that while the pulse is switched on, sometimes the highest value of the peak
does not reach the phase θ = 2π and it decays at lower values. This fact is caused by the method
employed to perform the representations because we are obligating the phase to turn 0 when it
reaches a value higher than 2π and, for high pulses, this is obtained in a quicker way. This problem
can be solved if we decrease the interval between two consecutive times, but that implies an increase
in the computation time which, unfortunately, does not behave linearly.

If instead of applying an isolated pulse, a periodic pulse is applied, the same results as the
ones shown in these representations are expected. Nevertheless, the main difference will be in the
repetition of that perturbation along time. If we work with ∆t = n · T , n ∈ R, while the pulse is
not applied, the modified pulse will coincide with the unperturbed one as it happened before.
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(a) Phase Response Curve. (b) ∆t = 0.5 s.

(c) ∆t = 0.7 s. (d) ∆t = 1.1 s.

(e) ∆t = 2.0 s. (f) ∆t = 4.0 s.

Figure 1: Phase Response Curve and phase curve for each of the cases studied applying very low pulses.

3.2 Modulation by a sine function

According to expressions eq. (3.2) and eq. (3.4), the evolution of the phase of our oscillator is
governed by

θ̇1 = ω1 +A sin(ωet). (3.6)

Considering the initial phase of our oscillator to be zero (θ(0) = 0), something that can be done
either by waiting a suitable interval of time or by redefining the angles of the oscillation, the time
dependence of the phase of our oscillator is characterized by

θ1(t) = ωt+
A

ωe

[
1− cos(ωet)

]
(3.7)

In this section, we will study the behaviour of that oscillation when we vary adequately the
frequency and the modulation’s amplitude.
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(a) Phase Response Curve. (b) ∆t = 0.5 s.

(c) ∆t = 0.7 s. (d) ∆t = 1.1 s.

(e) ∆t = 2.0 s. (f) ∆t = 4.0 s.

Figure 2: Phase Response Curve and phase curve for each of the cases studied applying medium pulses (A = π = ω).

3.2.1 Very low modulated frequency (ω >> ωe)

To study this limit, the Taylor expansion of the cosine will be considered, neglecting second and
higher order terms in our expressions. Therefore, eq (3.7) is given by

θ1(t) ≈ ωt+O(ω2), (3.8)

where we see that the natural oscillation remains practically unperturbed or, in this way, we have
to wait a long enough time to see appreciable changes. A similar result is obtained if we are working
with very low amplitudes but in this case, even if we wait a long enough time, changes will not be
observed.

3.2.2 Medium modulated frequency (ω ' ωe)

In this case, the frequencies that will be used are ωe = 1.0, 2.0 rad·s−1 with amplitudes A = 5.0, 10.0
rad·s−1, being the results obtained presented on figure 4. In this image, we see how the perturbation
introduced modules the natural frequency of the oscillator: when the frequency increases, the
number of peaks which reaches the value θ1/π = 2.0 is lower due to the fact that a less number
of natural oscillations are contained inside one modulated peak. Likewise, for higher values of the
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(a) Phase Response Curve. (b) ∆t = 0.5 s.

(c) ∆t = 0.7 s. (d) ∆t = 1.1 s.

(e) ∆t = 2.0 s. (f) ∆t = 4.0 s.

Figure 3: Phase Response Curve and phase curve for each of the cases studied applying high pulses.

amplitude, the number of peaks also increase but also its amplitude because the change is more
sharply.

3.2.3 High modulated frequency (ω >> ωe)

In this last case, the amplitudes used are exactly the same as the ones used before but, now, the
frequency is ω = 15.0 rad·s−1. As the modulated oscillations occur very fast, during a natural
period1, peaks all along the natural oscillation will be obtained, as it can be seen in figure 5, and
the change that the amplitude introduces only affects the size of those peaks.

1The natural oscillation’s period.
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(a) Signal without modulation (in colour blue)
and the perturbation (in colour green and not
scaled) for ωe = 1.0 rad · s−1.

(b) Signal without modulation (in colour blue)
and the perturbation (in colour green and not
scaled) for ωe = 2.0 rad · s−1.

(c) A = 5.0 rad·s−1, ωe = 1.0 rad·s−1. (d) A = 5.0 rad·s−1, ωe = 2.0 rad·s−1.

(e) A = 10.0 rad·s−1 s, ωe = 1.0 rad·s−1. (f) A = 10.0 rad·s−1, ωe = 2.0 rad·s−1.

Figure 4: Results obtained for medium modulated frequency.
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(a) Signal without modulation (in colour blue) and the
perturbation (in colour green and not scaled) for ωe =
15.0 rad · s−1.

(b) A = 5.0 rad·s−1, ωe = 15.0 rad·s−1.

(c) A = 10.0 rad·s−1 s, ωe = 15.0 rad·s−1.

Figure 5: Results obtained for high modulated frequency.
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4 Master-slave configuration with a class 2 coupling

In this section, a specific kind of coupling between two oscillators is studied: the master-slave
configuration. As we see in figure 6, the two oscillators are coupled unidirectionally being the one
located at the right, also known as slave, perturbed in an excitatory way by the oscillator located
at the left, also known as master ([7]).

Figure 6: Master-slave configuration for a set of two oscillators.

For this set, according to eq. (2.1), the equations which describe the motion of the phase are

θ̇1 = ω1

θ̇2 = ω2 + κ sin(θ1 − θ2 − δ)
. (4.1)

Different configurations for this system will be studied according to the possible different values
of the parameters we have. We will start by considering the case in which ω1 = ω2 = ω in two
possible situations: allowing phase locking (θ̇12 = 0) and not allowing phase locking. Later, the
same study will be done for the case in which ω1 6= ω2 and finally we will add a certain sine
modulation to the master oscillator and see how the slave is affected because of it.

4.1 Equal natural frequencies (ω1 = ω2 = ω)

Under this assumption, eq. (4.1) takes the form

θ̇1 = ω

θ̇2 = ω + κ sin(θ1 − θ2 − δ)
, (4.2)

and the evolution of the phase difference is characterized then by

θ̇12 = −κ sin(θ1 − θ2 − δ). (4.3)

4.1.1 Phase locking

The reason why we are interested in the solutions for whom the phases are locked, lies on the fact
that, if a way in which the phase difference θ12 = θ1 − θ2 < 0 is found, that is, the phase of the
slave is ahead of master’s phase, anticipated synchronization takes place. Thereby, if this is a stable
solution, all initial phases located at the surroundings of that point will decay to it. In the case we
are analysing, it follows immediately from eq. (4.3) that

θ∗12 = δ (4.4)

where θ∗12 denotes the phase difference under phase locking condition. Here we see that it remains
constant and indeed is equal to the delay δ. However, depending on the sign of the delay δ,
anticipated synchronization takes place or not. Concretely, if δ < 0 this phenomenon occurs and,
otherwise, it will not.

4.1.2 Not imposing phase locking condition

By solving eq. (4.3), the behaviour of θ12 is obtained in the case we are not imposing phase locking
condition and is given by

θ12 = δ − 2 arctan
[
A exp(−κt)

]
. (4.5)

As it can be seen here, when t is long enough the phase difference remains constant, recovering
then the result for phase locking. Thereby, we have a certain time interval in which the slave
oscillator manages to follow the movement of the master oscillator and, by increasing the coupling
constant κ, we achieve the phase-locking regime where, if δ < 0 the slave anticipates the master and
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if δ > 0, the other possible case is obtained. In figure 7 we show numerical simulations of eq. (4.2)
for different values of κ and δ but employing the same initial conditions for both oscillators which
are θ1(0) = 0 and θ2(0) = π. Also, in figure 8, the slave oscillator’s adaptation regime is shown
more explicitly, where we have only changed the initial conditions, having now θ2(0) = π/2.

(a) κ = 5.0 s−1, δ = π/2 (b) κ = 20.0 s−1, δ = π/2

(c) κ = 5.0 s−1, δ = −π/2 (d) κ = 20.0 s−1, δ = −π/2

Figure 7: Numerical simulations of eq. (4.2) for different values of κ and δ. The initial conditions for both oscillators
are θ1(0) = 0 and θ2(0) = π.

(a) κ = 20.0 s−1, δ = π/2 (b) κ = 20.0 s−1, δ = −π/2

Figure 8: Numerical simulations of eq. (4.2) for different values of δ. The initial conditions for both oscillators are
θ1(0) = 0 and θ2(0) = π/2.

4.2 Different natural oscillations (ω1 6= ω2)

Unlike the case shown before, now both oscillators do not have the same natural frequency. There-
fore, we will expect a dependence with these quantities in the study of anticipation phenomenons,
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being the procedure in which this is analysed the same as the case for same frequencies.

4.2.1 Phase locking

The time evolution of the phase difference between the oscillators, according to eq. (4.2) which
represents this general case, is characterized by

θ̇12 = ∆ω − κ sin(θ12 − δ) (4.6)

where ∆ω = ω1 − ω2. Under phase locking condition, that phase difference is given by

θ∗12 = δ + arcsin
(∆ω

κ

)
, (4.7)

being the condition for this to be valid |∆ω| ≤ |κ|. Here we see that the final value of the phase
difference depends on the natural frequencies of the oscillators, as it was commented above, and
if we want to obtain an anticipated synchronization by fixing the values of κ and δ in such a way
that κ > 0 and 0 < δ < π, then the following condition must be satisfied

∆ω < −k sin δ, (4.8)

that is, anticipated synchronization will only occur if ω2 > ω1 +κ sin δ as it can be shown on figure
9 where we took κ = 5.0 s−1, ω1 = 3.0 rad· s−1 and δ = π/2.

Figure 9: Representation of the phase difference considering phase locking condition for different values of ∆ω. The
horizontal dashed line corresponds to ∆ω = −k sin δ.

4.2.2 Not imposing phase locking condition

If we are not considering the phase locking condition, then it is necessary to solve eq. (4.3) which
leads to the following expression∫

dθ12
∆ω/κ− sin(θ12 − δ)

= κt+A. (4.9)

We are interested in solving the first part of the equality but it depends on the possible cases we
shall study. In this section, we will assume that κ > 0 and ∆ω can take either positive or negative
values. To evaluate this integral, we will focus on the case in which ∆ω < 0 and the results obtained
will be applied to the another possibility (∆ω > 0). Also, to simplify later expressions, we will
denote c to the quantity ∆ω/κ2 and x = θ12 − δ, in such a way that the integral that shall be
evaluated is

I = −
∫

dx

c+ sinx
. (4.10)

By performing the change z = tan(x/2), eq. (4.10) takes the form

I = −2

∫
dz

cz2 + 2z + c
= −2

∫
dz

(
√
cz + 1/

√
c)2 + (c2 − 1)/c

. (4.11)

Reached this point, we have to distinguish between three different cases: c = 1, c > 1 and c < 1.

2Later in this text, we will change that definition conveniently.
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Case c = 1 In this case, we are under the situation in which ∆ω = κ so the integral shown in
eq. (4.11) turns into

I = −2

∫
dz

(z + 1)2
=

2

tan(x/2) + 1
, (4.12)

which substituted into eq. (4.9) leads to

2

tan(x/2) + 1
= κt+A→ x = 2 arctan

( 2

κt+A
− 1
)

(4.13)

and with the definition previously given for x,

θ12 = δ + 2 arctan
( 2

κt+A
− 1
)
. (4.14)

Therefore, we see that by waiting long enough times, the phase difference between both oscil-
lators tends to θ12 = δ − π/2 so if we consider this system to be a set of two neurons in such way
that δ represents the time delay of the signal which travels one neuron to the other, we can obtain
anticipated, delayed or in-phase signals between them, as it is shown in figure 10.

