
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Journal of Computational Science 1 (2010) 132–145

Contents lists available at ScienceDirect

Journal of Computational Science

journa l homepage: www.e lsev ier .com/ locate / jocs

Modeling the spatial spread of infectious diseases: The GLobal Epidemic and
Mobility computational model
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a b s t r a c t

Here we present the Global Epidemic and Mobility (GLEaM) model that integrates sociodemographic
and population mobility data in a spatially structured stochastic disease approach to simulate the spread
of epidemics at the worldwide scale. We discuss the flexible structure of the model that is open to the
inclusion of different disease structures and local intervention policies. This makes GLEaM suitable for the
computational modeling and anticipation of the spatio-temporal patterns of global epidemic spreading,
the understanding of historical epidemics, the assessment of the role of human mobility in shaping global
epidemics, and the analysis of mitigation and containment scenarios.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The increasing computational and data integration capabilities
witnessed in recent years have enabled the development of com-
putational epidemic models of great complexity and realism [36].
Generally accepted methodologies are represented by very detailed
agent-based models [17,33,18,19,24,8,34] and large-scale spatial
metapopulation models [38,21,25,29,12,16,9,1,2]. These two major
classes of computational models have different resolutions and
limitations. Agent-based models are stochastic, spatially explicit,
discrete-time, simulation models where the agents represent sin-
gle individuals. The infection can spread among individuals by
contacts within household members, within school and work-
place colleagues and by random contacts in the general population.
One of the key features of the model is the characterisation of
the network of contacts among individuals based on a realistic
model of the sociodemographic structure of the population (see for
instance [27] for a comparison between several models based on
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this approach). The second scheme relies on metapopulation struc-
tured models that considers the system divided into geographical
regions defining a subpopulation network where connections
among subpopulations represent the individual fluxes due to the
transportation and mobility infrastructures [1–3,10,11]. Infection
dynamics occurs inside each subpopulation and is described by
compartmental schemes that depend on the specific etiology of
the disease and the containment interventions considered [38,21].
Agent-based models provide a very rich data scenario but the com-
putational cost and most importantly the need for very detailed
input data has limited their use to a few country level scenarios
so far [27], up to continent level [34]. On the opposite side, the
structured metapopulation models are fairly scalable and can be
conveniently used to provide world-wide scenarios and patterns
with thousands of stochastic realizations [29,12,16,9,1,2,22]. While
on one hand, the level of information that can be extracted in
structured metapopulation models is less detailed than those of
agent-based models, on the other hand, their computational scala-
bility allows the simulation of disease spreading on the worldwide
scale and the use of statistical approaches that leverage on Monte
Carlo techniques based on the analysis of a large number of simu-
lation runs exploring the parameter space.

In this paper, we provide a detailed presentation of the Global
Epidemic and Mobility (GLEaM) model [2] that uses a structured
metapopulation scheme integrating the stochastic modeling of
the disease dynamics, high resolution census data worldwide and
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human mobility patterns at the global scale. GLEaM makes use of
high resolution population data [6,7] that allow for the definition
of subpopulations according to a Voronoi decomposition of the
world surface centered on the locations of major transportation
hubs. This procedure leads to the construction of a metapopula-
tion model consisting of more than 3300 subpopulations across the
world connected through a network of more than 16,800 mobility
fluxes describing the daily patterns of travel and mobility among
subpopulations. In particular GLEaM integrates data obtained from
the International Air Transport Association (IATA [30]) and Official
Airline Guide (OAG [35]) databases and multimodal mobility data
collected and analyzed from more than 30 countries in 5 differ-
ent continents. This integration results in a worldwide multiscale
mobility network spanning several orders of magnitude in inten-
sity and spatio-temporal scales. The disease dynamics is simulated
by a fully stochastic compartmental approach defining the tempo-
ral equations for each subpopulation [1]. The equations of different
subpopulations are then coupled through effective interactions and
mechanistic schemes accounting for the mobility of individuals
encoded in the multiscale mobility network.

The GLEaM computational model trades off the high realism of
agent-based models for the computational scalability of the algo-
rithm implementation and the relatively small amount of input
data needed to initialize the model. This allows detailed analy-
sis of epidemic patterns at the worldwide scale. This feature is
extremely relevant in evaluating the time pattern of emerging
infectious diseases, and cannot be accounted for by agent-based
models restricted to country or continent level. For instance, given
a set of initial conditions for a local outbreak of a new strain of
influenza, the timeline of the arrival of the epidemic in each country
and the ensuing activity peak are mainly determined by the human
mobility network that couples different regions of the world. By
looking at individual countries or a given continent in isolation, any
estimate of the epidemic timeline is based on assumptions about
imported cases from the rest of the world. This is obtained with-
out an explicit coupling or knowledge of the propagation of the
disease in the system outside the boundaries of the country or the
continent that is the focus of the model. GLEaM instead explicitly
integrates human mobility patterns that allow us to consistently
simulate the mobility of infectious individuals on the global scale
thus providing ab initio estimates of the epidemic timeline in each
country or urban area without assumptions on case importation.

Differently from agent-based models, the scalability of GLEaM
has also the advantage of making possible the use of statistical
methods such as Monte Carlo likelihood analysis to fit epidemic
parameters which are usually not known in the case of new emerg-
ing diseases, with the aim of understanding the observed pattern
and simulate its possible future spread [1]. This is enabled by the
possibility of generating large numbers of in silico epidemics to
allow the self-consistent estimate of all the parameters needed
for the simulation of the future propagation of the disease. A large
number of computational runs is indeed needed to systematically
explore the space of parameters and, for each point in such space,
to build a robust statistical ensemble and reduce the fluctuations
induced by stochastic effects. The intensive CPU requirements of
agent-based models limit the feasibility of large explorations of the
space of parameters aimed at estimation procedures, or at perform-
ing sensitivity analysis on the parameters included in the models
to assess effects in the simulated results induced by their changes
[27]. This constraint becomes particularly relevant in the case com-
putational models are used as risk-assessment tools for scenario
evaluations of an epidemic emergency in real time.

Here we specify the definition and integration of the differ-
ent data layers composing the model, and also provide a detailed
explanation of the Voronoi tessellation used for the subpopula-
tion definition. The construction of the mobility network and the

derivation of the stochastic mobility equations among different
subpopulations are described in detail as well. We illustrate the
time-scale separation technique that allows for the integration of
the mobility processes occurring on small time scales as effec-
tive coupling terms. This method reduces the computational cost
by simulating in an explicit way only mobility processes occur-
ring on the long time scales. The metapopulation structure and
the mobility processes are then integrated in the basic equations
describing the time behavior of the disease process within each
population. We detail the structure of the equations in the specific
case of an influenza-like-illness compartmentalization, although
the equations can be generalized to generic compartmental struc-
tures according to the disease of interest. The second part of
the paper is devoted to the algorithmic implementation of the
model. We describe the algorithm structure, inputs and outputs
that allow GLEaM to perform the simulation of stochastic real-
izations of the worldwide unfolding of the epidemic. From these
in silico epidemics a variety of information can be gathered, such
as prevalence, morbidity, number of secondary cases, number of
imported cases, hospitalized patients, amounts of drugs used, and
other quantities for each subpopulation with a minimal time res-
olution of 1 day. Finally we provide an example of the results that
can be obtained with GLEaM by simulating the 2001–2002 seasonal
influenza spreading and comparing the computational results with
real data from different surveillance infrastructures.

