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Characterizing complex
networks



L evels of characterization

» Microscale: role of nodes in the network
(centrality, degree, betweenness, ...)

» Macroscale: distributions, statistical
properties

» Mesoscale: motifs, modules, communities, ...
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Microscale

» Centrality
» Degree (local perspective)
» Other measures (global perspective)
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Degree (microscopic scale)

» Number of links that a node has

» It corresponds to the local centrality in social
network analysis

» It measures how important is a node with
respect to its nearest neighbors
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Distance between two nodes

» Number of links that make up the shortest-
path between two nodes

» Centrality: nodes that are “close” to many
other nodes in the network.

» Closeness centrality: average distance from
a given node to the other nodes
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Betweenness

» Measures the “intermediary” role in the
network

» It is a set of matrices, one for ach node
r Ratio of shortest paths bewteen 1 and )
¥ that go through k

0< Bﬁ <1 There can be more than
’ one geodesic between 1 and ]
b, 38
b v

is @ measure of the centrality, in terms of
of node k
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Eigenvector centrality

» Generalization of degree

» Eigenvector centrality is a measure of the
importance of a node in a network. It assigns
relative scores to all nodes in the network
based on the principle that connections to
high-scoring nodes contribute more to the
score of the node in question than equal
connections to low-scoring nodes.
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Page-rank

» Originally developed by the founders of
Google (Page and Brin)

» Related to the probability that a random
walker arrives to a given node

» Recursive relation (very fast convergence)

1 _ PR(p.
PR(p;) = dpj E%:m - (1%)
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» Degree, closeness, betweenness, eigenvector,

PageRank
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Macroscale

» Shortest-paths

» Clustering (of the network)

» Distributions (degree, betweenness, ...)
» Statistical properties: clustering

» Correlations
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Distance between two nodes

» Number of links that make up the shortest-
path between two nodes

» Centrality: nodes that are “close” to many
other nodes in the network.

» Global centrality: defined as the sum of
minimum distances to any other nodes in
e hetworks
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Global centrality of the whole
network?

Mean shortest path = average over all pairs of
nodes in the network

Diameter: largest distance between a pair of
nodes in the network
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What do we find?
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Clustering

» Cycles in social network analysis language

» Circles of friends in which every member
knows each other
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Clustering coefficient

» Clustering coefficient of a node

C_ E;

ki(k;=1)/2

» Clustering coefficient of the network

lN
C=§ZQ

» Alternative definition: ratio between total
number of triangles and possible

‘ e i
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What happens in real networks?

» The clustering coefficient is much larger than
it is in an equivalent random network

' B .:.. <] .
'Erl |I - Fal
107" ?-
% e "
E 1
1:]—‘ e
107 10"

' complex Networks  Mallorea, Sept 2012 18



Degree distribution
(macroscopic scale)

» Gives an idea of the spread in the number of
links the nodes have

» P(k) is the probability that a randomly
selected node has k links
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What should we expect?

» In regular lattices all nodes are identical

» In random networks the majority of
nodes have approximatelv the same

degree
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» Real-world networks: this distribution

has a power tail

.

P(k) =k

“scale-free” networks
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Ex%mples of “

scale-free” networks
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Universality

» We find the same macroscopic behavior in
systems which have completely different
origins

» Engineered or self-organized

» Biology, transportation, social, ...

» Which are the basic underlying principles?

» Models (simple models) that can explain the
basic trends
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Correlations

» Degree correlations: expected degree of the
neigbors of a node as a function of its degree

knn (k) = gk’P(k’ k)
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The correct mathematical way to quantify such a measure 1s the condifioned
probability p(k,|k>) to have a vertex with degree k; at one side of the edge when

at the other site of the edge the degree is ks.