(a) δ = π/4. (b) δ = π/2.

(c) δ = π.

Figure 10: Anticipated, in-phase and delayed signals in the second oscillator respectively, obtained employing numerical
methods. The calculus has been done with κ = 2.0 s−1, ω1 = 3.0 rad·s−1 and ω2 = 5.0 rad·s−1.

It can be proved easily from the expressions obtained before that, working with ∆ω > 0 and
κ > 0, leads at long times to θ12 = δ + π/2.

Case c < 1 In this case we are in the situation in which ∆ω < κ so the integral shown in
eq. (4.10) turns into

I = − 2c

1− c2

∫
dz

[(cz + 1)/
√

1− c2]2 − 1
=

=
1√

1− c2
ln

∣∣∣∣cz + 1 +
√

1− c2

cz + 1−
√

1− c2

∣∣∣∣ ,

(4.15)
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which substituted into eq. (4.9) leads to

1√
1− c2

ln

∣∣∣∣cz + 1 +
√

1− c2

cz + 1−
√

1− c2

∣∣∣∣ = κt+A. (4.16)

From here, we can see that the phase difference is given by

θ12 = δ + 2 arctan

(
(1−

√
1− c2) exp

(
(κt+A)

√
1− c2

)
− 1−

√
1− c2

c(1− exp
(
(κt+A)

√
1− c2

)
)

)
. (4.17)

Considering very long times, eq. (4.17) can be written as follows

θ12 = δ − 2 arctan

(
1−
√

1− c2
c

)
. (4.18)

If c→ 1, the result studied in the case before is obtained. However, if we consider c to be a very
small quantity, then the phase difference is θ12 = δ, recovering the result obtained for ω1 = ω2 = ω
but in this case, those two frequencies do not have to be equal one to the other if the coupling
constant κ is long enough. Thereby, if δ > 0, the master is ahead the slave and if δ < 0, the other
way round takes place, as we can see on figure 11 where the numerical simulations have been done
with the values ω1 = 3.0 rad·s−1, ω2 = 7.0 rad·s−1 and κ = 100.0 rad·s−1.

(a) δ = π/2. (b) δ = 0.

(c) δ = −π/2.

Figure 11: Delayed, in-phase and anticipated signals in the second oscillator respectively, obtained employing numerical
methods. The calculus has been done with κ = 100.0 rad·s−1, ω1 = 3.0 rad·s−1 and ω2 = 7.0 rad·s−1.

Case c > 1 In this case we are in the situation in which ∆ω > κ so the integral shown in
eq. (4.10) turns into

I = − 2c

c2 − 1

∫
dz

1 + [(cz + 1)/
√
c2 − 1]2

=

= − 2√
c2 − 1

arctan

(
cz + 1√
c2 − 1

)
,

(4.19)
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which substituted into eq. (4.9) leads to

− 2√
c2 − 1

arctan

(
cz + 1√
c2 − 1

)
= κt+A. (4.20)

From here, it can be seen that the phase difference between the oscillators is given by

θ12 = δ − 2 arctan

(
1 +
√
c2 − 1 tan[

√
c2 − 1(κt+A)/2]

c

)
, (4.21)

and, as expected, when c → 1 then θ12 = δ − π/2. On the other hand, as the time dependence is
inside a tan(x) function, it will be oscillating continuously in the interval (−∞,∞) and, for so, the
phase difference will be changing throughout the system’s evolution, as it can be seen on figure 12.

Figure 12: Representation of the case in which c > 1. The numerical simulation has been done with ω1 = 2.0 rad·s−1,
ω2 = 4.0 rad·s−1 and κ = 1.0 rad·s−1.

5 Two mutually coupled oscillators with a class 2 coupling

In this section, a configuration of two mutually coupled oscillators will be studied, that is, a system
as the one shown in figure 13. We shall consider different cases depending on the kind of coupling
we have: excitatory (κ > 0) or inhibitory (κ < 0).

Figure 13: Mutually general coupled oscillator scheme.

The system of equations that govern this configuration is given by

θ̇1 = ω1 + κ′ sin(θ2 − θ1 − δ)
θ̇2 = ω2 + κ sin(θ1 − θ2 − δ)

. (5.1)

Different cases will be studied now depending on the oscillator’s natural frequencies and the
coupling constants between the oscillators.
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5.1 Excitatory junction with same coupling constants and same natural
frequencies

Under this situation in which κ = κ′ and ω1 = ω2 = ω, eq. (5.1) takes the following form

θ̇1 = ω − κ sin(θ12 + δ)

θ̇2 = ω + κ sin(θ12 − δ)
. (5.2)

From here, it can be seen easily that the phase difference between oscillators is characterized by

θ̇12 = −2κ cos δ sin θ12, (5.3)

which can also be written as follows∫
dθ12

sin θ12
= −2κt cos δ +A. (5.4)

The integral that appears in the first term of the equation can be solved performing the change
of variable z = tan θ12/2, obtaining for the resultant differential equation

ln
[

tan(θ12/2)
]

= −2κt cos δ +A⇒ θ12 = 2 arctan(exp{−2κt cos δ +A}). (5.5)

Reached this point, we will analyse what happens at long enough times but, for so, we have to
distinguish between different situations.

cos δ > 0 In this case, the exponential is negative so at very long times it tends to zero, having
then θ12 = 0. As initially both oscillators has the same natural frequency and the phase is locked,
at t→∞ that magnitude will be

θ̇1 = θ̇2 = ω − κ sin δ. (5.6)

The cosine function will be positive if −π/2 < δ < π/2 but depending on which interval is
located, the oscillator’s frequencies will be higher or lower than its initial value. Concretely, it will
be satisfied that

• if 0 < δ < π/2 then θ̇1 = θ̇2 < ω;

• if −π/2 < δ < 0 then θ̇1 = θ̇2 > ω,

as it is stated by the numerical simulations, whose results are shown in figure 14.

(a) δ = π/6. (b) δ = −π/6.

Figure 14: Results obtained with the numerical simulations for values of δ located at the interval [−π/2, π/2].

cos δ < 0 In this case, the exponential is positive so at very long times it tends to infinite, having
then θ12 = π3. Also, the oscillators frequencies at this regime are equal one to the other taking the
following value

θ̇1 = θ̇2 = ω + κ sin δ. (5.7)

The cosine function will be negative if π/2 < 0 < −π/2 but depending on which concrete
interval, the oscillators frequencies will be higher or lower than its initial value. Actually

3Note that the negative value is not allowed because the x of the arctanx function is positive.
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• if π/2 < δ < π then θ̇1 = θ̇2 > ω;

• if π < δ < −π/2 then θ̇1 = θ̇2 < ω,

as stated in the numerical simulations shown in figure 15.

(a) δ = 3π/4. (b) δ = −3π/4.

Figure 15: Results obtained with the numerical simulations for values of δ located at the interval [π/2,−π/2].

Notice that the case in which cos δ = 0 is not interesting at all because, from eq. (6.3) we
see that θ̇12 = 0, being the phase difference between the oscillators given by the problem’s initial
conditions.

5.2 Inhibitory junction with same coupling constants and same natural
frequencies

This case is quite similar to the one studied before where the main difference lies in the fact that
κ = κ′ < 0. Thereby, eq. (5.1) takes the following form

θ̇1 = ω + κ sin(θ12 + δ)

θ̇2 = ω − κ sin(θ12 − δ)
, (5.8)

From here it can be seen easily that the phase difference between oscillators is characterized by

θ̇12 = 2κ cos δ sin θ12, (5.9)

which can also be written as follows∫
dθ12

sin θ12
= 2κt cos δ +A, (5.10)

and according to what we have commented before, that differential equation leads to the following
relationship for θ12

θ12 = 2 arctan(exp{2κt cos δ +A}). (5.11)

Again, to analyse what happens at long enough times, we need to distinguish between different
situations.

cos δ > 0 In this case, the exponential is positive so at very long times it tends to infinite, having
then θ12 = π. Thereby, the oscillator’s frequencies are characterized by eq. (5.6) and as the cosine
function will be positive if −π/2 < δ < π/2, therefore we will have different values depending on
the interval we are working with. Actually

• if 0 < δ < π/2 then θ̇1 = θ̇2 < ω;

• if −π/2 < δ < 0 then θ̇1 = θ̇2 > ω,

as stated by the numerical simulations, whose results are shown in figure 16.
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(a) δ = π/6. (b) δ = −π/6.

Figure 16: Results obtained with the numerical simulations for values of δ located at the interval [−π/2, π/2].

cos δ < 0 In this case, the exponential is negative so at very long times it tends to zero, having
then θ12 = 0. Thereby, the oscillator’s frequencies are characterized by eq. (5.7) and as the cosine
function will be negative if π/2 < δ < π/2, therefore we will have different values depending on the
interval we are working with. Concretely

• if π/2 < δ < π then θ̇1 = θ̇2 > ω;

• if π < δ < −π/2 then θ̇1 = θ̇2 < ω,

as stated in the numerical simulations whose results are shown in figure 17.

(a) δ = 3π/4. (b) δ = −3π/4.

Figure 17: Results obtained with the numerical simulations for values of δ located at the interval [π/2,−π/2].

Discussion From these cases we have just analysed, it can be seen that the delay δ still plays
a fundamental role as it is the parameter that lets having the possible different kind of signals:
in-phase or anticipated.

5.3 Excitatory junction with same coupling constants but different nat-
ural frequencies

Under this assumption in which κ = κ′ > 0 and ω1 6= ω2, eq. (5.1) can be written as follows

θ̇1 = ω1 − κ sin(θ12 + δ)

θ̇2 = ω2 + κ sin(θ12 − δ)
. (5.12)

Therefore, the phase difference between oscillators is characterized by

θ̇12 = ∆ω − 2κ cos δ sin θ12, (5.13)
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with ∆ω = ω1 − ω2. This expression can also be written as∫
dθ12

c− sin θ12
= 2κt cos δ +A (5.14)

where c = ∆ω/2κ cos δ. We are interested in the case ∆ω < 0 so we have to talk again two possible
situations: cos δ > 0 and cos δ < 0.

5.3.1 Delay signal contained in [−π/2, π/2]

This assumptions implies that the constant c defined above is negative so eq. (5.14) can be also
written as

−
∫

dθ12
c+ sin θ12

= 2κt cos δ +A. (5.15)

Nevertheless, the integral that appears in this last equation is quiet similar to the one shown in
eq. (4.10) so the different cases we must study now are exactly the same ones that appear there.

Case c = 1 In this case, the phase difference between oscillators is characterized by

θ12 = 2 arctan

(
2

2κt cos δ +A
− 1

)
, (5.16)

and at very long times we find that θ12 = −π/2, that is, a phase locked situation is reached.
Therefore, in spite of the fact that the initial oscillator’s natural frequencies are different, at long
enough times they reach equal values, having then

θ̇1 = ω1 + κ cos δ

θ̇2 = ω2 − κ cos δ
. (5.17)

In the simulation shown in figure 18, we have chosen the values ω1 = 3.0 rad·s−1, ω2 = 5.0
rad·s−1, δ = π/3, κ = 2.0 rad·s−1. Thereby, θ̇1 = θ̇2 = 4.0 rad·s−1.

