SIMPLE MODELS FOR SCALING IN PHYLOGENETIC TREES

EMILIO HERNÁNDEZ-GARCÍA, MURAT TUĞRUL, E. ALEJANDRO HERRADA, VÍCTOR M. EGUIÚZ and KONSTANTIN KLEMM

IFISC (UIB-CSIC) Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain

∗Bioinformatics, Department of Computer Science, University Leipzig, Härtselstr. 16-18, 04107 Leipzig, Germany

Received November 14, 2008; Revised January 31, 2009

Many processes and models — in biological, physical, social, and other contexts — produce trees whose depth scales logarithmically with the number of leaves. Phylogenetic trees, describing the evolutionary relationships between biological species, are examples of trees for which such scaling is not observed. With this goal, we analyze numerically two branching models leading to nonlogarithmic scaling of the depth with the number of leaves. For Ford’s alpha model, although a power-law scaling of the depth with tree size was established analytically, our numerical results illustrate that the asymptotic regime is approached only at very large tree sizes. We introduce here a new model, the activity model, showing analytically and numerically that it also displays a power-law scaling of the depth with tree size at a critical parameter value.

Keywords: Phylogenetic trees; Ford’s alpha model; activity model.

1. Phylogenetic Branching and Models

Although most modern studies on complex networks [Albert & Barabási, 2002; Boccaletti et al., 2006] consider situations in which nodes are connected by multiple paths, the case of trees, i.e. graphs without closed cycles, is suitable to describe many natural and artificial systems. Branching in real trees [Stevens, 1974], in blood vessels [West et al., 1997], in river networks [Rodriguez-Iturbe & Rinaldo, 1997] or in computer file systems [Klemm et al., 2005, 2006] produce complex tree patterns that are worthy to be described and understood. Trees are the outcome of classifications algorithms [Jain & Dubes, 1988] and of branching processes [Harris, 1963] and they also arise when computing the community structure [Guimerà et al., 2003] or as a backbone (for example, a minimum spanning tree) for more connected networks [Garlaschelli et al., 2003; Hernández-García et al., 2007; Rosénfeld et al., 2008].

Evolutionary processes leading to speciation are also summarized in phylogenetic trees [Cracraft & Donoghue, 2004]. In these trees the leaves represent living species and each internal node represents a branching event in which an ancestral species diversified into daughter species. Each internal node is thus the root of its associated subtree which consists of all its descendant nodes. Phylogenetic tree topology encodes information on evolutionary mechanisms which is beginning to be scrutinized [Burlando, 1990, 1993; Ford, 2006; Blum & François, 2006; Hernández-García et al., 2007; Herrada et al., 2008].
The earliest mathematical model of evolutionary branching was proposed by Yule [1925]. Apart from the distinction he introduced between genera and species diversification, the model is equivalent to the Equal Rates Markov (ERM) model [Harding, 1971; Cavalli-Sforza & Edwards, 1967]: starting from a single ancestral species, one among the tree leaves currently existing is chosen at random, bifurcating into two new leaves. Then this operation is repeated for a number of time steps or, equivalently, until the tree reaches a desired size. The topological characteristics of the constructed trees are surprisingly robust, being shared apparently by different models such as the coalescent and others [Aldous, 2001]. Essentially what is needed is that different branches at a given time, branch independently and with the same probabilities. When extinction is taken into account, the same topology is recovered when considering only the lineages surviving at the final time. One of the characteristics of this type of branching is a distribution of subtree sizes scaling at large sizes as A^{-1}, add not out -
, a no u t -
ig
[De Los Rios, 2001; Harris, 1963] or optimization prescriptions. The first model we present, the nontrivial asymptotic scaling (of the power law trees at large sizes the mean depth scales with the number of leaves faster than the ERM behavior in Eq. (1). The breakdown of the ERM behavior indicates that evolutionary branching should present correlations either in time or between the different branches. Mechanisms producing trees with non-ERM scaling for the depth have been identified, as for example, the situation of critical branching [De Los Rios, 2001; Harris, 1963] or optimization of transport processes [Banavar et al., 1999]. In the phylogenetic context, models of this type have been proposed [Aldous, 2001; Pinelis, 2003; Blum & François, 2006; Ford, 2006], although most of them lack a clear interpretation in biological terms.

In the following, we present results for two branching models showing asymptotically non-ERM, i.e. nonlogarithmic, scaling for the depth. Their study is motivated, on the one hand, by the empirical results above from real phylogenetic trees. On the other hand, they pertain to the small set of available models with non-ERM scaling which are defined dynamically (i.e. by a set of rules that are applied to the present state of a growing tree to find the state at the next time step) rather than being characterized globally by statistical or optimization prescriptions. The first model we present, Ford’s alpha model, is a simple example for which the nontrivial asymptotic scaling (of the power law
type) has been analytically identified. We analyze it numerically to confirm this prediction and to display the behavior at finite sizes. We introduce later a new model, the activity model, which also leads to nonlogarithmic depth scaling at a critical parameter value.