We have two constraints on the conditioned probability. The first one
18 given by normalization condition

> p(ki|kz) = 1. (1.10)
k1
For non oriented graphs the same quantity obeys the detailed balance
distribution (Boguna and Pastor-Satorras, 2002)

kop(ky | ko) P(ka) = kyp(ka|ky) P(ky) (1.11)

This balance equation simply states that the number of edges going
from vertex k; to vertex k2 must be equal to the number of edges going
from vertex k; to vertex k.
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Fic. 1.10. The three possible behaviour of the average degree of the neighbours

(Kpn) versus the degree k of the vertex origin.
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Assortativity

Following (Callaway, Hopcroft, Kleinberg, Newman and Strogatz,
2001; Newman, 2002a) we define

r=— 3 o(kalka)  aua) (1.16)

k1 ,ka

where

e (i is the normalized distribution for the “remaining degree” of
vertices. Remaining degree is the degree of a vertex without the
edge considered in the link. In formulas, this means that the
remaining degree of vertex i is given by k; — 1. The normalized
distribution for such a quantity is then given by:

@ = (k+1)P(k+1)/3 - 1P(0).

e The o2 is the variance of the above quantity:

0° = Ei:l,N k*qi — (Ei:l,N kqk)?
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Network n T
[ Physics Co-authorship 52009 | 0.363 |
Biology Co-authorship 1520251 | 0.127
Mathematics Co-authorship | 253339 | 0.120
Film Actors Collaboration | 253339 | 0.208

Company Directors 7673 0.276

Internet 10697 | —0.189
Protein Interactions 2115 —0.156
Marine food web 134 —0.247
Little Rock Lake 02 —0.276

Table 1.1 Order and assortative coefficient for vartous networks
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Mesoscale
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Fic. 2.2. The basic 13 elementary motifs that can be drawn in an oriented graph
of three vertices. The table made for four vertices motifs has 199 entries.




Motifs

» How often some motifs appear compared
with a random network

1234 10 11 12 13




Null models

» What should we take as reference?
» Random? How random(ness)?

» Reshuffling

Fic. 2.3. A possible way to rearrange edges keeping the same size, order and
degree sequence.




Null models with geographical
constraints

» Geographic Constraints on Social Network
Groups. Onnela J-P, Arbesman S, Gonzalez
MC, Barabasi A-L, Christakis NA (2011). PLoS
ONE 6(4): e16939.

» Uncovering space-independent communities

in spatial networks. P. Expert, T.S. Evans, V.D.
Blondel and R. Lambiotte. PNAS, 108

7663-7668 (2011)
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Communities: describing
the mesoscale

A technical problem
A management problem




» Existence of communities or modules in
networks

» Technical issue: finding the best partition

» Management issue: finding meaningful
partitions

.




Communities

» Social networks are formed by communities

» According to:
> Political reasons
> Religion
> Education
- Scientific disciplines
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Clusters

» Technological networks
> Internet: connections according to geographical
proximity
> Power grids
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Thematic groups
» World-Wide Web: grouped by themes
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Modules

» Biological networks

» Gene regulatory networks: groups are
functional modules
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Technical issue

» We have to identify the communities

» How many possible partitions into
communities?

» NP problem to find the best one

‘ e i



Communities: intuitive picture

» Definition: subsets of nodes that are more
densely linked, when compared with the rest
of the network

Zachary’s Karate
club
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Partition

» A partition is a division of the network into
groups, communities or clusters

» The question is: Which of all possible
partitions is the best?
» NP problem

» Community detection:
> From computer scientists

> To statistical physicists (Girvan-Newman, PNAS
99, 7821, 2002)

- e i



Quantifying a partition

Modularity:

Q= 2(655 - ﬂfz)

e;: fraction of total links starting at a node in
partition  and ending at a node in partition j

a;: fraction of links connected to i
a?: number of intracommunity links

b



Methods of community
identification

» L. Danon, J. Duch, A.D-G, A. Arenas J. Stat.
Mech. (2005) P09008

> Link removal methods

> Agglomerative methods

- Maximizing modularity

> Spectral analysis methods

- Based on physics: resistor networks, g-Potts model

» More recent reviews:
o S. Fortunato, Community detection in graphs (Phys.
Rep. 486, 75-174, 2010)
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Computational costs

Reference Alias Order
(Newman and Girvan, 2004) NG O(m*n)
(Girvan and Newman, 2002) GN O(n%m)

