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Abstract
We present the results of a wavelet-based approach to the study of the
chaotic dynamics of a one-dimensional model that shows a direct transition
to spatiotemporal chaos. We find that the dynamics of this model in the
spatiotemporally chaotic regime may be understood in terms of localized
dynamics in both space and scale (wave number). A projection onto a
Daubechies basis yields a good separation of scales,as shown by an examination
of the contribution of different wavelet levels to the power spectrum. At
most scales, including the most energetic ones, we find essentially Gaussian
dynamics. We also show that removal of certain wavelet modes can be carried
out without altering the dynamics of the system as described by the Lyapunov
spectrum.

PACS numbers: 47.54.+r, 47.20.Lz, 47.20.Bp, 47.27.Te

1. Introduction

A major goal in the study of temporal chaos in spatially extended systems [1–3] (spatiotemporal
chaos) is to find a statistical description of the behaviour of a particular dynamical system in
the limit of large length and long time scales. This is analogous to a hydrodynamic description
of a system of microscopic particles satisfying classical mechanics. Some progress has been
made in this regard in recent years, including constructing a long wavelength, long time theory
of the Kuramoto–Sivashinsky (KS) equation [4]. In this paper [4], the authors obtained an
effective stochastic equation which belongs to the Kardar–Parisi–Zhang universality class
in the hydrodynamic limit. This was obtained by incorporating the chaotic dynamics of
the small KS system in a coarse-graining procedure. The basic premise of the approach
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is that the spatiotemporal chaos of a large system can be understood in terms of the chaos
observed in mutually coupled, small systems. Two other recent studies [5, 6] of the KS
equation used a wavelet decomposition to characterize its spatiotemporal chaos. The first
investigation led to results similar to those of [4], suggesting a statistical description of a group
of identical short length subsystems, slowly driven via interactions with the larger scales. More
precisely, in [5] it was shown that an effective equation could be obtained and consistently
approximated by a forced Burgers equation, for scales far from the cutoff between small and
large wavelengths. This work was extended in [6] where the authors found that projecting
onto a spline wavelet basis enabled a good separation of length scales, with each having its
own characteristic dynamics. At large scales they found essentially slow Gaussian dynamics,
which can be understood in terms of local events. The results are also consistent with the
picture of weakly interacting small subsystems and the so-called ‘extensive chaos’ (in which
the Lyapunov dimension is proportional to Ld , where L is the linear system size and d the
dimension of space). The authors also discussed various correlation lengths and demonstrated
the existence of a spatial interaction length, which provides a limit on how much one may
limit spatial interactions without changing the dynamics significantly (and hence limits how
small a system one can use).

Motivated by the success of the wavelet decomposition of the KS model, we
have undertaken such a decomposition for another one-dimensional model, the so-called
Nikolaevskii equation [7–9]. This model was originally proposed to describe the propagation
of longitudinal seismic waves. It was subsequently shown to exhibit a direct transition from
a spatially uniform, stationary state to a spatiotemporally chaotic state as a control parameter
was varied [9]. The spatiotemporal chaotic behaviour of this system (which has been named
soft mode turbulence) is different from that of the KS equation as a result of the existence of an
additional continuous symmetry in the model (beyond the conventional symmetries of space
and time translation invariance). This model is particularly interesting in that there are two
control parameters, ε and the system size L, such that one can study the transition to chaos
as a function of ε in terms of power law behaviour, scaling etc. In this sense, it is a richer
model than the KS equation and many results have been obtained for it, including a calculation
of the Lyapunov exponents, Lyapunov dimension and Kolmogorov–Sinai entropy for several
values of ε in the limit of large L such that extensive chaos holds [10]. It has also been shown
that the distribution function for the order parameter is Gaussian for large wavelengths and
large times. In this paper, we carry out a wavelet decomposition similar to that in [6], using
a Daubechies basis. We find that the most energetic modes have a Gaussian distribution for
this choice of basis. We also calculate the Lyapunov spectrum and find that one can remove a
certain set of the modes without altering this spectrum, suggesting that in this sense one can
obtain a more minimal description of spatiotemporal chaos for this model.

The outline of the paper is as follows. In section 2 we define the model and the wavelet
decomposition scheme. In section 3 we present the main results of our analysis. This includes
a calculation of the energy distribution (power spectrum) and the probability density functions
for the wavelet coefficients. It also includes a calculation of the effects on the Lyapunov
spectrum resulting from removing various modes from the dynamics. In section 4 we present
briefly the conclusions of this work.