2. Related work

Many data-driven epidemic models have been proposed, how-
ever only a few, mostly based on metapopulation schemes, tackle
the spatio-temporal behavior of diseases at the global scale. Agent-
based models are to be able to consider individually targeted
interventions for the mitigation of an epidemic, as well as the pos-
sibility to introduce changes of behavior at the individual level
reproducing the adaptation of individuals to the disease spread.
This is performed by tracking each agent of the artificial society
considered in the model, and applying rules for the behavior of indi-
viduals in their virtual space. Therefore, most agent-based models
can be very accurate in the description of the spread of a disease in
time and spatial scales if it is possible to integrate high quality data
at the individual agent level. The difficulties in gathering high qual-
ity data worldwide and to the limit imposed by high performance
computing, however have restricted the application of agent-based
models to local populations or a few countries – such as e.g.,
the US [24,19,27], the UK [19], Italy [8], Thailand [33,18] – up to
the continent of Europe [34]. Among the metapopulation schemes
at the global level available in the literature [29,12,16,9,1,2,22],
the main differences lie in the accuracy and completeness of the
demographic and mobility layers. Indeed, being based on simple
homogeneous assumptions inside each subpopulation, the accu-
racy and realism of these models are found in their ability to capture
the distribution of population and the travel flows of individuals
from one subpopulation to another. With the airline transportation
system being the main and fastest mean of connection between
different parts of the world, previous works have included an
always increasing portion of the worldwide airport network in the
metapopulation approaches considered. Indeed, even in continen-
tal Europe that possesses one of the most structured and modern
railway network, long-range railway traffic across countries is just
one-tenth of the corresponding airline traffic [14]. From samples
with 52 airports in Ref. [38,22], 105 airports in Ref. [12], 155 in
Ref. [16], 500 in Ref. [29], up to the complete International Air
Transport Association (IATA) [30] and Official Airline Guide (OAG
[35]) databases incorporated in GLEaM [9,2]. Samples of the world-
wide airport network usually correspond to the largest airports, the
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Fig. 1. GLEaM, GLobal Epidemic and Mobility model. The world surface is represented in a grid-like partition where each cell – corresponding to a population value – is
assigned to the closest airport. Geographical census areas emerge that constitute the subpopulations of the metapopulation model. The demographic layer is coupled with
two mobility layers, the short range commuting layer and the long range air travel layer.

most connected cities, or the most central ones, and therefore they
may include a large portion of the total commercial traffic. While
including the largest flows of real-world mobility, these samples
are limited in their ability to capture the entire network informa-
tion for a detailed description of the geotemporal evolution of the
disease on a city by city basis. The overall paths of spreading may
be fairly well reproduced [4], but models based on samples would
fail if the question under study focuses on the description of the
epidemic behavior at a higher level of detail, such as e.g., country
or city level, due to the lack of data on connections and travel fluxes.
In addition, the accuracy in reproducing the spreading pattern of
diseases is largely challenged by the absence of large fluctuations
in the topology of the airline network and in the traffic volumes,
and of correlations and non-trivial loops that are responsible for
the definition of the geotemporal propagation in the real world [9].
The increase of resolution imposes different requirements in the
definition of the population distribution and of additional means
of transportation that may become relevant at this level of detail.
Previous works considered cities with no geographical reference
whose population was obtained from national and international
city population databases [29,12,16,9,22], and did not consider
coupling effects other than air transportation. The GLEaM computa-
tional model presented here takes into account also the short range
mobility to capture the daily population displacements from a given
geographical census area to its neighboring one. In addition, the
model already integrates long-range railway connections indexed
by the OAG database and we are making a progressive introduction
of detailed railway networks in specific countries. By integrating
a multi-scale mobility layer, GLEaM is therefore the world-wide
model that consider a finer description of the evolution of the epi-
demic behavior, with the air travel dictating the pathways of the
disease through the large geographical areas, whereas the daily
short-range displacements control the timing of spreading within
localized regions [2].

3. GLEaM computational model definition

The global epidemic and mobility structured metapopulation
(GLEaM) model is based on a metapopulation approach in which the
world is divided into geographical regions defining a subpopula-
tion network where connections among subpopulations represent
the individual fluxes due to the transportation and mobility infras-
tructure. GLEaM integrates three different data layers (see Fig. 1).
The population layer is based on the high-resolution population
database of the “Gridded Population of the World” project of

Columbia University [6,7] that estimates the population with a
granularity given by a lattice of cells covering the whole planet at
a resolution of 15 min × 15 min of arc. The transportation mobility
layer integrates air travel mobility obtained from the International
Air Transport Association (IATA) [30] and OAG [35] databases that
contain the list of worldwide airport pairs connected by direct
flights and the number of available seats on any given connection,
and commuting patterns as obtained from data collected and ana-
lyzed from more than 30 countries in 5 continents. The combination
of the population and mobility layers allows for the subdivision of
the world into georeferenced census areas defined with a Voronoi
tessellation procedure around transportation hubs. GLEaM simu-
lates the mobility of individuals from one subpopulation to another
by a stochastic procedure in which the number of passengers of
each compartment traveling from a subpopulation j to a subpopula-
tion � is an integer random variable defined by a stochastic process
defined on the basis of real mobility data. Short range commuting
between subpopulations is modeled with a time scale separation
approach that defines the effective force of infections in connected
subpopulations. Superimposed on the worldwide population and
mobility layers is the epidemic model that defines the disease and
population dynamics. The infection dynamics takes place within
each subpopulation and assumes the classic compartmentalization
in which each individual is classified by one of the discrete states
such as susceptible, latent, infectious symptomatic, infectious non-
symptomatic or permanently recovered/removed. In the following
sections we provide a detailed presentation of each data layer and
of the basic equations that defines the computational model.

3.1. Population layer

The dataset of the “Gridded Population of the World” and the
“Global Urban-Rural Mapping” projects [6,7] run by the Socioeco-
nomic Data and Application Center (SEDAC) of Columbia University
divides the surface of the world into a grid of cells that can have
different resolution levels. Each of these cells has assigned an esti-
mated population value. Out of the possible resolutions, we have
opted for cells of 15 min × 15 min of arc to constitute the basis of
our model. This corresponds to an area of each cell approximately
equivalent to a rectangle of 25 km × 25 km along the Equator. The
dataset comprises 823,680 cells, of which 250,206 are populated.
In order to define the subpopulations that constitute the metapop-
ulation structure of our model we have performed a Voronoi-like
tessellation of the Earth surface centered around the airports of
the IATA database. In particular, we identify 3362 subpopulations
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Fig. 2. Population database and Voronoi tessellation around main transportation hubs. The world surface is represented in a grid-like partition where each cell – corresponding
to a population values – is assigned to the closest airport. Geographical census areas emerge that constitute the subpopulations of the metapopulation model.

centered around indexed IATA airports in 220 different countries.
Since the coordinates of each cell center and those of the airports
are known, the distance between the cells and the airports can be
calculated. We assign each cell to the subpopulation associated to
the closest airport that satisfies the following two conditions: (i)
each cell is assigned to the closest airport within the same coun-
try and (ii) the distance between the airport and the cell does not
exceed 200 km. This cutoff naturally emerges from the distribution
of distances between cells and closest airports, and it is introduced
to avoid that in barely populated areas such as Siberia we can gener-
ate geographical census areas thousands of kilometer wide but with
almost no population. It also corresponds to a reasonable upper
cutoff for the ground traveling distance expected to be covered to
reach an airport before traveling by plane.