Figure 18: Results obtained with the numerical simulations for the case in which cos δ > 0 and with ω1 = 3.0 rad·s−1,
ω2 = 5.0 rad·s−1, δ = π/3, κ = 2.0 rad·s−1.

Case c < 1 In this case, the phase difference between oscillators is characterized by

θ12 = 2 arctan

(
(1−

√
1− c2) exp

[√
1− c2(2κt cos δ +A)

]
− 1−

√
1− c2

c
(
1− exp

[√
1− c2(2κt cos δ +A)

]) )
(5.18)

and for long enough times

θ12 = −2 arctan

(
1−
√

1− c2
c

)
. (5.19)

Notice that if c → 1, then θ12 → −π/2 which is the result obtained for the case c = 1,
as expected. Note also that we will always obtain in this case a delayed signal because both,
numerator and denominator of the fraction, are positive quantities, i.e., the phases associated will
be located at the fourth quadrant. As an example, in figure 19, numerical simulations have been
done for ω1 = 3.0 rad·s−1, ω2 = 4.0 rad·s−1, κ = 2.0 rad·s−1 and for δ = π/3, π/6.
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(a) δ = π/3. (b) δ = π/6.

Figure 19: Numerical simulation for the case in which c < 1. Notice that, as commented, the phase difference is always
negative having then a phase delay.

Case c > 1 In this case, the phase difference between oscillators is characterized by

θ12 = −2 arctan

(
1 +
√
c2 − 1 tan

(√
c2 − 1(κt cos δ +A)

)
c

)
. (5.20)

Here we see that the time dependence inside the tangent function is linear which implies that the
argument of the arctanx will be always oscillating between positive and negative values. Therefore,
the phase difference will be continuously fluctuating.

5.3.2 Delay signal contained in [π/2,−π/2]

Here, the constant c is positive because cos δ < 0. Thereby, eq. (5.14) can be also written as∫
dθ12

c− sin θ12
= −2κt cos δ +A. (5.21)

Notice that the negative sign of cos δ has been taken out explicitly. Also, the integral that
appears is quite similar to the one analysed before and, again, we have to distinguish between all
the different possible cases.

Case c = 1 In this case, the phase difference is given by

θ12 = 2 arctan

(
1 +

2

2κt cos δ +A

)
, (5.22)

and at very long times we find that θ12, i.e, a phase locked situation in which the second oscillator is
delayed with respect to the first one. Hence, the frequencies for both of them are characterized by
eq. (5.17) and are shown in figure 20 where the same constants have been used but with δ = 2π/3.

Case c < 1 In this case, the phase difference between oscillators is given by

θ12 = 2 arctan

(
(1 +

√
1− c2) exp

[√
1− c2(2κt cos δ +A)

]
− 1 +

√
1− c2

c
(

exp
[√

1− c2(2κt cos δ +A)
]
− 1
) )

, (5.23)

and for long enough times

θ12 = 2 arctan

(
1 +
√

1− c2
c

)
. (5.24)

Taking the limit in which c→ 1, we recover the value obtained in the case c = 1, i.e., θ12 → π/2.
Notice also that, in opposition to the case studied before, we always obtain an anticipated signal as
the phase obtained is located always at the first quadrant. As an example, in figure 21, numerical
simulations have been done for ω1 = 3.0 rad·s−1, ω2 = 4.0 rad·s−1, κ = 2.0 rad·s−1 and for
δ = 4π/5, 3π/5.
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Figure 20: Results obtained with the numerical simulations for the case in which cos δ > 0 and with ω1 = 3.0 rad·s−1,
ω2 = 5.0 rad·s−1, δ = 2π/3, κ = 2.0 rad·s−1.

(a) δ = 3π/5. (b) δ = 4π/5.

Figure 21: Numerical simulation for the case in which c < 1. Notice that, as commented, the phase difference is always
negative having then a phase delay.

Case c > 1 In this case, the phase difference between oscillators is given by

θ12 = −2 arctan

(
1 +
√
c2 − 1 tan

(√
c2 − 1(−κt cos δ +A)

)
c

)
, (5.25)

where we can see that the phase will be continuously oscillating.

Discussion In all the cases we have studied along this section, delayed or anticipated signals
have been obtained, but a situation in which both oscillators are in phase does not appear. The
main reason for that lies on the eq. (5.13), which shall be interpreted as the equation for an
oscillator whose natural frequency is ∆ω and which is perturbed by a modulated function with
coupling constant 2κ cos δ that depends, somehow, in the own oscillation of the system. As this
perturbation is sinusoidal, it will never cancel the natural oscillation so θ12 6= 0. Nevertheless, if this
perturbation was a cosx function, then we should obtain a situation in which θ12 = 0, concretely
when the corresponding definition of the constant c takes the value 1.

5.4 Excitatory and inhibitory junctions with same coupling constants
and same natural frequencies

Under this situation in which κ > 0, κ′ < 0, κ = −κ′ and ω1 = ω2 = ω, eq. (5.1) takes the form

θ̇1 = ω + κ sin(θ12 + δ)

θ̇2 = ω + κ sin(θ12 − δ)
(5.26)
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From here, it can be seen easily that the phase difference between oscillators is characterized by

θ̇12 = 2κ sin δ cos θ12, (5.27)

by applying trigonometric relationships. Therefore, once solved this differential equation, it can be
seen that the following expression is obtained

sin θ12 + 1

cos θ12
= exp(2κt sin δ +A). (5.28)

Reached this point, we can differ between two situations: 0 < δ < π or −π < δ < 0. For the
first one, the exponential will be positive so for long enough times we obtain θ12 → π/2, that is,
the slave is delayed with respect to the master. Nevertheless, for the second situation we will have
a negative exponential which leads to θ12 → −π/2 being the slave ahead of the master.

Indeed, these results obtained analytically coincide with the numerical simulations (figure 22)
where we have chosen ω1 = ω2 = π rad·s−1 and κ = −κ′ = 1.0 rad·s−1.

(a) δ = π/8. (b) δ = −π/8.

Figure 22: Numerical simulations for mutually coupled oscillators under the conditions ω1 = ω2 and κ = −κ′. This
results correspond to the time interval [90, 100] s.

5.5 Excitatory and inhibitory junctions with same coupling constants
and different natural frequencies

In the analysis that will be performed in this subsection, ∆ω will always be negative. However, it
is necessary to distinguish between the situations in which 0 < δ < π and −π < δ < 0.

5.5.1 Positive delay of the signal

Now, the only difference with respect to eq. (5.26) is that ω1 6= ω2 so the phase difference is given
by

θ̇12 = −∆ω + 2κ sin δ cos θ12, (5.29)

and this differential equation shall be written as∫
dθ12

c− cos θ12
= −2tκ sin δ +A, (5.30)

where we have defined c = ∆ω/2κ sin δ. As it happens on the cases shown before, depending on the
value of that constant, we can distinguish between different possibilities: c = 1, c < 1 and c > 1.
However, for all of them, the same change of variable is performed in the integral located at the
first term of eq. (5.30), z = tan(θ12/2), having then

I = 2

∫
dz

(c+ 1)z2 + (c− 1)
. (5.31)
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Case c =1 In this case, the integral that appears in eq. (5.31) reduces to

I =

∫
dz

z2
= −1

z
. (5.32)

Therefore, the phase difference is given by

θ12 = 2 arctan

(
1

2tκ sin δ +A

)
, (5.33)

and by waiting a long enough time, taking into account that the dividend is always positive, the
phase difference θ12 tends to 0, as it is shown in figure 23 where we have taken ω1 = 2.0 rad·s−1,
ω2 = 4.0 rad·s−1, κ = −κ′ = 1.0 rad·s−1 and δ = π/2.

(a) t ∈ {0, 10} s (b) t ∈ {90, 100} s

Figure 23: Representation for the case c = 1 where we see that, when t is very high the phase difference between the
oscillators is null. At the beginning of the dynamics, the first oscillator adapts its movement with the main objective to
reach the situation shown at the right.

Case c < 1 In this case, the integral that appears in eq. (5.31) takes the form

I =
−1

1− c

[ ∫
dz√

(c+ 1)/(1− c)z + 1
−
∫

dz√
(c+ 1)/(1− c)z − 1

]
(5.34)

and, introducing it in eq. (5.30), we obtain that the phase difference is

θ12 = 2 arctan

(√
1− c
c+ 1

·
exp
{√

1− c2(2tκ sin δ +A)
}

+ 1

exp
{√

1− c2(2tκ sin δ +A)
}
− 1

)
. (5.35)

Nevertheless, for long enough times, this last relationship turns into

θ12 = 2 arctan

(√
1− c
c+ 1

)
. (5.36)

Choosing δ = π/2, ∆ω = 2.0 rad·s−1 and κ = −κ′ = 2.0 rad·s−1, then, theorically, θ12 = π/3,
which coincide with the numerical value shown in figure 24.

Case c > 1 Finally, in this case we find that the integral of eq. (5.31) can be written as follows

I =
2

c− 1

∫
dz

[
√

(c+ 1)/(c− 1)z]2 + 1
=

2√
c2 − 1

arctan

(√
c+ 1

c− 1
z

)
(5.37)

so the phase difference will be given by

θ12 = 2 arctan

(√
c− 1

c+ 1
tan
(√

c2 − 1[κt sin δ +A]
))

. (5.38)
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(a) t ∈ {0, 10} s (b) t ∈ {90, 100} s

Figure 24: Representation for the case c < 1 where we see that, when t is very high and for certain values of ∆ω, δ
and κ, the phase difference between the oscillators is π/3.

Under this conditions, something very interesting happens because, as t is continuously varying,
taking positive and negative values, the phase difference will be changing all along the time evolution
of the system but periodically since tanx is a periodic function. In fact, by choosing the parameters
∆ω = 4.0 rad·s−1, κ = −κ′ = 1.0 rad·s−1 and δ = π/2, the situation described above is obtained
by the numerical simulations (see figure 25).

(a) t ∈ {0, 10} s (b) t ∈ {90, 100} s

Figure 25: Representation for the case c > 1 where we see that, the phase difference between both oscillators is
continuously varying periodically.

Discussion The common factor of all the cases we have studied in this subsection, is that
the signal of the second oscillator is either in phase (first case) or delayed (second case). The last
case can be considered as the chaotic one as the phase difference is continuously changing but
periodically.

However, in order to give an interpretation to this results, let us focus on eq. (5.5), which tells
us that our system can be understood as a single oscillator whose natural frequency is ∆ω and
that is perturbed by an external signal of amplitude 2κ sin δ which, somehow, is coupled to the
oscillator’s oscillation. Then, when we are in the case in which c = 1, this signal has the same
amplitude as the natural oscillation, but the main difference is that one is positive and the other
one is negative, which cancels out giving a zero different phase. In the following case, c < 1, the
external oscillation is bigger than the natural frequency so it can null it completely but when that
oscillation is zero, the frequency rises quickly because of the natural oscillation, leading to a certain
phase difference. Finally, in the case c > 1, the natural frequency is bigger than the amplitude
so this last one cannot cancel it at all, having then different phases differences at different times.
However, as the perturbation is a periodic function, then the changes on the phase will also be
periodic.
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5.5.2 Negative delay of the signal

In this other case, the phase difference takes the following form

θ̇12 = −∆ω − 2κ sin δ cos θ12, (5.39)

which can be written as follows ∫
dθ12

c+ cos θ12
= −2tκ sin δ +A. (5.40)

Reached this point we are on disposal of analysing the different situations shown on the previous
subsection. For so, the change of variable that we will perform over the integral located at the first
member is z = tan(θ12/2), having in this case

I = 2

∫
dz

(c− 1)z2 + (c+ 1)
. (5.41)

Case c = 1 The integral that appears in eq. (5.41) takes in this case the following form

I = 2

∫
dz

c+ 1
=

2z

c+ 1
, (5.42)

being the phase difference then

θ12 = 2 arctan
(
(c+ 1)[−κt sin δ +A]

)
. (5.43)

From here, we see that, for long enough times, θ12 → −π, and unlike the case studied above,
the phase of the oscillations are in anti-phase. Indeed, this can be seen in figure 26 where ω1 = 2.0
rad·s−1, ω2 = 4.0 rad·s−1, κ = −κ = 1.0 rad·s−1 and δ = −π/2.