(Fortunato et al., 2004) FLM O(n?)
(Radicchi et al., 2004) RCCLP O(n?)
(Newman, 2004b) NF O(nlog?n)
(Donetti and Munoz, 2004), DMSA O(n?)
(Donetti and Munoz, 2004), DMCA O(n?)
(Eckmann and Moses, 2002) EM O(m(k*))
(Zhou and Lipowsky, 2005) ZL O(n?)
(Reichardt and Bornholdt, 2004) RB unknown
(Bagrow and Bollt, 2004) BB O(n?)
(Duch and Arenas, 2005) DA O(n?logn)
(Capocci et al., 2004) CSCC O(n?)
(Wu and Huberman, 2004) WH O(n+m

CoOmMptEx NETWoTRS
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Comparing algorithms

» ad-hoc networks (Newman-Girvan, PRE 69,
026113, 2004)
> 128 nodes
> 4 communities of 32 nodes each
> Each node has 16 links:

+ Z;, internal nodes within the community
+ Z,, NOdes out of its community

‘ e i
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Fraction of correctly identified nodes
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ldentifying communities

» Identifying what communities are

» Managerial point of view:

- How a company is organized
- How powerful is the formed informal chart
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Two networks

» E-mail network at Universitat
Rovira i Virgil,

» FISES
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Importance from
manhagement

Unravel the real (informal) organization
behind the formal chart

“If the formal organization is the skeleton of a

company, the infoxmal is the central nervous system...
Complex webs of social ties form every time colleagues
commmicate and solidify over time into surprisingly

stable networks.”

D. Krackhardt and J. R. Hanson, Harvard Business
Review, 71, 104-113 (1993)

Complex Networks Mallorca, Sept 2012
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Data acquisition to construct the
e-mail network of the URV

- Node => e-mail address

- Link => bidirectional e-mails between nodes (undirected
graph)

« Number of users approx. 1700 (professors, technicians,
administrators, graduate students)

- We consider only e-mails sent within the University
during the first 3 months of 2002 (stable network)

Nen.__spam” mail: (neglect >50 recipients)

Complex Networks Mallorca, 5ept 2012 52



Email at URV
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Community identification: the
Girvan & Newman (GN)
alfgorithm

- Definition Betweenness of a link = #
minimum paths connecting pairs of nodes
that go through that link

- ldea in GN algorithm: The links which
connect highly clustered communities have a
higher link betweenness. Then cut these links

0 separate communities.
GVl e e gman, PNAS USA 99, 7821-7826
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Communities

A network containing two clear communities linked by BE.
Since there is no more community structure, the rest of the
nodes will be separated one by one generating a binary

tree with two branches corresponding to the two
unities.

' - Df the brancmumnrﬁ! Mallorca, Sept 2012 55



Communities in URV
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FisEs
network

(principal
component)

785 total
655 pc (84%)
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ommunity structure

o 3t P
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Self-
similarity
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Models describing simple
properties of complex
networks



1 Erdos-Renyi: random graph
model

» Definition: N labeled nodes connected by n
links which are chosen randomly from the
N(N-1)/2 possible links

» There are [N'f”'m] graphs with N nodes
and n links

‘ e i
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Alternative definition

» Binomial model: start with N nodes, every
pair of nodes being connected with
probability p

» The expected total number of links, n, is a
random variable
o E(n)=pN(N-1)/2

‘ it piiTan &



Mean connectivity

» <k>=pN
, If =N then <k> is a constant

» If 0< <k> < 1 almost surely all clusters are
either trees or clusters containing exactly one
cycle

» At <k>=1 the structure changes abruptly.
Cycles appear and a giant cluster develops

‘ it piiTan



Probability of having a property

Subgraphs appear suddenly (percolation threshold)

Question for the class:

Given that the critical
connectivity is p(N)~ cN*/

When does a random graph
become connected?

o

L )

41
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Degree distribution

» The degree of a node follows a binomial
distribution (in a random graph with p)

N -1 k N-1-k
P =k =" )

» Probability that a given node has a
connectivity k

» For large N, Poisson distribution

(pN)k _ E—a:k:: {k }k

k! k!

; e i

P(k)~ e
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Mean short path

» Assume that the graph is homogeneous

» The number of nodes at distance | are <k>!
» How to reach the rest of the nodes?