In addition, the tessellation procedure needs to take into account
that there exist urban areas served by more than one airport. Exam-
ples include London with up to six airports, Paris with two, New
York City with three and others. This condition is relevant in the
tessellation, as the aim of the procedure is to provide geographi-
cal census areas that will correspond to the subpopulation of the
metapopulation model, where homogeneous mixing is going to be
assumed. Given that the mixing between individuals in a given
urban area is expected to be high, independently from their choice
of the airport for mobility reasons, we first need to proceed to the
aggregation of the groups of airports that serve the same urban
area, prior to tessellation. We have searched for groups of airports
located close to each other and manually processed the identi-
fied groups to select those belonging to the same urban area. The
airports of the same group are then aggregated in a single “super-
hub”. An example with the final result of the Voronoi tessellation
procedure with cells and airports can be seen in Fig. 2.

3.2. Mobility layers

The geographical census areas obtained with the tessellation
procedure define the basic subpopulations of the GLEaM metapop-
ulation structure. The spatio-temporal patterns of the disease
spreading are however associated to the mobility flows that couple
different subpopulations. These flows constitute the mobility data
layer that is represented as a network of connections among sub-
populations that identifies the number of individuals that goes from
one subpopulation to the others. The mobility network is made
by different kind of mobility processes from short-range commut-

ing to intercontinental flights with time-scale and traffic volumes
that span several orders of magnitude. In the following we discuss
the data integration process and the construction of this multiscale
mobility network.

3.2.1. Worldwide Airport Network
The Worldwide Airport Network (WAN) is composed of 3362

commercial airports indexed by the IATA located in 220 different
countries. The database contains the number of available seats per
year for each direct connection between a pair of these airports.
The coverage of the dataset is estimated to be 99% of the global
commercial traffic. The WAN can be seen as a weighted graph com-
prising 16,846 edges whose weight, ωj�, represents the passenger
flow between airports j and �. The network shows a high degree of
heterogeneity both in the number of destinations per airport and
in the number of passengers per connection [9,3,10,11].

3.2.2. Commuting networks
Our commuting databases have been collected from the Offices

of Statistics of 30 countries in 5 continents. The full dataset com-
prehends more than 80,000 administrative regions and over five
million commuting flow connections between them (see [2]). The
definition of administrative unit and the granularity level at which
the commuting data are provided vary enormously from coun-
try to country. For example, most European countries adhere to a
practice that ranks administrative divisions in terms of geocoding
for statistical purposes, the so called Nomenclature of Territorial
Units for Statistics (NUTS) going from level 1 to 3 plus the Local
Administrative Units (LAU) corresponding to the municipalities
and that can be further subdivided in Wards (LAU 2). In most of
the cases, we obtained the commuting data at the LAU level 1 or
2. The US or Canada, on the other hand, have different standards
and report commuting at the level of counties. Not only there are
clear differences across countries in the definition of the admin-
istrative divisions, but even within the same country the actual
extension, shape, and population of the administrative divisions
can be strongly heterogeneous, being a result of historical and
administrative reasons (Table 1).

In order to overcome the differences in spatial resolution of
the commuting data across different countries, we define a world-
wide homogeneous standard for GLEaM. We used the geographical
census areas obtained from the Voronoi tessellation as the ele-
mentary units to define the centers of gravity for the process of
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Table 1
Commuting networks in each continent. Number of countries (N), number of admin-
istrative units (V) and inter-links between them (E) are summarized.

Continent N V E

Europe 17 65,880 4,490,650
North America 2 6986 182,255
Latin America 5 4301 102,117
Asia 4 4355 380,385
Oceania 2 746 30,679

Total 30 82,268 5,186,186

commuting. This allows to deal with self-similar units across the
world with respect to mobility as emerged from the tessellation and
not country specific administrative boundaries. We have therefore
mapped the different levels of commuting data into the geographi-
cal census areas formed by the Voronoi-like tessellation procedure
described above. The mapped commuting flows can be seen as a
second transport network connecting subpopulations that are geo-
graphically close. This second network can be overlaid to the WAN
in a multi-scale fashion to simulate realistic scenarios for disease
spreading. The network exhibits important variability in the num-
ber of commuters on each connection as well as in the total number
of commuters per geographical census area. Being the census areas
statistically homogeneous we can also extract a general statistical
law that allows for the synthetic generation of commuting net-
works in countries where real data are not available. A full account
of the commuting data obtained across different continents and
their statistical analysis can be found in Ref. [2].

3.3. Disease model

Each geographical census area corresponds to a subpopulation
in the metapopulation model. The infection dynamics within each
subpopulation is governed by a disease specific compartmental
model in which we assume homogeneous mixing in the popula-
tion. Although the model can use any compartmental structure,
for the sake of clarity we will carry on our discussion by using
the explicit example of a typical influenza-like illness (ILI) where
we consider a Susceptible-Latent-Infectious-Recovered (SLIR) com-
partmental scheme. In Fig. 3, a diagram of the compartmental
structure with transitions between compartments is shown. The
contagion process, i.e., generation of new infections, is the only
transition mechanism which is altered by short-range mobility,
whereas all the other transitions between compartments are spon-
taneous and remain unaffected by the commuting. The rate at
which a susceptible individual in subpopulation j acquires the
infection, the so called force of infection �j, is determined by inter-
actions with infectious persons either in the home subpopulation j
or in its neighboring subpopulations on the commuting network. In

Table 2
Transitions between compartments and their rates.

Transition Type Rate

Sj → Lj Contagion �j

Lj → Ia
j

Spontaneous εpa

Lj → It
j

ε(1 − pa)pt

Lj → Int
j

ε(1 − pa)(1 − pt)
Ia
j

→ Rj �

It
j

→ Rj �

Int
j

→ Rj �

general, the force of infection is assumed to follow the mass action
principle for which the infection rate is � = ˇI / N where ˇ is the
infection transmission rate and I / N is the density of infected indi-
viduals in the population. In the case of asymptomatic individuals
the force of infection is usually reduced by a factor rˇ. In the case of
multiple interacting subpopulations and different classes of infec-
tives the force of infection will be the sum of different contributions
as reported in Section 4.3.

Given the force of infection �j in subpopulation j, each person
in the susceptible compartment (Sj) contracts the infection with
probability �j�t and enters the latent compartment (Lj), where �t
is the time interval considered. Latent individuals exit the compart-
ment with probability ε�t, and transit to asymptomatic infectious
compartment (Ia

j
) with probability pa or, with the complemen-

tary probability 1 − pa, become symptomatic infectious. Infectious
persons with symptoms are further divided between those who
can travel (It

j
), probability pt, and those who are travel-restricted

(Int
j

) with probability 1 − pt. All the infectious persons permanently
recover with probability ��t, entering the recovered compartment
(Rj) in the next time step. All transitions and corresponding rates
are summarized in Table 2 and in Fig. 3.