(a) t ∈ {0, 10} s (b) t ∈ {90, 100} s

Figure 26: Representation for the case c = 1 where we see that, when t is very high, the phase difference between the
oscillators is π.

Case c < 1 In this case, the integral shown in eq. (5.41) can be written as

I = − 2

c+ 1

∫
dz[√

(1− c)/(c+ 1)z
]2 − 1

=

=
1

c+ 1
ln

∣∣∣∣√1− cz +
√
c+ 1√

1− cz −
√
c+ 1

∣∣∣∣
(5.44)

which leads to the following phase difference

θ12 = 2 arctan

(√
c+ 1

c− 1

exp
[
(c+ 1)(−κt sin δ +A)

]
− 1

exp
[
(c+ 1)(−κt sin δ +A)

]
+ 1

)
. (5.45)
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For long enough times, this last equation leads to the following relationship, which is quite
similar to eq. (5.36),

θ12 = 2 arctan

(√
c+ 1

1− c

)
(5.46)

and employing the same parameters used in that case, we obtain that the phase difference between
those two oscillators tend to −2π/3, result which coincides with the numerical simulations shown
in figure 27.

(a) t ∈ {0, 10} s (b) t ∈ {90, 100} s

Figure 27: Representation for the case c < 1 where we see that, when t is very high and for certain values of ∆ω, δ
and κ, the phase difference between the oscillators is −2π/3.

Case c > 1 Finally, in this last case, we find that eq. (5.41) can be written as

I =
2

c+ 1

∫
dz

(
[√

(c− 1)/(c+ 1)z
]2

+ 1
=

2

c+ 1
arctan

(√
c− 1

c+ 1
z

)
, (5.47)

being the phase difference

θ12 = 2 arctan

(√
c+ 1

c− 1
tan

[
(c+ 1)(−κt sin δ +A)

])
. (5.48)

As it happens in the correspondent case for positive values of δ, it is obtained that the phase
difference will be continuously and periodically varying as it is shown in figure 28.

(a) t ∈ {0, 10} s (b) t ∈ {90, 100} s

Figure 28: Representation for the case c > 1 where we see that, the phase difference between both oscillators is
continuously varying periodically.
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Discussion Similarly to the case studied for positive values of the delay, the common factor of
all the cases studied is that the signal of the second oscillator is always ahead to the first oscillator’s
signal (except in the last case studied) and, indeed, the equation can be also considered to be an
isolated oscillator with a certain phase.

5.6 Excitatory and inhibitory junctions with different coupling constants
and natural frequencies

This is one of the most general cases we can consider and, indeed, it is not going to be solved
exactly as we have been doing until now. In fact, we will try to show that this system can be
reduced to the ones analysed before by studying a given simple example.

According to the situation which we are working with, eq. (5.1) shall be rewritten as

θ̇1 = ω1 + κ′ sin(θ12 + δ)

θ̇2 = ω2 + κ sin(θ12 − δ)
, (5.49)

and the phase difference between oscillators will be characterized by

θ̇12 = ∆ω + κ′ sin(θ12 + δ)− κ sin(θ12 − δ). (5.50)

However, if we want to predict the behaviour of this system under certain considerations, it
seems convenient to write this last expression in another way. Indeed, by using trigonometric
relationships, it can be demonstrated that

θ̇12 = −∆ω + κ1 sin θ12 + κ2 cos θ12, (5.51)

where κ1 = (κ′ − κ) cos δ, κ2 = (κ′ + κ) sin δ and we have assumed that ω2 > ω1. This result tell
us that our oscillator, whose natural frequency is ∆ω, is perturbed by two kind of couplings, one
which goes with the sine of θ12 and the other one goes with the cosine of that quantity. But in the
analysis performed all along this section, we have been dealing with this kind of disturbances and
from th corresponding results, we can induce the system’s behaviour.

For instance, suppose that κ2 = ∆ω and sin δ > 0. According to what we have commented
before (section 5.5.1), under these circumstances the term −∆ω + κ2 cos θ12 is null. Thereby,
eq. (5.51) will lead to

θ̇12 = κ1 sin θ12, (5.52)

and by choosing |κ′| < |κ|, in accordance to the results shown in figure 17, the phase difference
should be zero.

If we now take ω1 = 1.0 rad·s−1, ω2 = 4.0 rad·s−1, κ1 = −2.0 rad·s−1, κ2 = 4.0 rad·s−1 and
δ = π/2, employing numerical simulations, we obtain a result which is in concordance with what
we have predicted.

(a) t ∈ {0, 10} s (b) t ∈ {90, 100} s

Figure 29: Representation for the case in which ∆ω = κ1 whose behaviour was predicted previously. The parameters
employed for this purpose are ω1 = 1.0 rad·s−1, ω2 = 4.0 rad·s−1, κ1 = −2.0 rad·s−1, κ2 = 4.0 rad·s−1 and δ = π/2.
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Discussion With this simple example what we are trying to show is that one of the most
general cases for this set of oscillators can be reduced to the analysis of an unique oscillator. Also,
the effect of those perturbations over that oscillator correspond to analytically solvable cases that
have been studied all along this last section.

6 Master-slave configuration with a class 1 coupling

Until now, we have been working with the Kuramoto model employing a coupling characterized
by a sine function which has a 2π period and that takes either positive and negative values. Now,
we want to work with another kind of coupling which has the same period but that takes only
positive values, and for so, a good choice seems the function sin2(x/2). Thereby, the equations that
characterize the master-slave configuration (eq. 4.1) will be rewritten as

θ̇1 = ω1

θ̇2 = ω2 +
κ

2

[
1− cos(θ1 − θ2 − δ)

] , (6.1)

where we have taken into account that

sin2(x) =
1− cos(2x)

2
. (6.2)

The procedure that we are going to follow in order to study this system with the new coupling
is exactly the same we have done previously with the class 2 coupling.

6.1 Equal natural frequencies (ω1 = ω2 = ω)

In this first case we are going to study, eq. (6.1) takes the form

θ̇1 = ω

θ̇2 = ω +
κ

2

[
1− cos(θ12 − δ)

] , (6.3)

being the phase difference between both oscillators

θ̇12 = −κ
2

[
1− cos(θ12 − δ)

]
. (6.4)

From this last relationship and assuming that we are under phase locking conditions, it can
be seen easily that θ∗12 = δ. On the other hand, if we are considering the general case, then the
differential equation presented above has to be solved. This one can be written as∫

dθ12
1− cos(θ12 − δ)

= − 2

κ
t+A, (6.5)

and solving the integral that appears in the first term, we get that the dependence of the phase
difference with the time variable is given by

θ12 = δ + 2 arctan

(
1

t/κ+A

)
. (6.6)

From here we see that for long enough times, θ12 tends to δ, as it predicts the phase locking
solution. Hence, independently on the initial conditions of the problem, that is, the initial phase
difference between oscillators, at the end of the day we will obtain θ12 = δ, which means that
the phase locked solution is stable. This analytical result has been checked with the numerical
simulations satisfactorily (see figure 30) where we have taken ω = π rad·s−1, κ = 1.0 rad·s−1 and
different values for δ. If this last quantity is positive, negative or zero, then anticipated, delayed
and in-phase synchronization will be obtained, respectively.

6.2 Different natural oscillations (ω1 6= ω2)

If the natural frequencies for both oscillators are different, then from eq. (6.1) we get that the phase
difference between them is given by

θ̇12 = ∆ω − κ

2

[
1− cos(θ12 − δ)

]
. (6.7)

In this case, it seems relevant to distinguish between the phase locked solutions and those ones
in which this condition is not applied, as we will have to distinguish what happens for different
values of a certain constant c = 2∆ω/κ.
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(a) δ = −π/2. (b) δ = 0.

(c) δ = π/2.

Figure 30: Numerical simulations for different values of δ and ω = π rad·s−1, κ = 1.0 rad·s−1. Anticipated, in-phase
and delayed signals are obtained, respectively.

6.2.1 Phase locking

Imposing phase locking condition to eq. (6.7), we obtain

θ∗12 = δ + arccos(1− c) (6.8)

where we have defined c = 2∆ω/κ. From this result we see that there are certain values of ∆ω
which are not allowed. Indeed the condition that c must satisfy is

|1− c| ≤ 1 (6.9)

being one of its implications that c cannot take negative values, that is, ω2 6> ω1. Another one, is
that c 6> 2, but this one shall be analysed later.

The reason why negatives values of c are not possible here while with the other coupling they
can be appear without any problem, lies on the fact that now the coupling only takes positive
values while in the other case negative values were also allowed. When the slave oscillator has a
bigger frequency than the master one, information in principle has to flow from the former to the
latter but the unidirectionality of the coupling do not allow this. In the first case analysed (section
4.1.2), the negative values of the sine were able to change the arrow’s sense (see figure 6) but now,
we only have positive values which does not allow information’s transmission from slave to master,
having then in those cases unstable solutions and, thus, no possibility of having synchronization
phenomenons.

6.2.2 Not imposing phase locking condition

According to what we have seen in the study of phase locking, only certain values of c will give
us phase locked solutions and they involve the case in which ω1 > ω2 but satisfying always the
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condition c < 2. We are going now to analyse deeply this situation and, for so, we must solve the
differential equation ∫

dθ12
(c− 1) + cos(θ12 − δ)

=
2

κ
t+A, (6.10)

so, in short, we have to examine the following integral

I =

∫
dx

(c− 1) + cosx
(6.11)

under different situations.

Case c = 1 In this case, the integral shown in eq. (6.11) gets reduced to

I =

∫
dx

cosx
, (6.12)

and it is solved by performing the change z = tan(x/2), having then

I = ln
∣∣∣z + 1

z − 1

∣∣∣ (6.13)

which substituted in eq. (6.10) leads to

θ12 = δ + 2 arctan

(
exp{2t/κ+A}+ 1

exp{2t/κ+A} − 1

)
. (6.14)

Here we see that, for long enough times, θ12 → δ + π/2 so depending on the values of δ, we
will have anticipated, in-phase and delayed synchronization. These results are in concordance with
the numerical simulations shown in figure 31 in which we have chosen ω1 = 3.0 rad·s−1, ω2 = 2.0
rad·s−1 and κ = 2.0 rad·s−1.