2. Model and wavelet decomposition

The Nikolaevskii model is defined by the partial differential equation

∂v

∂t
+

∂2

∂x2

[
ε −

(
1 +

∂2

∂x2

)2
]

v + v
∂v

∂x
= 0 (1)
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with 0 � x � L and periodic boundary conditions, where ε and L are two control parameters
for the model. In the present paper we study the model for ε = 0.5 and L ≈ 158; these
values are large enough to see well-developed spatiotemporal chaos [10]. The general form
of a discrete wavelet decomposition for a field v(x, t) can be written as

v(x, t) =
∑

j

∑
k

ajk(t)�jk(x) (2)

where the set �jk(x) = 2j/2�(2jx − k) forms an orthogonal basis in the sense that

〈�jk | �j ′k′ 〉 ≡
∫ ∞

−∞
�jk(x)�j ′k′(x) dx = δj,j ′δk,k′ . (3)

The indices j, k are integers which we specify below. The function �(x) is called the wavelet
function (or ‘mother’ function) and the wavelet coefficients can be obtained as

ajk(t) = 〈v | �jk〉 =
∫ ∞

−∞
v(x, t)�jk(x) dx. (4)

One obtains equations of motion for the wavelet coefficients by substituting (2) into (1). Those
equations of motion can then be numerically solved in order to obtain the time evolution of
the wavelet coefficients and, hence, information about the chaotic behaviour of the model.
Alternatively, one can solve equation (1) directly and use equation (4) to obtain the wavelet
coefficients. We follow the latter approach in this paper; at the required times we decompose
the resulting solution for v(x, t) in terms of the Daub4 orthogonal basis set. The Daub4
is the simplest of a wavelet family named DaubK constructed by Daubechies [11] where
K ranges from 4 to 20. Based on this wavelet family a very effective algorithm has been
developed [12]. Thus by this method we obtain the time dependence of the wavelet coefficients
ajk(t).

The Nikolaevskii equation (1) is integrated numerically using a version of the
pseudospectral method combined with a fourth-order predictor–corrector integrator. The
details of this method are given in the appendix. The length L of the system is L = Nδx,
where N is the total number of points of the system. It is convenient to choose N = 2J+1 (J
is an integer which represents the largest level of the wavelet) in order to apply Daub4 in an
efficient pyramidal scheme. In our case we usually chooseJ = 8 so N = 512 and L = 158.72.
The total integration time in our simulation goes from t = 600 000 to t = 1100 000 (in the
dimensionless units of equation (1)), depending on which quantity we calculate. Usually,
once we have reached the chaotic state, we perform time averages of the quantities of
interest.

The wavelet decomposition using Daub4 is carried out in a pyramidal scheme such that at
level j there is a total of 2j coefficients: ajk(t) with k = 1, . . . , 2j and j = 0, . . . , J , except
for the coarsest level j = 0 where there are two coefficients, namely a00(t) and a01(t), instead
of just one. To be more precise in the notation, we define the wavelet contribution at level j as

vj (x, t) =
∑

k

ajk(t)�jk(x) (5)

such that the field is a sum of all its wavelet contributions, v(x, t) = ∑
j vj (x, t). Note that as

the wavelet level becomes coarser, i.e. reducing j by one, the number of wavelet coefficients
contributing to vj (x, t) is therefore reduced by a factor of two and that the total number of
wavelet coefficients ajk(t) equals the number of points in the system, N = 2J+1.
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Figure 1. (a) The energy distribution per wavelet of the field v(x, t) satisfying the Nikolaveskii
equation (1) with ε = 0.5 in a finite length L ≈ 158. The results shown come from a numerical
integration and have been averaged over time. Note that the peak is located around the fifth wavelet
level. (b) The structure factor S(q) for the same system.

3. Wavelet analysis: results

3.1. Energy distribution

We analyse first the energy density of the chaotic field v(x, t). This is defined as

E(t) = L−1〈v | v〉 = L−1
∫ L

0
v2(x, t) dx (6)

and can be written as the sum of the energies at each wavelet level, E(t) = ∑
j ej (t) with

ej (t) = L−1〈vj | vj 〉. Figure 1(a) shows the energy distribution per wavelet level for the
Nikolaevskii model, averaged over time. One notes that the energy of the field is mainly
concentrated at wavelet level j = 5. As a comparison, we also show the structure factor S(q),
which can be thought of as the energy distribution in Fourier space, in figure 1(b). It is easy
to show for this model [8] that the unstable modes (within linear stability analysis) in Fourier
space are located between q1,2 = (1 ± √

ε)1/2, with the most unstable mode at qm � 1.0,
consistent with the results shown in figure 1(b); in our case, with ε = 0.5, q1 � 0.54 and
q2 � 1.31. Since q = 2πn/L, with L = 158.72, the most energetic mode should be at
nm = qmL/2π � 25 and the smallest and largest unstable modes are at n1 = q1L/2π � 13
and n2 = q2/2π � 33 respectively. Therefore, there should be about 33 − 13 = 20 unstable
or marginal modes concentrated in the neighbourhood of the nm = 25th mode, i.e. from the
15th to the 35th mode. Each Fourier mode is complex and counts as two real modes, so there
are 40 unstable real modes corresponding to the energy peak at wavelet level j = 5. Lastly,
if one compares figures 1(a) and (b), one also notes that for small q there is no similarity
between the two energy distributions, implying that for small q the overlap between different
wavelet levels is relatively strong.