4. Epidemic and mobility dynamics

Once the mobility data layers and the disease dynamics has
been defined, the number of individuals in each compartment [m]
and subpopulation j follows a discrete and stochastic dynamical
equation that reads as

X[m]
j

(t + �t) − X[m]
j

(t) = �X[m]
j

+ �j([m]) (1)

where the term �X[m]
j

represents the change due to the compart-
ment transitions induced by the disease dynamics and the transport
operator �j([m]) represents the variations due to the traveling
and mobility of individuals. The latter operator takes into account
the long-range airline mobility and sets the minimal time scale of
integration at 1 day. The mobility due to the commuting flows is

Fig. 3. Compartmental structure of the epidemic model within each subpopulation. A susceptible individual in contact with a symptomatic or asymptomatic infectious person
contracts the infection at rate ˇ or rˇˇ, respectively, and enters the latent compartment where he is infected but not yet infectious. At the end of the latency period ε−1,
each latent individual becomes infectious, entering the symptomatic compartments with probability 1 − pa or becoming asymptomatic with probability pa . The symptomatic
cases are further divided between those who are allowed to travel (with probability pt) and those who would stop traveling when ill (with probability 1 − pt). Infectious
individuals recover permanently with rate �. All transition processes are modeled through multinomial processes.
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included in the model by an effective force of infection obtained
using a time scale separation approximation as detailed in the fol-
lowing sections. The term �X[m]

j
can be written as a combination

of a set of operators Dj([m], [n]). Each Dj([m], [n]) determines the
number of transitions from compartment [m] to [n] occurring in �t
and is simulated as a random variable extracted from a multinomial
distribution. The change �X[m]

j
is then given by the sum

�X[m]
j

=
∑
[n]

{−Dj([m], [n]) +Dj([n], [m])}. (2)

As a concrete example let us consider the evolution of the latent
compartment. There are three possible transitions from the com-
partment: transitions to the asymptomatic infectious, the traveling
and the non-traveling symptomatic infectious compartments. The
elements of the operator acting on Lj are extracted from the multi-
nomial distribution

PrMultin(Lj(t), pLj→Ia
j
, pLj→It

j
, pLj→Int

j
), (3)

determined by the transition probabilities

pLj→Ia
j

= εpa�t,

pLj→It
j

= ε(1 − pa)pt�t,

pLj→Int
j

= ε(1 − pa)(1 − pt)�t,

(4)

and by the number of individuals in the compartment Lj(t) (its size).
All these transitions cause a reduction in the size of the compart-
ment. The increase in the compartment population is due to the
transitions from susceptibles into latents. This is also a random
number extracted from a binomial distribution

PrBin(Sj(t), pSj→Lj
), (5)

given by the chance of contagion

pSj→Lj
= �j�t, (6)

and a number of attempts equal to the number of susceptibles Sj(t).
After extracting these numbers from the appropriate multinomial
distributions, we can calculate the change �Lj(t) as

�Lj(t) = −
[
Dj(L, Ia) +Dj(L, It) +Dj(L, Int)

]
+Dj(S, L). (7)

4.1. The integration of the transport operator

The transport operator is defined by the airline transportation
data which provides the number of available seats ωj� between
each pair of airports (j, �). The operator is in general affected by
fluctuations coming from the fact that the occupancy rate of the
airplanes is not 100%. To take into account such fluctuations, we
assume that on each connection (j, �) the flux of passengers at time
t is given by a stochastic variable

ω̃j� = ωj�[˛ + 	(1 − ˛)], (8)

where ˛ denotes the average occupancy rate of the order of 70–90%
provided by IATA and 	 is a random number drawn uniformly in
the interval [ − 1, 1] at each time step. The number of individuals
in the compartment [m] traveling from the subpopulation j to the
subpopulation � is an integer random variable, in that each of the
X[m]

j
potential travelers has a probability pj� = ω̃j��t/Nj to go from j

to �. In each subpopulation j the numbers of individuals 
j� traveling
on each connection j → � at time t define a set of stochastic variables

{
j�}, which follows the multinomial distribution

P({
j�})=
X[m]

j
!

(X[m]
j

−
∑

�


j�)!
∏

�


j�!

∏
�

p
j�
j� ×

(
1−
∑

�

pj�

)(X[m]
j

−
∑

�


j�)

,

(9)

where (1 −∑ �pj�) is the probability of not traveling, and (X[m]
j

−∑
�
j�) stands for the number of non-traveling individuals of the

compartment [m]. The multinomial distribution provides the cor-
rect probability for traveling individuals leaving j to distribute
across the possible connections according to {pj�}. We use standard
numerical subroutines to generate random numbers of travelers
following these distributions. The transport operator in each sub-
population j is therefore written as

�j([m]) =
∑

�

(
�j(X
[m]
�

) − 
j�(X[m]
j

)), (10)

where the mean and variance of the stochastic variables are
〈
j�(X[m]

j
)〉 = pj�X[m]

j
and Var(
j�(X[m]

j
)) = pj�(1 − pj�)X[m]

j
. Direct

flights as well as connecting flights up to two-legs flights can be
considered. It is worth remarking that on average the airline net-
work flows are balanced so that the subpopulation Nj are constant
in time, e.g.,

∑
[m]�j([m]) = 0.

4.2. Time-scale separation and the integration of the commuting
flows

The GLEaM model combines the infection dynamics with long-
and short-range human mobility. Each of these dynamical pro-
cesses operates at a different time scale. The inverse of the rates of
the disease dynamics define the time scale of the stochastic process
that we can see as the average individual’s permanence in a given
compartment. For ILIs there are two important intrinsic time scales,
given by the latency period ε−1 and the duration of infectiousness
�−1, both larger than 1 day. The long-range mobility given by the
airline network has a time scale of the order of 1 day, while the com-
muting takes place in a time scale of approximately �−1 ∼ 1 / 3 day.
The explicit implementation of the commuting in the model thus
requires a time interval shorter than the minimal time of airline
transportation data. To overcome this problem, we use a time-
scale separation technique, in which the short-time dynamics is
integrated into an effective force of infection in each subpopulation.

We start by considering the temporal evolution of subpopula-
tions linked only by commuting flows and evaluate the relaxation
time to an equilibrium configuration. Consider the subpopulation j
coupled by commuting to other n subpopulations. The commuting
rate between the subpopulation j and each of its neighbors i will be
given by �ji. The return rate of commuting individuals is set to be
�. Following the work of Sattenspiel and Dietz [39], we can divide
the individuals original from the subpopulation j, Nj, between Njj(t)
who are from j and are located in j at time t and those, Nji(t), that
are from j and are located in a neighboring subpopulation i at time
t. Note that by consistency

Nj = Njj(t) +
∑

i

Nji(t). (11)

The rate equations for the subpopulation size evolution are then

∂tNjj = −
∑

i

�jiNjj(t) + �
∑

i

Nji(t),

∂tNji = �jiNjj(t) − �Nji(t).
(12)
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By using condition (11), we can derive the closed expression

∂tNjj + (� + �j)Njj(t) = Nj�, (13)

where �j denotes the total commuting rate of population j,
�j =
∑

i�ji. Njj(t) can be expressed as

Njj(t) = e−(�+�j)t

(
Cjj + Nj�

∫ t

0

e(�+�j)s ds

)
, (14)

where the constant Cjj is determined from the initial conditions,
Njj(0). The solution for Njj(t) is then

Njj(t) = Nj

1 + �j/�
+
(

Njj(0) − Nj

1 + �j/�

)
e−�(1+�j/�)t . (15)

We can similarly solve the differential equation for the time evolu-
tion of Nji(t)

Nji(t) = Nj�ji/�

1 + �j/�
− �ij

�j

(
Njj(0) − Nj

1 + �j/�

)
e−�(1+�j/�)t

+
[

Nji(0) − Nj�ji/�

1 + �j/�
+ �ij

�j

(
Njj(0) − Nj

1 + �j/�

)]
e−�t .