Case 1 < c < 2 In this case, the integral shown in eq. (6.11) takes the form

I = −
∫

dx

1− c− cosx
(6.15)

and, once solving it, we get

I =
1

2c− c2
ln
∣∣∣z√2− c+

√
c

z
√

2− c−
√
c

∣∣∣. (6.16)

Introducing this last result in the differential equation, we get that the phase difference is given
as follows

θ12 = δ + 2 arctan

(√
2− c√
c
· exp{

√
2c− c2(2t/κ+A)}+ 1

exp{
√

2c− c2(2t/κ+A)} − 1

)
(6.17)

and for long enough times

θ12 = δ + 2 arctan

(√
2− c√
c

)
. (6.18)

Again, in this case, depending on the values of c and δ, we can obtain anticipated, in-phase and
delayed signals.

Case c = 2 Finally, in this last case, the integral shown above takes the following form

I =

∫
dx

1 + cosx
= tan

(
θ12 − δ

2

)
, (6.19)

which substituted in the differential equation leads to the following phase difference

θ12 = δ + 2 arctan(t/κ+A). (6.20)

This result, as expected, coincides with the numerical simulations shown in figure 32 where we
took ω1 = 3.0 rad·s−1, ω2 = 2.0 rad·s−1, κ = 1.0 rad·s−1 and different values of δ. As we can see
there, anticipated and in-phase signals can de obtained, but not delayed.
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(a) δ = 0. (b) δ = −π/2.

(c) δ = −π.

Figure 31: Numerical simulations for different values of δ and ω1 = 3.0 rad·s−1, ω2 = 2.0 rad·s−1 and κ = 2.0 rad·s−1.
Anticipated, in-phase and delayed signals are obtained, respectively.

7 Two mutually coupled oscillators with a class 1 coupling

In this section we will implement the new coupling to the mutually coupled oscillators configuration
shown in figure 13. Thereby, the system of equations that governs it dynamic is given by

θ̇1 = ω1 +
κ′

2

[
1− cos(θ2 − θ1 − δ)

]
θ̇2 = ω2 +

κ

2

[
1− cos(θ1 − θ2 − δ)

]
.

(7.1)

As we did for the master-slave configuration, the same situations studied with the another
coupling will be analysed in this case. But before that, let us see something very interesting in this
case and is that, if δ = 0 and κ = κ′, then θ̇12 = ω1 − ω2. From here we see that only if ω1 = ω2

we will get a phase locked situation; otherwise, the phase will be continuously changing with time
and periodically.

7.1 Excitatory junction with same coupling constants and same natural
frequencies

According to what we have commented above, in this subsection we will consider that δ 6= 0 + 2nπ,
n ∈ Z. Likewise, eq. (7.1) takes the following form

θ̇1 = ω +
κ

2

[
1− cos(θ12 + δ)

]
θ̇2 = ω +

κ

2

[
1− cos(θ12 − δ)

] , (7.2)
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(a) δ = −π. (b) δ = π/2.

Figure 32: Numerical simulations for different values of ω1 = 3.0 rad·s−1, ω2 = 2.0 rad·s−1, κ = 1.0 rad·s−1. Anticipated
and in-phase signals are obtained, respectively.

being the phase difference between both oscillators

θ̇12 = κ sin δ sin θ12. (7.3)

From here, we can see immediately that the imposition of phase locking to our system leads to
θ∗12 = 0, π. Nevertheless, we are going to solve the differential equation shown above and see how
it decays to those values, proving then that those solutions are stable. Concretely, we have∫

dθ12
sin θ12

= κt sin δ +A. (7.4)

In fact, the integral that appears in the first term of that differential equation was solved in
section 5.1. So, recalling the corresponding result, it can be seen that the phase difference is
characterized by

θ12 = 2 arctan(exp{κt sin δ +A}), (7.5)

so for long enough times, θ12 → π if sin δ > 0, something that is true if δ ∈ (0, π), and θ12 → 0 if
sin δ < 0, which is valid if δ ∈ (−π, 0). Such results are in concordance with the numerical analysis
shown in figure 33 where we have taken ω = π rad·s−1, κ = 1.0 rad·s−1 and two different values of
δ: one positive and the other one negative.

(a) δ = −π/2. (b) δ = π/2.

Figure 33: Numerical simulations employing ω = π rad·s−1, κ = 1.0 rad·s−1 . In-phase and anti-phase signals are
obtained, respectively.
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As it happens with the class 2 coupling, the values of δ play an important role in the resultant
frequency of the interacting oscillators. Concretely, we obtain for long enough times

θ̇1 = θ̇2 = ω +
κ

2

[
1± cos δ

]
(7.6)

where the + solution corresponds to θ12 = π and the − one to θ12 = 0.

7.2 Inhibitory junction with same coupling constants and same natural
frequencies

Again, in this case, we will assume that δ 6= 0 + 2nπ with n ∈ Z. Also, under the circumstances
considered, the evolution of each oscillator’s phase is characterized by

θ̇1 = ω − κ

2

[
1− cos(θ12 + δ)

]
θ̇2 = ω − κ

2

[
1− cos(θ12 − δ)

] , (7.7)

being the phase difference between them

θ̇12 = −κ sin δ sin θ12. (7.8)

This relationship we have just obtained is quite similar to the one shown in eq. (7.3), being the
main difference in a minus sign. Therefore, proceeding in the same way as we did before, we find
that θ12(t) is given by

θ12 = 2 arctan(exp{κt sin δ +A}). (7.9)

Unlike the other case shown above, here for long enough times θ12 → π if sin δ < 0 and θ12 → 0
if sin δ > 0, as it can be seen in the numerical simulations (figure 34) where the same constants are
employed.

(a) δ = −π/2. (b) δ = π/2.

Figure 34: Numerical simulations employing ω = π rad·s−1, κ = 1.0 rad·s−1 . Anti-phase and in-phase signals are
obtained, respectively.

With respect to the new frequencies of each oscillator, they are equal and described by

θ̇1 = θ̇2 = ω − κ

2

[
1∓ cos δ

]
(7.10)

where the − solution corresponds to θ12 = 0 and the other one to θ12 = π.

7.3 Excitatory junction with same coupling constants but different nat-
ural frequencies

In this case, in principle, there are some values that δ cannot adopt if we want to obtain phase
locked solutions, and is δ = 0. Thereby, the equations that govern the evolution with time of the
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phases, assuming that κ > 0, are given by

θ̇1 = ω1 +
κ

2

[
1− cos(θ12 + δ)

]
θ̇2 = ω2 +

κ

2

[
1− cos(θ12 − δ)

] . (7.11)

Thereby, the time evolution of θ12 between oscillators is

θ̇12 = ∆ω + κ sin δ sin θ12, (7.12)

where it can be seen immediately that the phase locking conditions lead us to

θ∗12 = arcsin

(
− ∆ω

κ sin δ

)
. (7.13)

From this last expression, we see that only values of c ∈ [−1, 1] are allowed, understanding by
c the term ∆ω/κ sin δ. Thereby, frequencies higher than the effective coupling constant (κ sin δ)
will lead, as we have seen with the other coupling, to a phase difference that change periodically
with time. That is the reason why we are going to restrict ourselves to the cases in which c ≥ 1.
However, taking ∆ω < 0 we have to differ between the cases in which sin δ > 0 and sin δ < 0.

7.3.1 Delay contained in [0, π]

In this case we are under the conditions in which ∆ω < 0 and sin δ > 0. Thereby, the differential
equation shown in eq. (7.12) is written as follows∫

dθ12
c− sin θ12

= −κt sin δ +A. (7.14)

An expression quite similar to this one was analysed in section 5.3.2 so we will restrict ourselves
to present the results.

Case c = 1 In this case we find that the phase difference is given by

θ12 = 2 arctan

(
1 +

2

κt sin δ +A

)
(7.15)

in such a way that, for long enough times, θ12 → π/2 as it can be seen on figure 35.

(a) δ = π/6. (b) δ = π/2.

Figure 35: Numerical simulations using different values of δ in such a way that c = 1. The main difference between
these two graphics lies on the oscillation’s frequency.

Another interesting thing is that the possible values of δ have a very important role determining
the final frequency of the oscillators. Indeed, when the phase is locked, those frequencies tend to

θ̇1 = ω1 +
κ

2

[
1 + sin δ

]
θ̇2 = ω2 +

κ

2

[
1− sin δ

] (7.16)
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Case c < 1 In this case, it can be proved that the phase difference is given by

θ12 = 2 arctan

(
(1 +

√
1− c2) exp

[√
1− c2(κt sin δ +A)

]
− 1 +

√
1− c2

c
(

exp
[√

1− c2(κt sin δ +A)
]
− 1
) )

, (7.17)

having then for long enough times

θ12 = 2 arctan

(
1 +
√

1− c2
c

)
. (7.18)

With this result we can see that the phase differences obtained are constant but always positive.
Hence, we will not obtain under this circumstances an anticipated signal.

7.3.2 Delay contained in [−π, π]

Here we are under the conditions in which ∆ω < 0 and sin δ < 0, so the differential equation that
must be solved is

−
∫

dθ12
c+ sin θ12

= κt sin δ +A, (7.19)

where we have taken out the negative sign of the sinx function in such a way that sin δ > 0. Notice
also that this relationship has been analysed in section 5.3.1. Thus, in the following paragraphs,
we are going to present the results.

Case c = 1 In this case, the differential equation shown above leads to the following phase
difference

θ12 = 2 arctan

(
2

κt sin δ +A
− 1

)
, (7.20)

so at very long times θ12 → −π/2, as it can be seen with the numerical simulations shown in figure
36.

(a) δ = −π/6. (b) δ = −π/2.

Figure 36: Numerical simulations using different values of δ in such a way that c = 1. The main difference between
these two graphics lies on the oscillation’s frequency (notice that the number of oscillations in the same time interval is
different for each oscillator).

As it happened before, the values of δ determine the oscillator’s frequency. In fact, the resultant
expressions coincide with the ones shown in eq. (7.16).

Case c < 1 In this case, we can see that the phase difference is characterized by

θ12 = 2 arctan

(
(1−

√
1− c2) exp

[√
1− c2(κt cos δ +A)

]
− 1−

√
1− c2

c
(
1− exp

[√
1− c2(κt cos δ +A)

]) )
, (7.21)
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and for long enough times, we get

θ12 = −2 arctan

(
1−
√

1− c2
c

)
(7.22)

Unlike the other case, now the phase differences are always negative so delayed signals will be
obtained.

Discussion With the study performed in this subsection, we see that the results are quite
similar to the ones obtained with the class 2 coupling. The main difference is that, then, we were
dealing with a cosine function and now we have a sine function, being thus the corresponding
intervals for δ different.

7.4 Excitatory and inhibitory junctions with the same coupling con-
stants and same natural frequencies

In this subsection we are dealing with a situation in which κ > 0, κ′ < 0, satisfying both of them
that κ = −κ′ and ω1 = ω2 = ω. Hence, in this case, eq. (7.1) takes the following form

θ̇1 = ω − κ

2

[
1− cos(θ12 + δ)

]
θ̇2 = ω +

κ

2

[
1− cos(θ12 − δ)

]
,

(7.23)

and from here it can be easily seen that the phase difference between oscillators is given by

θ̇12 = −κ[1− cos θ12 cos δ]. (7.24)

Considering phase locking conditions in our system, we find

θ∗12 = arccos

(
1

cos δ

)
, (7.25)

something that contrast sharply with the results for class 2 coupling. In that case we saw that all
the values of δ were valid, but here only are possible two of them: δ = 0 or π. Otherwise, the
system will be unstable.