2. Ford’s Alpha Model

Ford [2006] introduced a model for recursive tree formation: At a given step in the process, the tree is a set of leaves connected by terminal links to internal nodes, which are themselves connected by internal edges until reaching the root (the root itself is considered to have a single edge, which we count as internal, joining to the first bifurcating internal node; with this convention, a tree of \(n \) leaves has \(n - 1 \) internal edges). Then, a probability of branching proportional to \(1 - \alpha \) is assigned to each leaf, and proportional to \(\alpha \) to each internal edge. By normalization these probabilities are, respectively, \((1 - \alpha)/(n - \alpha) \), and \(\alpha/(n - \alpha) \). When a leaf is selected for branching, it gives birth to a couple of new ones, as in the ERM model. But when choosing an internal edge, a new leaf branches from it by the insertion of the edge of a new internal node. For \(\alpha = 0 \) we have the standard ERM model. For \(\alpha = 1 \) the completely unbalanced comb tree, in which all leaves branch successively from a main branch, is generated. Intermediate topologies are obtained for \(\alpha \in (0, 1) \).

![Examples of trees with 32 leaves, generated from several models: (a) A tree generated with the ERM model, which is equivalent to the alpha model with \(\alpha = 0 \). (b) The completely unbalanced tree, which is equivalent to the alpha model with \(\alpha = 1 \). (c) A tree generated with the alpha model for \(\alpha = 0.5 \). (d) A tree generated with the activity model for \(p = 0.5 \). The trees in (c) and (d) display an imbalance intermediate between (a) and (b).](image-url)
By considering the effect of the addition of new leaves on the distances between root and other nodes, Ford [2006] derived exact recurrence relationships which, when written in terms of the average depth, lead to:

\[
\langle d \rangle_{n+1} = \frac{n}{n-\alpha} \langle d \rangle_n + \frac{2n(1-2\alpha)}{(n+1)(n-\alpha)}. \tag{2}
\]

\(\langle d \rangle_n\) is the mean depth of the leaves of a tree with \(n\) leaves. By assuming a behavior \(\langle d \rangle_n \sim n^{\nu}\) at large \(n\), and expanding Eq. (2) in powers of \(1/n\), we get

\[
\nu = \alpha, \quad \text{if } 0 < \alpha \leq 1. \tag{3}
\]

If \(\alpha = 0\) the standard ERM behavior, Eq. (1), is recovered.

Figure 3 shows numerical results for the depth of trees generated with this model. Note that the predicted asymptotic behavior is attained but only at very large tree sizes, in general, sizes much larger than the tree sizes of the examples shown in Fig. 2 and of the available empirical phylogenies. As analytically demonstrated [Ford, 2006] depth statistics of subtrees of given size extracted from a large tree behave as data from trees of that size directly generated by the alpha model algorithm.

While the Ford model gives a simple mechanism for scaling in trees with a tunable exponent, the dynamical rule of posterior insertion of inner nodes is hard to justify in the context of evolution (although one can think about the modeling of errors arising in phylogenetic reconstruction methods when incorrectly assigning a splitting to a nonexistent ancestral species). This motivates the introduction of a new model described in the next section.

3. Activity Model

In this section, we show that tree shapes distinct from the ERM model may also result from a memory in terms of internal states of the nodes. The activity model proposed here is conceptually similar to the class of models suggested by Pinelis [2003]. However, the present model distinguishes only between active and inactive nodes and has a single parameter controlling the spread of activity.

Starting from a single node (the root), a binary tree is generated as follows. At each step, a leaf \(i\) of the tree is chosen and branched into two new leaves. Each of the two new leaves, independently of the other, is set active with probability \(p\) or inactive with probability \(1-p\). The branching leaf \(i\) is chosen at random from the set of active leaves if this set is nonempty. Otherwise, \(i\) is chosen at random from the set of all leaves. Figure 4 shows that for \(p = 1/2\) the model generates trees with mean depth growing as the square root of tree size.
(note the log-log scale). Figure 2 displays a small-
size example of such trees. For values of \(p \) below or above 1/2, \(\langle d \rangle \) seem to increase logarithmically
with \(n \).