(16)

The relaxation to equilibrium of Njj and Nji is thus controlled by
the characteristic time [� (1 + �j / �)]−1 and �−1 in the exponentials,
respectively. The former term is dominated by 1 / � if the relation
� � �j holds. In our case, �j =

∑
iωji / Nj, that equals the daily total

rate of commuting for the population j. Such rate is always smaller
than one since only a fraction of the local population is commuting,
and it is typically much smaller than � � 3 day−1 to 10 day−1. There-
fore the relaxation characteristic time can be safely approximated
by 1 / �. This time is considerably smaller than the typical time for
the air connections of one day and hence we can approximate the
subpopulations Njj(t) and Nji(t) with their equilibrium values,

Njj = Nj

1 + �j/�
and Nji = Nj�ji/�

1 + �j/�
. (17)

This approximation, originally introduced by Keeling and Rohani
[32], allows us to consider each subpopulation j as having an effec-
tive number of individuals Nji in contact with the individuals of the
neighboring subpopulation i. In practice, this is similar to separate
the commuting time scale from the other time scales in the problem
(disease dynamics, traveling dynamics, etc.). While the approxi-
mation holds exactly only in the limit � → ∞, it is good enough as
long as � is much larger than the typical transition rates of the dis-
ease dynamics. In the case of ILIs, the typical time scale separation
between � and the compartments transition rates is close to one
order of magnitude or even larger. Eq. (17) can be then generalized
in the time scale separation regime to all traveling compartments
[m] obtaining the general expression

X[m]
jj

=
X[m]

j

1 + �j/�
and X[m]

ji
=

X[m]
j

1 + �j/�

�ji

�
, (18)

while X[m]
jj

= X[m]
j

and X[m]
ji

= 0 for all the other compartments
which are restricted from traveling. These expressions will be used
to obtain the effective force of infection taking into account the
interactions generated by the commuting flows.

4.3. Effective force of infection

The force of infection �j that a susceptible individual of a sub-
population j sees can be decomposed into two terms: �jj and �ji.
The component �jj refers to the part of the force of infection which
is due to interactions among individuals in j. While �ji indicates the

force of infection acting on susceptibles of j during their commut-
ing travels to a neighboring subpopulation i. The effective force of
infection can be estimated by summing these two terms weighted
by the probabilities of finding a susceptible from j in the different
locations, Sjj / Sj and Sji / Sj, respectively. Using the time-scale sepa-
ration approximation that establishes the equilibrium populations
of Eq. (18), we can write

�j = �jj

1 + �j/�
+
∑

i

�ji�ji/�

1 + �j/�
. (19)

We will focus now on the calculation of each term of the previous
expression. The force of infection (see Table 2) occurring in a sub-
population j is due to the local infectious persons staying at j or to
infectious individuals from a neighboring subpopulation i visiting
j and so we can write

�jj = ˇj

N∗
j

(
Int
jj + It

jj + rˇIa
jj

)
+ ˇj

N∗
j

∑
i

(
Int
ij + It

ij + rˇIa
ij

)
, (20)

where ˇj is introduced to account for the seasonality in the infec-
tion transmission rate (if the seasonality is not considered, it is a
constant), and N∗

j
stands for the total effective population in the

subpopulation j. By definition, Int
jj

= Int
j

and Int
ji

= 0 for j /= i. If we
use the equilibrium values of the other infectious compartments
(see Eq. (18)), we obtain

�jj = ˇj

N∗
j

[
Int
j +

It
j
+ rˇIa

j

1 + �j/�
+
∑

i

It
i
+ rˇIa

i

1 + �i/�
�ij/�

]
. (21)

The derivation of �ji follows from a similar argument yielding:

�ji = ˇi

N∗
i

(
Int
ii + It

ii + rˇIa
ii

)
+ ˇi

N∗
i

∑
� ∈ �(i)

(
Int
�i + It

�i + rˇIa
�i

)
, (22)

where �(i) represents the set of neighbors of i, and therefore the
terms under the sum are due to the visits of infectious individu-
als from the subpopulations �, neighbors of i, to i. By plugging the
equilibrium values of the compartment into the above expression,
we obtain

�ji = ˇi

N∗
i

⎡⎣Int
i + It

i
+ rˇIa

i

1 + �i/�
+
∑

� ∈ �(i)

It
�

+ rˇIa
�

1 + ��/�
��i/�

⎤⎦ . (23)

Finally, in order to have an explicit form of the force of infection we
need to evaluate the effective population size N∗

j
in each subpopula-

tion j, i.e., the actual number of people at the location j. The effective
population is N∗

j
= Njj +

∑
iNij , that in the time-scale separation

approximation reads

N∗
j = Int

j +
Nj − Int

j

1 + �j/�
+
∑

i

Ni − Int
i

1 + �i/�
�ij/�. (24)

Note that in these equations all the terms corresponding to com-
partments have an implicit time dependence.

By inserting �jj and �ji into Eq. (19), it can be seen that the
expression for the force of infection includes terms of zeroth, first
and second order on the commuting ratios (i.e., �ij / �). These three
term types have a straightforward interpretation: the zeroth order
terms represent the usual force of infection of the compartmental
model with a single subpopulation. The first order terms account
for the effective contribution generated by neighboring subpopula-
tions, and is due to the contacts between susceptible individuals of
subpopulation j and infectious individuals of neighboring subpopu-
lations i. This can occur in two ways – either susceptible individuals
of j visiting i or infectious individuals of i visiting j. The second
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Fig. 4. Schematic representation of the subdivision of the population in each geo-
graphical census area. The population in each geographical census area is divided
into partial populations Nxy , where x represents the subpopulation of residence and
y represents the subpopulation of the actual location at time t. Three subpopulations
are shown – i, j, � – to represent the various contributions to the force of infection
(see Eq. (19)).

order terms correspond to an effective force of infection generated
by the contacts of susceptible individuals of subpopulation j meet-
ing infectious individuals of subpopulation � (neighbors of i) when
both are visiting subpopulation i (see Fig. 4). This last term is very
small in comparison with the zeroth and first order terms, typi-
cally around two order of magnitudes smaller, and in general can
be neglected.

4.4. Seasonality modeling

To model seasonal variations we follow the approach of Cooper
et al. [12] and scale the basic reproduction ratio R0 by a seasonal
function, si(t),

si(t) =
[(

1 − Rmin

Rmax

)
sin
(

2�

365

(
t − tmax,i

)
+ �

2

)
+ 1 + Rmin

Rmax

]
1
2

,

(25)

where i stands for the North or South hemispheres. This function
is identically equal to 1.0 in the tropical regions. tmax,i is the time
corresponding to the maximum seasonal effect, Jan 15 in the North
and 6 months later in the South. Seasonality has a dual effect, it
increases the value of R0 up to Rmax = ˛maxR0 with ˛max ≡ 1.1 [26]
and reduces it down to Rmin = ˛minR0.