Instead of seeing how is the time evolution of the oscillators until that phase locked solution is
achieved, we shall focus this subsection in analysing the reason why this is obtained when we use
a class 1 coupling. For so, let us write more explicitly eq. (7.23)

θ̇1 = ω − κ

2

[
1− cos θ12 cos δ + sin θ12 sin δ

]
θ̇2 = ω +

κ

2

[
1− cos θ12 cos δ − sin θ12 sin δ

] . (7.26)

In this last expression we can identify to extreme cases: when θ12 = 0 (or π) and when θ12 = π/2
(or −π/2). For the former, we get

θ̇1 = ω − κ

2

[
1− cos θ12

]
θ̇2 = ω +

κ

2

[
1− cos θ12

] , (7.27)

and for the latter

θ̇1 = ω − κ

2

[
1 + sin θ12

]
θ̇2 = ω +

κ

2

[
1− sin θ12

] . (7.28)

Plotting the coupling terms shown in these expressions, we obtain figure 37 where we can see
something very interesting. In picture (a), it is stated that, as the master oscillator’s frequency
is increasing clockwise, the slave’s one is also doing it but anti-clockwise, that is, the oscillation
are equal in magnitude for all values of θ12, but in such a way that they have opposite senses.
Therefore, if we apply an inversion operation to one of the oscillators, we get the other one. But
indeed, if that symmetry operation is done also to the system structure (see figure 13), it remains
unperturbed.
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From all what we have just commented, it can be extracted that the problem’s symmetry force
its possible solutions to be antisymmetric in order to be stable. In fact, this statement contrasts
sharply with what we have on picture (b) where the solution has not inversion symmetry and,
thereby, those values of δ give unstable results.

However, this situation we have described here is not unique for class 1 couplings, in fact it
happens with the other ones but at the moment we described it, we did not analyse it. For instance,
if we take there δ = 0 or π, we get a sin θ12 in eq. (5.26) which leads to a situation very similar to
the one exposed in figure 37b.

(a) δ = 0. (b) δ = π/2.

Figure 37: Form of the coupling for each of the cases commented in the text.

7.5 Excitatory and inhibitory junctions with the same coupling con-
stants and different natural frequencies

In this subsection, we will deal with a situation quite similar to the one studied before but with a
fundamental change: ω1 6= ω2. Therefore, in this case, eq. (7.1) is given as follows

θ̇1 = ω1 −
κ

2

[
1− cos(θ12 + δ)

]
θ̇2 = ω2 +

κ

2

[
1− cos(θ12 − δ)

] , (7.29)

being the evolution of the phase difference with time

θ̇12 = ∆ω − κ[1− cos θ12 cos δ]. (7.30)

Assuming that we are under phase locking conditions, then we find that

θ∗12 = arccos

(
1− c
cos δ

)
. (7.31)

This result has very important differences with the situation studied on the previous subsection.
Here we see that the condition that must be satisfied in order to obtain phase locked solutions is∣∣∣1− c

cos δ

∣∣∣ ≤ 1, (7.32)

and taking into account that κ is a positive quantity, this last relationship implies that c cannot
be negative, i.e., ω1 6< ω2, even if δ = 0, π. In figure 38, the possible values of ∆ω which satisfy
eq. (7.32), for each value of δ, are plotted, where we have taken κ = 1.0 rad·s−1.

We want to understand the reason that allows this system of having ω1 > ω2 and a wide variety
of possible values for δ. Comparing the system that we are analysing now with the one studied
before, we see that it is not completely antisymmetric as the natural oscillating frequencies for each
oscillator are different. However, as they are continuously interacting, depending on the values of
∆ω and δ, the stable solutions will be those ones which lead to the most antisymmetric situation.
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Figure 38: Possible values of ∆ω that satisfy eq. (7.32), where we have taken κ = 1.0 rad·s−1. Because of the plot
template, it seems that for δ = π/2 and δ = 3π/2 there is a stable solution but this is not true.

A prove of this last statement is given by the fact that ω2 > ω1 situations are not found. This
does not happens with the class 2 coupling so it is due to the fact that this new coupling always
takes positive values and, therefore, recalling eq. (7.29), we see that, under the situation considered,
θ̇1 has as highest value ω1 while θ̇2 has ω2 +κ/2, being its lowest ω2−κ/2. From this results we see
that one of the oscillators is moving in a quicker way while the other does it slowly, so, in spite of
the fact that the movement takes place out-of-phase, they are not completely antisymmetric (see
figure 39).

On the other hand, from figure 38, we see that, studying the situation in which ω2 < ω1, the
values of δ which lead to the most antisymmetric situation is δ = nπ, with n ∈ N and as we move
towards to δ = (2n+ 1)π/2, less antisymmetric situations appears. As well, this antisymmetricity
is higher for ∆ω = 1.0 rad· s−1 (considering κ = 1.0 rad·s−1) which is something very logical since
the highest quantity that can be subtracted to the master oscillator, or well, extracted to the slave
one, is 2 (see eq. (7.29)). In the graphics shown in figure 40, we represent some oscillations for
different values of δ and ∆ω, considering in all the cases that κ = 1.0 rad·s−1.

Discussion With the situations we have studied in this two last subsections, we see that the
form of the coupling (excitatory and inhibitory junctions) play a very important role when the
coupling (class 1 coupling) takes only positive values. We have been analysing the situation of a
completely antisymmetric coupling (an excitatory and inhibitory junction with the same magnitude)
and we have seen that, depending on how that coupling is, it affects the oscillations in our system
in such a way that, in this case for instance, it obligates the system to adopt an antisymmetric
situation in order to have stable solutions in the problem. That is, the symmetricity of the coupling
determines how the oscillations in the system are. For example, in eq. (7.11), we can see that the
coupling is only excitatory and, therefore, the oscillations coming from that relationship will tend
to be symmetric.

7.6 Excitatory and inhibitory junctions with different coupling constants
but same natural frequencies

This situation was not analysed previously but now it seems interesting, according to the results
shown above. Previously, we imposed our system’s coupling to be completely antisymmetric (same
coupling constants where one of them was inhibitory and the other excitatory) with equal and
different natural frequencies. In this subsection, we will impose that ω1 = ω2 = ω but κ 6= −κ′.
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(a) ω2 = 3.0 rad·s−1, ω1 = 2.0 rad·s−1. (b) ω2 = 3.0 rad·s−1, ω1 = 1.0 rad·s−1.

Figure 39: Oscillations for positive values of ∆ω. In both cases we have taken δ = 0 and κ = 1.0 rad·s−1.

Therefore, eq. (7.1) adopts the following form

θ̇1 = ω − κ′

2

[
1− cos(θ2 − θ1 − δ)

]
θ̇2 = ω +

κ

2

[
1− cos(θ1 − θ2 − δ)

] , (7.33)

so the time evolution for the phase difference is given by

θ̇12 = −κ
′ + κ

2
+
κ′

2
cos(θ12 + δ) +

κ

2
cos(θ12 − δ), (7.34)

and by expanding the trigonometric functions that appear in this last expression under phase
locking conditions, we get the following result

κ+ κ′

2
=
κ+ κ′

2
cos δ cos θ∗12 +

κ− κ′

2
sin δ sin θ∗12. (7.35)

Taking a first look to this last expression, we can see that it is satisfied when δ = θ∗12 = 0 or
δ = θ∗12 = π. Indeed, this has been proved computationally for different values of the coupling
constants, and the numerical results corresponding to that situation are shown in figure 41, where
we have taken κ′ = −3.0 rad·s−1 and κ = 1.0 rad·s−1.

This results are quite similar to the ones shown in section 7.4 and, as we see, making the values
of ω1 and ω2 equal, lead always to a very restrictive situation. However, in this case is due to
the symmetricity imposed by the oscillations of our system as the constant couplings κ and κ′ are
different, not being the coupling antisymmetric as it happens with the other cases. Therefore, the
stable solutions for our system will be those ones that conserve the symmetricity imposed by the
natural oscillations of the system.

7.7 Excitatory and inhibitory junctions with different coupling constants
and natural frequencies

This is the most general case that can be studied and, as we can see, is completely antisymmetric
since the coupling constants and the natural frequencies are all different. Unlike the methodology
followed in section 5.6, where we showed an example in which that case was reduced as a sum of
the previous situations studied, here we will present the general equation and integrals that must
be solved. For so, from eq. (7.1) which describes the most general case that can be studied, we find
that the phase difference is given by

θ̇12 = ∆ω − κ+ κ′

2
+
κ′

2

[
cos θ12 cos δ − sin θ12 sin δ

]
+

+
κ

2

[
cos θ12 cos δ + sin θ12 sin δ

]
,

(7.36)
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(a) ∆ω = 1.0 rad·s−1, δ = 0. (b) ∆ω = 0.25 rad·s−1, δ = 0.

(c) ∆ω = 1.25 rad·s−1, δ = 0. (d) ∆ω = 1.0 rad·s−1, δ = π/4.

(e) ∆ω = 0.25 rad·s−1, δ = π/4 (unstable solution). (f) ∆ω = 1.25 rad·s−1, δ = π/4.

Figure 40: Oscillations for different values of ∆ω and δ. In all the cases we have taken κ = 1.0 rad·s−1. Notice that
one of the situations correspond to an unstable solution.
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(a) δ = θ∗12 = 0 (b) δ = θ∗12 = π

Figure 41: Numerical simulations for the situation analysed. Here, we have taken κ′ = −3.0 rad·s−1 and κ = 1.0
rad·s−1.

which can be written as
θ̇12 = ∆ω′ + κ1 sin θ12 + κ2 cos θ12, (7.37)

where we have defined ∆ω′ = ∆ω− (κ′ + κ)/2, κ1 = [(κ′ + κ) cos δ]/2 and κ2 = [(κ− κ′) sin θ12]/2.

That differential equation can be also written as follows∫
dθ12

∆ω + κ1 sin θ12 + κ2 cos θ12
= t+A. (7.38)

The integral that appears in the first term of the expression, can be reduced to a rational integral
with an order to polynomial by performing the change z = tan(θ12/2), having then

I = 2

∫
dz

(∆ω′ − κ2)z2 + 2κ1z + (κ2 + ∆ω)
. (7.39)

We have obtained the most general integral for an excitatory and inhibitory junction in a two
mutually coupled system and, if we want to study a certain case with given values of the constants
introduced before, it shall be done explicitly since here. However, depending on the value for the
constants, this integral does not need to be solved explicitly because the results obtained in the
previous subsections allow us to predict the oscillator’s behaviour, as we did in section 5.6.

8 Sinusoidal modulation in the master-slave configuration

In this section, we will consider once again the master-slave configuration shown in figure 6, but in
this case a sinusoidal modulation will be added to the master oscillator. Nevertheless, we are not
going to distinguish between a class 1 and a class 2 couplings, in fact we will treat them together
because we shall study the limits in which their behaviour approximates to the one they should
have if any modulation is applied.