» |..,4 tO reach all nodes => k!=N

s InN B InN
““ In<k> InpN

; e i
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Clustering coefficient

» Probability that two nodes are connected
(given that they are connected to a third)?

C

rand

—{ > = E while it is constant for real
networks
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Generalized random graphs

» Any degree distribution, clustering, ...
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2 Watts-Strogatz: small-world
model

» Small world: the average shortest path length
in a real network is small

» Six degrees of separation (Milgram, 1967)
» Local neighborhood + long-range friends
» A random graph is a small world

‘ it piiTan 7



Networks in nature (empirical
observations)

[

network

~ In(N)

Cnetwcnrk > Crandﬂm graph
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Model proposed

» Crossover from regular lattices to random
graphs
» Tunable

» Small world network with (simultaneously):
- Small average shortest path
- Large clustering coefficient (not obeyed by RG)

‘ it wpiTan



Two ways of constructing

rewiring of links

addition of links
e
Complex Networks Mallorca, Sept 2012 75



Original model

» Each node has K>=4 nearest neighbors
(local)

» Probability p of rewiring to randomly chosen
nodes

» p small: regular lattice
» p large: classical random graph
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p=0 Ordered lattice

[ =—>>1

2K
)
4(K -1)
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p=1 Random graph

[ = —— small
In K
C= E small
N
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» Small shortest path means small clustering?
» Large shortest path means large clustering?

» They discovered: there exists a broad region:
> Fast decrease of mean distance
- Constant clustering

Complex Networks Mallorca, Sept 2012
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Average shortest path
I(p—=0)=N
I(p—=1)=InN

» Rapid drop of |, due to the appearance of
short-cuts between nodes

» It starts to decrease when p>=2/NK
(existence of one short cut)

‘ it piTan



» The value of p at which we should expect the
transtion depends on N

» There will exist a crossover value of the
system size:

N<N =I[=N
N>N =I=InN

‘ it piiTan &



Degree distribution

» p=0 delta-function

» p>0 broadens the distribution

» Edges left in place with probability (1-p)

» Edges rewired towards i with probability 1/N

‘ it piiTan



f(k.K) k—Ki2—n
(pK12)
— n i Kf2—n —pKi2
Pk)= 2 Chn(l=P)Y P " gy ®

for k=K/2, where f(k.K)=min(k—K/2,K/2)

i ym=y

o~ - .

o2 .
L ]
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o 10 10 K10 10

only one edge is rewired

ial decay, all nodes have similar number of links
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3 Barabasi-Albert: scale-free
network
» Many large networks
are scale free
» The degree distribution
has a power-law
behaviﬂr fﬂr Iarge k (far L I — e
from a Poisson = ':"'h‘{% B ‘=
distribution) Lt =, : \%‘Eﬁ
» Random graph theory T, e
and the Watts-Strogatz & 'Y o o oo LT
model cannot N 2 © 11 @) |
reproduce this feature . o, .
1ar F %Q ™ '
= o
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» We can construct power-law networks by
hand

» Which is the mechanism that makes scale-
free networks to emerge as they grow?

» Emphasis: network dynamics rather to
construct a graph with given topological
features

-; e i
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» Topology is a result of the dynamics
» But only a random growth?
» In this case the distribution is exponential!
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Barabasi-Albert model (1999)

» Two generic mechanisms common in many
real networks

- Growth (www, research literature, ...)

- Preferential attachment (idem): attractiveness of
popularity

» The two are necessary
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Growth

» t=0, my nodes
» Each time step we add a new node with m

(=m,) edges that link the new node to m
different nodes already present in the system
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Preferential attachment: rich gets
richer

» When choosing the nodes to which the new
connects, the probability IT that a new node
will be connected to node idepends on the
degree k; of node J

k!'
[1(k;) = ?

Linear attachment (more general models)
Sum over all existing nodes

- e i



Numerical simulations

» Power-law P(k)=k Ysg=3
» The exponent does not depend on m (the
only parameter of the model)
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Degree distribution

» Analytically

2m(m +1)
k(k+1)(k+2)

P(k) =




Clustering coefficient

5 times larger
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