4.5. Age structure

In order to achieve refined analysis including the impact of an
epidemics on different age groups, it is possible to include a gener-
alization of the basic formalism that takes into account the presence
of different contact rates among individuals belonging to different
age bracket or more generally specific population groups. We start
by distinguishing among different age groups with varying contact
rates by using the results by Wallinga et al. [43]. In 2006, Wallinga
et al. [43] measured the contact rates using a group of 1813 Dutch
survey participants. With such data it is possible to write a con-
tact matrix M, describing how many interactions an individual in
one class has with individuals in a different age group. The main
characteristic of the contact matrix is its asymmetry. This is easily
explained if, for example, one considers children and adults. Chil-
dren almost always live with adults, but adults do not always live
with children. In order to obtain the effective rate of infection, we
must multiply the probability of infection by appropriately rescaled

rates describing the contacts between different age groups. A full
description of the generalization of the formalisms is reported in
Appendix A. While the theoretical and computational formalisms
are ready to be generalized to the inclusion of age classes in the
system, the main limitation to proceed along this direction is in the
lack of data. Reliable information can be obtained on the age struc-
ture of most of the countries in the world, however detailed data
on the contact matrix are limited to specific countries or settings,
therefore a data-driven generalization to the whole world is still
not available.

5. Algorithms, the simulator and its implementation

The GLEaM simulation toolbox is implemented in a modular
way. Each module performs a single function, and they can be com-
bined in different ways to include or remove specific features. In
Algorithm 1 we outline the general program flow of a basic GLEaM
run.

Algorithm 1. Generic GLEaM program flow.
Parse model file
Load data input files:

population database
commuting
flight networks

foreach timestep t:
do

Flight connections (See Algorithm 2)
Infect (See Algorithm 3)
Aggregate results for each detail level.

done

Generate final output

5.1. Long distance travel

Each time step represents a full day. At the start of the time
step, we use the flight network to move travelers to their desti-
nation using Algorithm 2. Travel is assumed to be instantaneous
with no transitions being possible on route. Performing this step
at the start of the “day”, guarantees that incoming travelers will
contact with the local inhabitants during that day. As a conse-
quence, the arrival time for the infection is the day at which the first
infected traveler arrives and this seed individual is considered to
have a full day chance of infecting others. The probability of travel-
ing changes from day to day through fluctuations in the occupancy
rate of flights, as shown in Algorithm 2, where ˛ represents the
average occupancy rate of the plane, and 	 is a stochastic random
variable uniformly distributed between [ − 1, 1]. The Flight module
can be customized in order to consider the effects of generalized or
location specific airline traffic reductions.

Algorithm 2. Long distance mobility.
foreach city i:
do

foreach neighbor j ∈ v (i):
do

Calculate traffic: ω̃ij = ωij[˛ + 	 (1 − ˛)]

Traveling probability: pij = ω̃ij
Ni

done

distribute travelers among neighbors
updated population matrix

end

5.2. Compartment transitions

The GLEaM framework is conceived in a generic way that facil-
itates the simulation of an arbitrary compartmental model that is
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given as part of the input. The infection module is completely sep-
arated from the other modules (like Flight and Aggregation). The
module can be customized in order to simulate the effect of pol-
icy measures that modify the transmission rates during a specific
period of time.

The epidemic model description is processed to generate a
directed multigraph, where each node represents a compartment
and each edge a transition, following the representation of Fig. 3.
Each edge is given a type, a weight and several other attributes.
The type identifies whether the edge corresponds to a contagion or
a spontaneous transition and the weight is the rate of transition.
In the case of contagion transitions, the infectious agent is also
identified, as there may be multiple infectious compartments as
shown by Fig. 3. This structure provides a convenient way of inter-
nally representing arbitrarily complex models as well as facilitating
an efficient implementation. The edges contain all the information
necessary to calculate the transition probabilities that can then be
used directly as arguments of the multinomial function that calcu-
lates the number of individuals making the transition.

Algorithm 3. Compartment transitions.
foreach city i:
do

calculate effective populations due to commuting

foreach initial compartment x:
do

Update transition probability to compartment y using Eq. (22) and Eq. (24).
For seasonal transitions, scale transition rate by s (t) (Eq. (25))

done

Move population between compartments using a multinomial
done

5.3. Aggregation and post-processing

The output produced by each run includes the population of each
compartment for each census area at each time step and the num-
ber of transitions along each of the edges in the transition graph. The
final step performed after each simulated day is a partial aggrega-
tion of the results, in order to both simplifying the post processing
required to obtain useful results and reducing the already con-
siderable amount of output generated for each run. At this point
in the simulation, the populations of each census area and each
compartment have already been updated and several quantities of
interest can be calculated. In particular, we calculate the number
of secondary cases generated during this specific time step and the
current incidence at each of the following aggregation levels:

• Census area
• Country
• Region
• Continent
• Hemisphere
• Globe

In the case of some countries, we also consider within-country
divisions, such as US states and Australian provinces.

After the run is finished, the output data files are post processed
by a series of Python scripts to generate the analysis, figures and
animations that are finally used. The advantage of decoupling sim-
ulation and analysis is in the flexibility it gives in tailoring the whole
process. While some post processing steps (like the generation of
epidemic profiles, arrival times and ArgGIS illustrations) are almost
always considered, others can be added, removed or customized
for specific situations. The full simulation process, containing all
the steps described above, is illustrated schematically in Fig. 5.

Fig. 5. Full illustration of the procedure used for the GLEaM simulation engine. The
left column represents input databases and the right column the data structures that
are generated. Program flow occurs along the center. The three steps in the center
box are repeated for each simulated day.

6. GLEaM at work: simulation of 2001–2002 seasonal
influenza A

In order to present a case study for the use of the GLEaM sim-
ulator we consider the spreading of seasonal influenza worldwide.
Here we want to show how the model calibration may proceed by
using real data from the surveillance and monitoring systems and
what parameters are crucial in the description of the disease spread.
Every year, seasonal influenza circulates globally and infect from 5%
to 15% of the population, resulting in 3–5 million severe cases and
∼500,000 deaths worldwide [42,45]. For the sake of simplicity, we
focus on one influenza season with one dominant strain, in order to
neglect complications arising from the interplay of different strains.
This makes the 2001–2002 season a good candidate, which satis-
fies these criteria, among all the seasons from 1998 to 2006. In
the Northern hemisphere, the season 2001–2002 has less than 5%
mean proportion of annual A/H3N2 isolates, while in 2001–2002
this proportion is above 60% [20].
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6.1. Model calibration and simulation

The main issue in the simulation of the influenza is the
parametrization of the model in terms of the transmission rate
and the initial condition for the circulation of a given strain at the
global level. The origin of annual influenza circulation is still an
unknown issue [37], however, from past experiences, new variants
of influenza often originate in East-Southeast Asia [37], or Southeast
China [13,40,41]. For season 2001–2002, according to the epidemi-
ological records [44], Hong Kong is the only country/region in SE
Asia having sporadic A/H3 influenza activity during June and July
2001. We therefore choose Hong Kong as the source of the influenza
strain and explore possible starting dates between June and July.
We further assume that a fraction equal to 10−5 of the city’s popula-
tion is latent, consistently with the literature and with the specific
choice for the same season in Ref. [26]. In the case of influenza,
we can implement the compartmental structure reported in Fig. 3.
For the parameters of the model, we consider a latent period of
�−1 = 1.1 days, and infectious period of �−1 = 2.95 days. The aver-
age generation interval for our choice is around 4 days, a value
close to published estimates for the A/H3N2 [5]. Also in agreement
with the literature, we assume that only a fraction of � = 60% of the
world population is susceptible to the circulating strain [26]. For
the seasonality rescaling, we use the same seasonal rescaling as in
Ref. [1]. We fix ˛max and ˛min at 1.1 and 0.1, respectively, to reflect
the seasonal variabilities of influenza transmission.