The equations that describe the situation which we are going to analyse, are similar to the ones
used in eq. (4.1) as it can be seen in the following expressions

θ̇1 = ω1 +Am sin(ωet)

θ̇2 = ω2 + κf(θ1 − θ2 − δ)
, (8.1)

where Am is the amplitude of the sinusoidal oscillation4 and ωe is the correspondent frequency.
Instead of obtaining now the phase difference between oscillators as we have been doing along this
dissertation, we are going to solve the differential equation corresponding to the master oscillator,
having then

θ1 = ω1t−
Am
ωe

cosωet+A. (8.2)

From here we can extract different cases:

4Do not get confused with the notation we have being using for the integration constant A.
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• If the ratio A/ωe is small enough, then the solution for this case will tend to the one without
oscillation. In fact, this is the behaviour coming from the numerical simulations shown in
figure 42, where we have considered a class 2 coupling with ω1 = ω2 = π rad·s−1, κ = 1.0
rad·s−1, Am = 0.01 rad·s−1 and ωe = 10.0 rad·s−1. Note that the result coincides exactly
with the one obtained in section 4.2, as commented.

• If ωe is a very small quantity, then for short times we can perform the Taylor expansion of
eq. (8.2), having then

θ1 = (ω1 +Am)t. (8.3)

From this result it can be seen, for instance, that if ω1 = ω2 and Am has their order of
magnitude, then when t is not long enough we should recover the results corresponding to
that case, i.e., a phase-locked situation where the phase difference is characterized by θ12 = δ
and the oscillation frequency is given by ω1 +Am. Nevertheless, when t reaches a value whose
order of magnitude is similar to ωe, then we will expect the phase difference to be continuously
changing.

The numerical simulations corresponding to this case are shown in figure 43, where we have
taken ω1 = ω2 = π rad·s−1, κ = 1.0 rad·s−1, Am = π rad·s−1 and ωe = 0.001 rad·s−1. Notice
that for short times, the oscillation’s period is 4.0 s and not 2.0 s as it was predicted by
eq. (8.3). Nevertheless, for high values of t, this result does not hold because t has the same
order magnitude as ωe in such a way that the Taylor expansion approximation of the cosine
function is not valid anymore. Thereby, we reach a situation where the phase difference does
not remain constant.

• If Am has the same order of magnitude than the natural frequencies and ωe is bigger than
those quantities, then the oscillation takes place in a very quicker way, remaining the phase
difference unperturbed with respect to the case without oscillation.

(a) δ = −π/2, t ∈ {0, 10} s (b) δ = −π/2, t ∈ {990, 1000} s

Figure 42: Numerical simulations for the case in which A/ωe is a very small quantity. In order to obtain these results,
we have considered a class 2 coupling with ω1 = ω2 = π rad·s−1, κ = 1.0 rad·s−1, Am = 0.01 rad·s−1 and ωe = 10.0
rad·s−1.

9 Two mutually coupled oscillators with the same natural
frequencies and same constant couplings

In this section, we are going to consider again the situation shown in figure 13 when the natural
frequency for both oscillators take the same value like its coupling constants. However, we will
treat only the case of a class 2 coupling because the results obtained could be extended to a class
1 coupling. Nevertheless, the most general equations that describe this situation are

θ̇1 = ω1 + κ′f(θ2 − θ1 − δ) +Am sin(ωet)

θ̇2 = ω2 + κf(θ1 − θ2 − δ)
, (9.1)
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(a) δ = 0, t ∈ {0, 10} s (b) δ = 0, t ∈ {990, 1000} s

(c) δ = π, t ∈ {0, 10.0} s (d) δ = π, t ∈ {990, 1000} s

Figure 43: Numerical simulations for the case in which ωe is a very small quantity. In order to obtain these results, we
have considered a class 2 coupling with ω1 = ω2 = π rad·s−1, κ = 1.0 rad·s−1, Am = π rad·s−1 and ωe = 0.001 rad·s−1.

where f(x) is the correspondent function that depends on the coupling’s class

Unlike the case analysed in the previous section, now it seems interesting to study the phase
difference between oscillators, which is characterized by

θ̇12 = Am sin(ωet)− 2κ cos δ sin θ12. (9.2)

The easiest consideration we can make here is the one corresponding to cos δ = 0, getting then
from eq. (9.2) the following expression for the phase difference

θ12 = −Am
ω

cosωt+A (9.3)

and hence, the same cases as the ones presented above appear, having under certain circumstances
that the phase difference remains constant, at least during a certain time interval.

Any other situation in which cos δ 6= 0, will not lead to a phase locked situation. Indeed, assume
that we have found a possible value of δ in such a way that θ̇12 = 0. Therefore, from eq. (9.2) we
get

θ12 = arcsin

(
Am sin(ωet)

2κ cos δ

)
, (9.4)

but this is not a constant since we have a dependence with the time. Thus, unless we are studying
extreme situations for the modulation, i.e., Am → 0, a phase locked solution will not be obtained.
However, we can ensure that the phase difference will be changing periodically with time as the
functions that are involved in eq. (9.2) are all periodic. This last statement has been compared
with the numerical simulations which are shown in figure 44, where we can see regions with a bigger
density of oscillations per unit time for each oscillator.
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Figure 44: Numerical simulations for the case in which we are applying a sine modulation to our system whose amplitude
is Am = 2.0 rad·s−1 and frequency ωe = 0.1 rad·s−1. We can identify regions where the density of oscillations per unit
time for each oscillator is higher and which vary periodically.

10 Izhikevich model

Izhikevich model was proposed by Eugene M. Izhikevich in [4] and, as it is said in the abstract, “it
reproduces spiking and bursting behaviour of known types of cortical neurons”. Mathematically, it
is characterized by the following system of ordinary differential equations

v̇ = 0.04v2 + 5v + 140− u+ I

u̇ = a(bv − u)
, (10.1)

satisfying that

if v > 30 mV, then

{
v ← c

u← u+ d
.

Here, the variable v represents the membrane potential of the neuron and u the recovery variable
which takes into account the activation of K+ ionic currents and inactivation of Na+ ionic currents.
The other terms that appear in those equations are constants whose meaning is the following,
according to [4]

• Parameter a describes the time scale of the recovery variable u.

• Parameter b describes the sensitivity of the recovery variable u to the subthreshold fluctuations
of the membrane potential v.

• Parameter c describes the after-spike reset value of the membrane potential v caused by the
fast high-threshold conductances K+ conductances.

• Parameter d describes the after-spike reset of the recovery variable u caused by slow high-
threshold Na+ and K+ conductances.

Depending on the values of these parameters5, different kind of neurons will be described. Along
this dissertation, we have been talking about two kind of couplings, class 1 and class 2, so we will
concern about those cases. In table 1, we present the values which we have to use in eq. (10.1) if
we want to emulate that kind of neurons.

As we see, this model is more realistic as it introduces concepts like the membrane potential and
the phenomenons of polarization and depolarization due to the K+ and Na+ ionic currents. Then,
the reason why we are introducing it is because we want to check some of the results obtained

5The dimensions of the parameters are taken in such a way that the membrane potential and the time are given in
mV and ms, respectively.
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Type a b c d v(0)

Class 1 0.02 -0.1 -55 6 -60 mV

Class 2 0.2 0.26 -60 0 -64 mV

Table 1: Values of the constants that appear in eq. (10.1) and initial condition for v.

with the Kuramoto model. Concretely, because of its computational ease, we will study the case
of an unidirectional coupling, that is, the master-slave configuration. But for so, we have to seek
first the value of the intensity for which the neuron starts to spike. For so, consider that the
current in eq. (10.1) is constant, that is, I(t) = I0, depending on the kind of neuron we have, the
spiking phenomenon will start at a given certain value and, by increasing it, the period of the pulses
decreases, as it can be seen in figure 45.

(a) Class 1 coupling (b) Class 2 coupling

Figure 45: Representation of the pulse’s period against the intensity current. As I increases, the frequency between
periods also does it.

In that picture, we can distinguish the minimum value of the intensity that we have to apply in
order to obtain spiking phenomenons on the neuron. Also, another property that can be seen here
is that, for a class 1 this phenomenon takes place in a continuous way while in a class 2 coupling
we see an abrupt change between ν = 0 Hz and the first value different from zero, as well as the
values of the intensity that we have to apply for each of them. In the numerical simulations that
we are going to perform for Izhikevich model, we are going to use I0 = 25 mV for class 1 neurons
and I0 = 0.3 mV for class 2 neurons.

Due to the lack of time and some difficulties associated to the development of the Python code
that solves eq. (10.1), we have analysed only one arrangement: the master-slave configuration. In
this case, the master neuron is coupled unidirectionally to the slave, being the main consequence
that it perturbs the other oscillator but this one cannot alter the master’s spiking. Therefore, the
behaviour of that oscillator is given by eq. (10.1) where I(t) = I0, being this intensity the reason
why the oscillator spikes.

Because of the junction, the slave neuron is receiving continuously information from the master
in form of pulses, which will determine its spiking. Thereby, the intensity current in this other
neuron will be given by the sum of I0 and a certain synapse current Isyn in such a way that

Isyn = −vgAMPA(t)− (v + 70)gGABA(t), (10.2)

where g is the synaptic conductance which can be excitatory (gAMPA) or inhibitory (gGABA), so
depending on the kind of coupling we are interested in, one of them shall be zero.

Those conductances satisfy the following differential equation, according to [3]

ġ =
−gi + 0.5

∑
k δ(t− tκ − δ)
τi

, (10.3)

where i = AMPA, GABA, tk is the instant when the spiking takes place and δ represents the time
delay associated to the connection. Also, in this expression, the Dirac delta function do not have to
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be integrated together with the equation, only takes into account the fact that at times t = tκ + δ,
there is a spiking. One thing that we have to take into account is that in [3] a different situation is
analysed, so the constant 0.5 that multiplies the Dirac delta function is not big enough if we want
to generate a spiking in the second neuron. Thereby, for class 1 neurons we shall employ 100 nS
and for class 2 neurons, 10000 nS.

Let us start by talking about class 1 neurons with no associated delay and an excitatory coupling.
The results for this case are shown in figure 46, where we can see that the results obtained are the
ones predicted by Kuramoto model.

• In picture (a), it do not exist a time delay between the neuron’s spiking, having then that
both signals are in phase.

• In picture (b), a time delay equal to T1/2 has been added to the numerical simulations, being
T1 the period of the master neuron. According to the Kuramoto model, this time delay
corresponds to δ = π obtaining then an out-of-phase synchronization. Notice that in this
simulations there is a certain period of time in which the second neuron spiking has to adapt
to the period of the first one, something that was also obtained with Kuramoto model.

• Finally, we have considered that both neurons does not have the same spiking frequency,
which means that the constant intensity I0 for both signals are different. However, for small
values of that difference, for instance I0,2− I0,1 = 0.5 mA, where I0,i is the constant intensity
for the ith neuron, the same result is obtained: both signals are not synchronized, that is, the
solution is not stable. This result correspond to the situation in which c > 1 in Kuramoto
model and let us conclude that the coupling between both neurons is very weak, i.e., κ is a
small quantity. Therefore, Izhikevich model predicts the result for the weak coupling limit
coupling between neurons. Nevertheless, this conclusion has to be contrasted with other
situations for the same model, for example the case of the bidirectional coupling.

(a) No time delay between signals. (b) Time delay equal to T1/2, being T1 the spiking
period of the master neuron.

(c) Different constant intensity (I0,2 − I0,1 = 0.5).

Figure 46: Results obtained from the numerical simulations for a class 1 neuron with excitatory coupling under different
situations.
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The predictions obtained with Kuramoto model are also valid for the case in which we are
studying class 1 neurons with inhibitory coupling. Nevertheless, there are some differences that
have to be taken into account. As we can see in figure 47, if the is no any additional time delay, we
have a phase difference between both neurons which does not correspond with the results predicted
by Kuramoto model. However, as it can be seen in eq. (10.2), there is an additional term which
introduces the known as synaptic delay.