Here we give a simplified argument to under-
stand the observed exponent 1/2 of the distance scaling with system size in the case \(p = 1/2 \). At the
time, the growing tree has \(n \) leaves in total, let
\(D_i(n) \) be the expected sum of distances of active
leaves from the root, and \(D_i(n) \) the analogous
quantity for the inactive leaves. When a randomly chosen
active leaf — at distance \(d_a \) from root — branches, the
expected increase of \(D_a(n) \) is

\[
\Delta D_a(n) = D_a(n+1) - D_a(n) = p^2(d_a + 2) + 2p(1-p) \cdot 1 + (1-p)^2(-d_a) = (2p-1)d_a + 2p. \tag{4}
\]

Here the three terms of the second line are for
the activation of two, one and zero of the new
leaves, respectively. This expression is appropriate
as far as the number of active nodes is not zero.
Simultaneously, the expected change in \(D_b(n) \) during
the same event is

\[
\Delta D_b(n) = p^2 \cdot 0 + 2p(1-p)(d_a + 1) + (1-p)^2(2(d_a + 1)) = 2(1-p)(d_a + 1). \tag{5}
\]

We now average \(\Delta D_i(n) \) over the different choices
of the particular active leaf that has been
branched. This amounts to replacing \(d_a \) in the above
formulae by \(\langle d_a \rangle \), the average depth of the active
leaves in a tree of \(n \) leaves. Writing \(D_i(n+1) = D_i(n) + \Delta D_i(n) \), for \(i = a, b \), one would get a
closed system for the quantities \(D_i(n) \) provided
\(\langle d_a \rangle_n \) is expressed in terms of them. This can be
done by writing \(\langle d_a \rangle_n = D_a(n)/a(n) \), where \(a(n) \) is the expected number of active leaves in a tree
of \(n \) leaves. This expected value is used here as an
approximation to the actual number of active
leaves.

The recurrence equations for \(D_i(n) \) are spec-
cially simple in the most interesting case \(p = 1/2 \),
since the dependence in \(\langle d_a \rangle \) disappears from one
of the equations:

\[
D_a(n+1) = D_a(n) + \Delta D_a(n) \tag{6}
\]

\[
D_b(n+1) = D_b(n) + \langle d_a \rangle_n + 1. \tag{7}
\]

The solution (with initial condition \(D_b(1) = 0 \) of
Eq. (6) is simply:

\[
D_a(n) = n - 1. \tag{8}
\]

Since the probabilities of an increment or decrement
(by one unit) of the number of active leaves are the
same and time-independent for \(p = 1/2 \), the number
of active nodes perform a symmetric random walk.
critical branching process. The special case of a node does not lead to its removal from here may be mapped to a branching process [Harris, 1963], with the difference that here the death (inactivation) of a node does not lead to its removal from the tree. The special case \(p = 1/2 \) corresponds to a critical branching process.

4. Discussion
We have presented and studied two simple models which lead to nonlogarithmic scaling of the tree depth. In contrast with many of the available models displaying this behavior [Banavar et al., 1999; Aldous, 2001; Blum & François, 2006; Ford, 2006] they are formulated as dynamical models involving growing trees, so that rules are given to obtain the tree at the next time step from the present state. Their study has been motivated by data from phylogenetic branching, and they are interesting additions to our present understanding of complex networks and trees.

A recent analysis of several evolutionary models including species competition [Stich & Maurin, 2008] indicates that in these models correlations are finally destroyed by mutation processes and persist only for a finite correlation time. Thus sufficiently large trees would have a scaling behavior closer to the asymptotic ERM predictions. Since the largest phylogenies in databases such as TreeBASE have only some hundreds of leaves, it is possible that the observed imbalance and depth scaling is a finite-size regime. Nevertheless, models going beyond the ERM scaling are needed at least to explain this finite-size regime, and also to elucidate the true asymptotic scaling behavior. Here, we have also observed large finite-size transients in the alpha model of Sec. 2.

The different types of scaling of depth with size can be interpreted as indicating different values of the (fractal) dimensionality of the trees. This is so because \(\langle d \rangle \) is a measure of the diameter of the tree, and because for a binary tree the total number of nodes is simply twice the number of leaves. Since the simplest definition of dimension \(D \) of a network [Eguíluz et al., 2003] is given by the growth of the number of nodes as the diameter increases, \(n \sim \langle d \rangle^D \), power law scaling of the type \(\langle d \rangle \sim n^{\nu} \) indicates that the tree can be thought as having a dimension \(D = 1/\nu \). The logarithmic scaling in the ERM model is an example of the small-world behavior common to many network structures [Albert & Barabási, 2002], which is equivalent to having an effective infinite dimensionality, whereas the power law scaling reveals a finite dimension for the tree, which implies a more constrained mode of branching. The alpha model produces trees with tunable dimension from 1 to \(\infty \), and the critical activity model gives two-dimensional trees.

The final aim of the modeling of phylogenetic trees is to provide biological mechanisms explaining the branching topology of the Tree of Life. In this direction, the branching of internal edges in the Ford model has no obvious biological interpretation. The activity model puts the mechanisms of birth-death critical branching [Harris, 1963] within a framework of transitions between node internal states similar in spirit to the approach of Pinelis [2003]. The need to tune a parameter to attain the non-ERM critical behavior is however a limitation for its applicability. Much additional work is needed to identify the proper biological mechanisms behind evolutionary branching and adequate modeling of them.
Acknowledgments

We acknowledge financial support from the European Commission through the NEST-Complexity project EDEN (043251) and from MICINN (Spain) and FEDER through project FISICOS (FIS2007-60327).

References