The transmissibility of the disease is measured by the basic
reproduction number R0 which is defined as the average number of
infected cases generated by the introduction of a single infectious
individual into a fully susceptible population. For the compartmen-
talization used here, R0 can be obtained in each subpopulation by
evaluating the largest eigenvalue of the Jacobian or next genera-
tion matrix of the infection dynamics in a disease-free state [15,28],
yielding

R0 = ˇ�−1(1 − pa + rˇpa). (26)

Given the parameters pa and rˇ, the value of R0 depends on the
transmission rate ˇ that fixes the reference reproductive num-
ber in each subpopulations. For seasonal influenza, however, since
the fraction of initially susceptible population is not one, the
reproductive number must be rescaled by the proportion of suscep-
tible individuals and we define an effective reproductive number
Reff = �R0.

In order to find a best estimate of the transmissibility and ini-
tial start date t0, we perform simulations of the model for varying
values of these two parameters and compare the results with the
empirical data on the influenza activity peak in the French regions.
The French Sentinelles Network is a surveillance system reported
by voluntary and unpaid general practitioners (GP), which keeps
a weekly record of ILI consultations since 1984 [23]. From the
data, we can obtain for each French region the time of the activ-
ity peak temp peak. We then perform a latin square sampling in the
phase space of the parameters Reff and t0, constructing the surface
representing the �2 values obtained by comparing the empirical
peak times with the average simulated activity peak times tsim peak

i
obtained by analyzing 2,000 stochastic GLEaM realizations for each
sampled point. This Monte Carlo latin sampling procedure is com-
putationally intensive as for each sampled point 2000 realization of
the epidemic propagation worldwide must be generated. We have
opted for a trade-off in the accuracy and computational cost sam-
plings the phase space with a resolution �Reff = 0.03 and �t0 = 7
days. The best fit for the initial condition and the transmissibility is
associated with the minimum of the �2 surface. Fig. 6 reports the
�2 surface as a function of Reff and seeding date t0. The best fit range
for Reff is between 1.47 and 1.53 with the initial date between late
June and early July, depending on the Reff. From the analysis of the

Fig. 6. Monte Carlo latin sampling. �2 values as functions of effective reproduction
ratio (Reff) and seeding date (t0) of simulated epidemics obtained by 2000 stochastic
runs for each pair of parameter values. Activity peak times of ILI consultations in
the various French regions have been selected as probe and were compared with
simulation results to obtain �2. As seen in the figure, there are 4 local minimums.
Parameter values chosen for the analysis in Fig. 7 are shown by the crosshairs.

surface, we find a best estimate corresponding to Reff = 1.50 and t0 =
July 11. A more accurate analysis with confidence interval is needed
in order to provide a full discussion of these epidemiological results.
This is however beyond the scope of this paper, where we want only
to provide a practical example of the GLEaM implementation.

The best estimate of the parameters is obtained by using data
only from a single country, in this case France. In order to provide
an example of the accuracy of the GLEaM model in reproducing the
spatio-temporal patterns of the disease spreading, we can com-
pare the numerical results obtained with the parameters fitted
in France with empirical data in several countries where reliable
surveillance data is available. We have chosen a set of countries
for which the reported dominant strain is A/H3N2 with a sufficient
number of reported cases. Data is obtained from either the national
public health agencies or the regional organizations. The full list of
selected countries is shown in Table 3.

In Fig. 7, we report the activity peaks for the selected coun-
tries and compare our predictions with the 2001–2002 weekly
surveillance data. The simulation and empirical data show a good
agreement in most of the countries and regions. All data are nor-
malized to 1, which guarantees that activities are shown on the
same scale. For the simulated data, the activity peaks are reported
with median values from 2000 stochastic simulations, along with
the 95% reference range. For the empirical data, in addition to the
number of laboratory confirmed cases, we also refer to additional
indicators, such as ILI or Acute Respiratory Infection (ARI) con-
sultation rate (per 100,000 population or per 1000 patient visits)
which is usually conducted by physicians. For selected countries
having only one type of dominant strain, the percentage of ILI is
also a good indicator of influenza activity for the seasonal activity.

Table 3
Data sources for ILI% in the 2001/2002 influenza season.

Country Type Data source

US A/H3N2 CDC
Canada A/H3N2 PHA Canada
UK A/H3N2 ECDC, UK HPA
Portugal A/H3N2 ECDC
Spain A/H3N2 ECDC
Belgium A ECDC
Australia A/H3N2 DHA
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Fig. 7. Comparison of simulation results with the ILI consultations and number of confirmed cases of influenza A(H3N2). Simulations have been run by setting Reff = 1.5 and
seeding date of July 11th, as marked in Fig. 6. In order to obtain epidemic activity timelines, empirical and each of simulated profiles have been normalized to 1. Then the
time windows have been evaluated relative to the peak activities in each case. For instance, lightest yellow bars of empirical data (lightest gray of simulated data) correspond
to the time window in which activity is between 60% and 70% of the peak activity. Simulation results correspond to 95% reference range of simulated epidemics. The overlap
between the predicted and observed cases is striking. It should be noted that parameter values have been obtained only by fitting the surveillance data in France, which has
enabled GLEaM to reproduce the global pattern of the influenza season successfully.

Table 3 shows the dominant virus type and the data source used for
individual countries. While the analysis reported here must be con-
sidered only as a simple illustration of the GLEaM implementation,
the results appear to recover with good agreement the main spatio-
temporal pattern of the 2001–2002 season. We want to stress that
the timing of the epidemic spreading across different regions of the
world is mostly determined by the human mobility patterns that
are integrated in the GLEaM model with great accuracy. The best fit
of the parameters obtained by the timeline of the epidemic in one
or more countries allows the model to self-consistently capture the
mobility of infected individuals and case importation that set the
epidemic timeline worldwide.

7. Conclusions

Here we have provided a detailed description of the GLEaM sim-
ulator that is a discrete stochastic epidemic computational model
based on a metapopulation approach in which the world is defined
in geographical census areas connected in a network of interactions
by human travel fluxes corresponding to transportation infrastruc-
tures and mobility patterns. Given the multitude of scales and
mobility layers existing in the GLEaM model, the process of interest
can be studied on a wide range of scales ranging from small admin-
istrative units (counties, municipalities) to worldwide. Although
the GLEaM model has been used in the past in the analysis of
realistic scenarios and in comparison with real data, also in rela-

tion with H1N1 pandemic, here we have presented for the first
time all the data integration details, models and algorithms imple-
mentation that are under the hood of the GLEaM simulator. It is
also worth noticing that while the model is being developed and
tested in the context of emerging diseases such as new pandemic
strains, it considers different transportation and interaction layers
and distinguishes the mobility modeling from the dynamical pro-
cess mediated by the human dynamics. This allows the integration
of different processes of social contagion that are not necessarily
of biological origin but occurs taking advantage of the individuals
mobility such as information spreading, social behavior, etc. GLEaM
has proved to be very flexible and we are working to make the
GLEaM platform available to the scientific community at large. In
particular we are developing an easy to use interface to the soft-
ware that allows for the simulation and visualization of the spread
of epidemics at a global scale.
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Appendix A. Generalization including age structure

We now introduce the formalisms that allow for the inclusion of
different contact rates among individuals in different age groups.