(a) No time delay between signals. (b) Time delay equal to T1/2, being T1 the spiking
period of the master neuron.

Figure 47: Results obtained from the numerical simulations for a class 1 neuron with inhibitory coupling under different
situations.

11 Conclusions

Along this project, we have studied different configurations for a set of two coupled oscillators
and we have seen that the time delay δ and the frequency difference between oscillators, play a
fundamental role in the obtention of stable synchronized signals having sometimes that the receiver
(slave oscillator) anticipates the sender (master oscillator).

Nevertheless, not only the values of those constants are relevant, also the structure of the system
determines how the stable solutions are. That is, depending on how the coupling is (excitatory,
inhibitory or both at the same time) and the kind of coupling (class 1 or class 2) the symmetry of
the problem only allows symmetric solutions to be valid, so there will be circumstances that certain
solutions or even certain kinds of synchronization do not take place because of the structure of the
system. Another thing is that an external modulation that depends on time does not allow the
system to obtain synchronized solutions for long times unless the amplitude of the modulation is
small enough.

The results obtained for the unidirectional coupling has been contrasted with another model
which introduces variables corresponding to the synaptic phenomenons that take place between the
neurons, having that the results coincide very accurately. Thereby, from here we can see that a
very simple model of coupled oscillators seems to predict a system of neurons behaviour, but for
this to be a valid conclusion, it is necessary to compare the results achieved in this project for the
Kuramoto model, with other situations of the Izhikevich model and other complex models. Indeed,
this can be proposed as another future SURF fellowship and, with this purpose, the code of the
program used for the Izhikevich model numerical simulations has been added in appendix C in such
a way that it can be useful to model a bidirectional coupling employing the same model.
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A Neuron constitution

In this appendix we show which is the structure of a neuron and the function of their elements.

Figure 48: Structure of a neuron. Image extracted from https://owlcation.com/stem/Structure-of-a-Neuron.

In figure 48 we distinguish the following elements:

• Dendrite. Are the extremes of the neuron from which they receive information from the
other ones.

• Axon. Is the conductive media from where signals are transported when they receive a
stimulus.

• Axon terminal. Are connected to the other neuron’s dendrites, allowing then the transmis-
sion of information.

• Nucleus. Contains the basic nutrients for the neuron.

• Soma. Is the neuron’s head, contains the nucleus, dendrites and the axon’s beginning.

• Myelin Sheath. Depending on the kind of neuron analysed, they shall appear or not. If
they do, the current transmission along the axon takes place in a quicker way as the zones
inside them cannot be polarized.

• Node of Ranvier. Nodes located between two consecutive myelin sheath. This zone, unlike
the other one, can be polarized.

• Schwann Cell. They are located inside the myelin sheath and work as an insulator for the
electrical pulse.

B Phase locking conditions for oscillators with different nat-
ural frequencies

In this appendix, we introduce the graphics in which we represent δ against ∆ω for oscillators with
different natural frequencies, that is, the values of ∆ω which satisfy the phase locking condition for
every possible value of δ. Also, in all these representations, we will consider that κ = 1.0 rad·s−1.

B.1 Two mutually coupled oscillators (class 2) with same positive cou-
pling constants

All those values of ∆ω contained inside the coloured part, are the ones which are stable for each
value of δ. In this representation we only include positive values of ∆ω, since is symmetric.

https://owlcation.com/stem/Structure-of-a-Neuron
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Figure 49: In this representation we have only included positive values of ∆ω since the graphic is symmetric.

B.2 Two mutually coupled oscillators (class 2) with same coupling con-
stants with excitatory and inhibitory junctions

All those values of ∆ω contained inside the coloured part, are the ones which are stable for each
value of δ. In this representation we only include positive values of ∆ω, since is symmetric.

Figure 50: In this representation we have only included positive values of ∆ω since the graphic is symmetric.

B.3 Two mutually coupled oscillators (class 1) with same positive cou-
pling constants

All those values of ∆ω contained inside the coloured part, are the ones which are stable for each
value of δ. In this representation we only include positive values of ∆ω, since is symmetric.
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Figure 51: In this representation we have only included positive values of ∆ω since the graphic is symmetric.

C Code of the program used to study Izhikevich’s model

In this section we present the Python’s code of the program used to study Izhikevich’s model in.
The main goal of introducing it is to help possible future SURF fellowships, assuming that their
project concerns this model, and also, if they decide to use it, to improve it whether by correcting
the possible mistakes, reducing the computational time and/or introducing more accurate methods
than the Euler’s one.

#We import the necessary packages
from numpy import ∗
from pylab import ∗

#We d e l e t e any o ther p o s s i b l e p l o t
c l f ( )

#We de f i n e Euler ’ s method , employed to s o l v e the d i f f e r e n t i a l
e qua t i ons

def e u l e r ( f , x i , y i , h ) :
yeu = y i + h∗ f ( x i , y i )
return yeu

#Now, we de f i n e the equa t ions t ha t govern the f i r s t neuron ’ s
movement

class P r i m e r o s c i l a d o r :
def i n i t ( s e l f , I0 =0.4 , a = 0 . 2 , b=0.26 , c=−60. , d=0. , yo=

array ([−64 , −64∗0.26]) ) :
s e l f . I0 = I0
s e l f . a = a
s e l f . b = b
s e l f . c = c
s e l f . d = d
s e l f . yo = yo
def c a l l ( s e l f , t , y ) :
s e l f . d e r i v = ze ro s (2 )
s e l f . d e r i v [ 0 ] = 0.04∗y [0]∗∗2+5∗y [ 0 ] + 140 − y [ 1 ] + s e l f . I0
s e l f . d e r i v [ 1 ] = s e l f . a ∗( s e l f . b∗y [0]−y [ 1 ] )
return s e l f . d e r i v
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#Here , we presen t the loop t ha t w i l l be employed to s o l v e the
d i f f e r e n t i a l e qua t i ons

Vmax pr imer osc i lador = 30 .

def r e s o l u c i o n p r i m e r o s c i l a d o r ( x i n i , x f i n , h ) :
X = [ ]
Y = [ ]
l o c = [ ]
X. append ( x i n i )
Y. append ( e c d i f . yo )
k = x i n i
y i = e c d i f . yo
while k < x f i n :
y i = e u l e r ( e c d i f , k , yi , h )
k = round( k + h , 4)
i f y i [ 0 ] > Vmax pr imer osc i lador :
l o c . append ( len (X)−2)
y i [ 0 ] = e c d i f . c
y i [ 1 ] = y i [ 1 ] + e c d i f . d
X. append ( k )
Y. append ( y i )
return array (X) , array (Y) , l o c

#Now, we proceed to s o l v e the equa t ions
t1 , V1 , loc max = r e s o l u c i o n p r i m e r o s c i l a d o r (0 , 3000 .01 ,

0 . 001 )

#We p l o t the r e s u l t s corresponding to the f i r s t neuron
p lo t ( t1 , V1 [ : , 0 ] )
x l a b e l ( ”Time (ms) ” )
y l a b e l ( ”Membrane p o t e n t i a l (mV) ” )

#We determine when the s p i k i n g o f t ha t neuron take s p l ace
T pr imer o s c i l ado r = t1 [ loc max ]
T pr ime r o s c i l ado r = T pr ime r o s c i l ado r [ 1 : ] #The f i r s t va lue i s

d e l e t e d because i t i s not a t rue s p i k i n g
T int = around ( T pr ime r o s c i l ado r ∗1000 , 0)
T = T pr imer o s c i l ado r [5]− T pr imer o s c i l ado r [ 4 ]

#Reached t h i s point , we de f i n e the equa t ions f o r the second
o s c i l l a t o r

class Segundo osc i l ador :
def i n i t ( s e l f , AMPA = 1 . , GABA = 0 . , d e l t a = 0 . , I0 =0.4 , a

= 0 . 2 , b=0.26 , c=−60. , d=0. , yo= array ([−64 , −64∗0.26 , 0 ,
0 ] ) ) :

#Var iab l e s t h a t d e f i n e the second o s c i l l a t o r
s e l f . I0 = I0
s e l f . a = a
s e l f . b = b
s e l f . c = c
s e l f . d = d
s e l f . yo = yo
#Var iab l e s which c ha r a c t e r i z e the coup l ing
s e l f .AMPA = AMPA
s e l f .GABA = GABA
s e l f . d e l t a = d e l t a
def c a l l ( s e l f , t , y ) :
#Equations f o r the neuron
s e l f . d e r i v = ze ro s (4 )



Proceedings of the SURF@IFISC (2018)

s e l f . d e r i v [ 0 ] = 0.04∗y [0]∗∗2+5∗y [ 0 ] + 140 − y [ 1 ] +s e l f . I0 − s e l f
.AMPA∗( y [ 2 ] ∗ ( y [ 0 ] ) ) − s e l f .GABA∗( y [ 3 ] ∗ ( y [0 ]+70) )

s e l f . d e r i v [ 1 ] = s e l f . a ∗( s e l f . b∗y [0]−y [ 1 ] )
#Equations f o r the c ondu c t i v i t y
s e l f . d e r i v [ 2 ] = (−y [ 2 ] + 100∗ s e l f . d e l t a ) /5 .26
s e l f . d e r i v [ 3 ] = (−y [ 3 ] + 10000∗ s e l f . d e l t a ) /6 .
return s e l f . d e r i v

#As we did be fore , now we de f i n e the method employed to s o l v e
t ha t d i f f e r e n t a l equat ion

def r e s o l u c i o n s e g u n d o o s c i l a d o r ( x i n i , x f i n , h ) :
e c d i f = Segundo osc i l ador ( d e l t a = 0)
X = [ ]
Y = [ ]
X. append ( x i n i )
exc = [ ]
Y. append ( e c d i f . yo )
k = x i n i
y i = e c d i f . yo
while k < x f i n :
tn = where ( around ( T int + 1000∗round(T/2 , 4) , 0)== round(1000∗k

, 0) ) [ 0 ] #Here T/2 r ep r e s en t s the de lay t ha t we are
in t roduc ing

i f len ( tn ) == 0 :
e c d i f = Segundo osc i l ador ( d e l t a = 0 . )
y i = e u l e r ( e c d i f , k , yi , h )
k = round( k + h , 4)
i f y i [ 0 ] > 30 :
y i [ 0 ] = e c d i f . c
y i [ 1 ] = y i [ 1 ] + e c d i f . d
else :
print ( k )
exc . append ( k )
e c d i f = Segundo osc i l ador ( d e l t a = 1 . )
y i = e u l e r ( e c d i f , k , yi , h )
k = k + h
i f y i [ 0 ] > 30 :
y i [ 0 ] = e c d i f . c
y i [ 1 ] = y i [ 1 ] + e c d i f . d
X. append ( k )
Y. append ( y i )
return array (X) , array (Y) , exc

#Here , we proceed to s o l v e the equa t ions and p l o t the r e s u l t s
t2 , V2 , exc = r e s o l u c i o n s e g u n d o o s c i l a d o r (0 , 3000 .01 , 0 . 001 )
p l o t ( t2 , V2 [ : , 0 ] )
xl im (0 , 2000)
legend ( ( ” O s c i l l a t o r 1” , ” O s c i l l a t o r 2” ) , l o c = ” best ” , f o n t s i z e

= 10)
g r id ( )
show ( )
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