While we still make the fundamental assumption that the epi-
demic is governed by a single transmission rate ˇ, we must now
rescale it to take into account the different contact rates among
different age groups. The contact matrix M, shown in Table A.1
describes how many contacts an individual in one class has with
individuals in a different age group. Columns correspond to sur-
vey participants, and rows to the people they interacted with. As
an example, we use the data gathered in 2006 by Wallinga et al.
[43] who measured the contact rates using a group of 1813 Dutch
survey participants. For self consistency, we required that the total
number of interactions between two age groups must be the same.
In other words, so we must have

mabNb = mbaNa

Symmetrized matrix values are then given by Cab = mab · N / Na,
where Na is the number of individuals in age group a and N is the
total number of individuals. Values of Na for both the survey partic-
ipants and the entire Dutch population are given in Table A.2 and
the full symmetric matrix C is shown in Table A.3.

While Wallinga considers only 6 age groups, our demographic
data, as provided by the US Census Bureau [31] is more fine grained.
We make the simplest choice and assume that people are uniformly
distributed within each 5-year compartment, thus combining the
age groups so that they fit the Wallinga picture.

A change in the way the different populations interact with each
other necessarily implies a change in the way the epidemic spreads,
requiring modifications to the R0 calculation. We apply the tech-

Table A.1
Contact matrix M. From Ref. [43].

Age of contacts Age of survey participants

1–5 6–12 13–19 20–39 40–59 60+

0–5 12.26 2.28 1.29 2.50 1.15 0.83
6–12 2.72 23.77 2.80 3.02 1.78 1.00
13–19 2.00 3.63 25.20 5.70 4.22 1.68
20–39 11.46 11.58 16.87 25.14 16.43 8.34
40–59 3.59 4.67 8.50 11.21 13.89 7.48
60+ 1.94 1.95 2.54 4.25 5.59 9.19

Table A.2
Wallinga’s population structure.

Age group Participants Population (×103)

0 0 184
1–5 125 876
6–12 154 1265
13–19 152 1642
20–39 681 4857
40–59 360 3312
60+ 341 2477

Total 1813 14,614

Table A.3
Symmetrized contact matrix. From Ref. [43].

Age of contacts Age of participants

1–5 6–12 13–19 20–39 40–59 60+

0–5 169.14 31.47 17.76 34.50 15.83 11.47
6–12 31.47 274.51 32.31 34.86 20.61 11.50
13–19 17.76 32.31 224.25 50.75 37.52 14.96
20–39 34.50 34.86 50.75 75.66 49.45 25.08
40–59 15.83 20.61 37.52 49.45 61.26 32.99
60+ 11.47 11.50 14.96 25.08 32.99 54.23

niques described in [15,28] to the general age structure case of
interest.

Let us define �x = (x1, . . . , xn) to be a vector containing the num-
ber of individuals in each infected compartment. We have 4 such
compartments, L = x1, It = x2, Int = x3 and Ia = x4. The matrix F, defining
the rate of creation of new infected cases is then:

F ≡

⎛⎜⎝ 0 ˇ ˇ rˇˇ
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠
with a simple meaning: Latent cases (first row) are created (from
susceptible) with rate ˇ (rˇˇ) through interaction with It,nt (Ia).
Since these are the only ways in which the disease can spread
through a Susceptible population, all other entries in the matrix are
null. After infection, the disease progresses through several stages
as described by the matrix V = (vab) where element vab is the num-
ber of individuals leaving compartment a to compartment b, minus
the number of individuals following the opposite path. For seasonal
flu, we have:

V ≡

⎛⎜⎝ � 0 0 0
− (1 − pa) pt� � 0 0
− (1 − pa) (1 − pt) � 0 � 0
−pa� 0 0 �

⎞⎟⎠
Using these two matrices we can calculate the next generation
matrix,

N ≡ FV−1

that describes the complete epidemic process and whose interpre-
tation is relatively simple: F is the rate at which new infections
are created and V−1 is the average duration of each infected com-
partment. The basic reproductive ratio, R0 is finally given by the
maximum eigenvalue of this matrix that in a model without age
structure reads as

R0 = �max (N) ≡ ˇ

�
[rˇpa + (1 − pa)].

Adding age structure results in a proliferation of infected com-
partments. In the case of the Wallinga’s age grouping, we have 6
times as many infected compartments. Fortunately, the fact that we
do not consider aging implies that individuals never move between
compartments corresponding to different age groups, thus greatly
simplifying the analysis. We define the new vector �x† to be a con-
catenation of 6 vectors �x each corresponding to a different age
cohort. Mixing between the different groups results in a suscep-
tible individual becoming latent by interacting with an infectious
person from any other group. In matrix notation, and using the
previous definitions, the new infection matrix F† is given by:

F† = M × F,

where × represents the Kronecker product. After the initial infec-
tion, the disease progresses as before with each age group being
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isolated from all others. The progression matrix V† is then:

V † = I× V,

where I is the 6 × 6 identity matrix. The next generation matrix can
now be written as:

N† = M × FV−1

Therefore, the new basic reproductive number can be written as a
function of the previous one:

R†0 = R0 · �max (M) (A.1)

This formulation is completely generic and completely generaliz-
able for any number of age groups with only a very small numerical
effort. A specific value of R0 can be set by inverting this expression
and calculate the appropriate value of ˇ(R0).

Before we can use this formulation in our global simulation, we
must take into account the different demographics of each coun-
try or census areas and their change in time. Using the definitions
above, we can write:

�Ia = ˇ
∑

b

mab

Na
SaIb ≡ ˇ

∑
b

cabSaIb (A.2)

to describe the increase in the number of people in compartment Ii
in a basic SI model. Defining the fraction of individuals in compart-
ment Ia as �Ia ≡ Ia/N, we rewrite this expression as:

��Ia = ˇ�Sa

∑
j

Cab�Ib

where Cab is the symmetric matrix defined above. Since this expres-
sion depends only on the relative fraction of individuals in each
compartment and not on the details of how many people are actu-
ally in each compartment, we can safely conclude that Cab is the
matrix that must be kept constant for every population. We can
now identify:

Cab ≡ m†
ab

N†
a

N† ≡ C†
ab

or, in other words:

m†
ab

≡ Cab
N†

a

N† (A.3)

as the matrix that we must use in Eq. (A.1) and that will differ from
country to country. Substituting in Eq. (A.2) we obtain:

�Ia = ˇ
∑

b

Cab
SaIb
N

,

where N is the total population for the subpopulation considered
and Cab is the same for every population. The resulting force of
infection is then:

�a = ˇ
∑

b

Cab
Ib
N

. (A.4)

During the derivation of this expression, and for the sake of clarity,
we considered only a single population. The expression for the full
force of infection including the mobility dynamics Eq. (A.4) can be
obtained after the application of the prescription of Section 4. This
can be easily done by replacing every term of the form ˇiIi by

ˇi

∑
b

CabIb
i . (A.5)
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