3.2. Temporal behaviour and probability distribution of wavelet coefficients

Following [6] we show the temporal behaviour of some wavelet coefficients ajk(t) in
figure 2. At each level j we show the intermediate wavelet coefficient with k = 2j−1.
Note that, from very early times, there is a chaotic behaviour in the temporal evolution.
We also show for comparison the spatiotemporal behaviour of different wavelet modes
vj (x, t) = ∑

k ajk(t)�jk(x) for j = 1, 2, . . . , 7. In figure 3, we show a typical spatiotemporal
function vj (x, t) for the case j = 2. It is difficult to draw any conclusion about the real space
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Figure 2. The temporal behaviour of the wavelet coefficients ajk for different levels j and a
selected intermediate value of k.
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Figure 3. The spatiotemporal behaviour of the wavelet mode vj (x, t) = ∑
k ajk(t)�jk(x) for

levels j = 2.

structure and the output of the wavelet analysis from comparison of figures 2 and 3. In
figure 4 we show the probability density functions (PDFs) for the wavelet coefficients from
level j = 1 to j = 7, averaged over time. Namely, for fixed j we sum over all k for the ajk

coefficients to obtain a mean value. We repeat this over all times sampled and plot these mean
values to obtain the PDF. The PDFs for j = 0 and j = 8 are not shown here, since they are
just Dirac-delta functions with spikes at zero. The delta function-like behaviour at the largest
wavelet level j = 8 simply means that there is a strong dissipation at large wavenumbers in
the Fourier spectrum (cf [6]). (In figure 4 we can already see a similar behaviour developing
at the level j = 7.) The spike at j = 0, however, only implies that the coarsest part is not
suitable for describing the field and its two components compete with each other everywhere
to yield a zero average value for the amplitude. We have tried to fit these PDFs to a Gaussian
distribution. In figure 4 we see that for j = 1, . . . , 7 the PDFs are essentially Gaussian.

The wavelet decomposition of the spatiotemporal chaos in this model allows us to examine
the chaotic behaviour of the system at different spatial scales. In general, as can be seen
somewhat in figure 1(a), the large j levels correspond to large wave numbers or small spatial
scales and the small j levels correspond to small wave numbers or large spatial scales. In this
section, we try to confirm this in more detail by showing the structure factors which result from
removing various wavelet levels. In figures 5(a)–(f ) we show the structure factor for some of
these ‘reduced level’ systems, with the full structure factor for the Nikolaevskii model shown
for comparison. Figure 5(a) shows the result of removing wavelet level j = 8, for which
the new structure factor is almost identical with the exact one. This shows that removing the
smallest spatial scale in the wavelets (or, equivalently, the shortest wavelengths) leaves the
system invariant. Figure 5(b) shows the result of removing levels j = 7 and j = 8. In this case,
there is a small difference between the two structure factors for large wave numbers, indicating
that the large j levels of the wavelets only contribute to the short-wavelength dynamics (i.e.
the fast dissipation) of the model. Figure 5(c) shows the result of removing levels j = 6, 7
and 8. In this case, there is a significant difference between the two structure factors near
the peak. This is not surprising since j = 6 is the second most energetic level in the model.
Figure 5(d ) shows the results of removing levels j = 0, 1 and 2. The resulting structure
factor shows that these levels are responsible for the small peak in the structure factor near
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Figure 4. The probability distribution function for the wavelet coefficients ajk for levels j = 1 to
j = 7, averaged over time.

wave number q ≈ 0. Figure 5(e) shows the role of the most energetic levels in the model, i.e.
j = 4, 5 and 6. We see that these levels are responsible for the dominant part of the structure
factor. Furthermore, we also see that without level j = 3, the small peak near q ≈ 0 becomes
even smaller in comparison with figure 5(d ). Finally, figure 5(f ) shows the result of removing
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Figure 5. The structure factors which result from removing different wavelet levels (dashed line)
compared with the full structure factor (solid line). The levels in each figure are: (a) level j = 8 has
been removed, (b) levels j = 7, 8 have been removed, (c) levels j = 6, 7, 8 have been removed,
(d) levels j = 0, 1, 2 have been removed, (e) only levels j = 4, 5, 6 have been included, (f ) all
levels j > 2 have been removed.

all levels with j > 2. As one would expect, one only has the peak near small q. If one
considers all of the above results, one obtains a clear picture of the scale localization involved
in the wavelet decomposition.

3.3. Lyapunov spectrum

We conclude by examining the effect of removing wavelet levels on the Lyapunov spectrum
of the system. This provides us with the most detailed understanding of the contribution of
various levels to the chaotic dynamics of the system. To calculate the new Lyapunov spectrum,
we remove a given j level from v(x, t) = ∑

j vj (x, t), with vj (x, t) given by equation (5).
We then use the new field to calculate the Lyapunov exponents along its trajectory, as in the
original calculation with the full v(x, t). Figure 6(a) shows the Lyapunov spectrum obtained
after removing the j = 8 level, while figure 6(b) shows the Lyapunov spectrum obtained after
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Figure 6. The Lyapunov spectrum obtained including all the wavelet levels (solid line) compared
with that obtained removing level j = 8 (left) and levels j = 7, 8 (right).

Table 1. The Lyapunov dimension and the Kolmogorov–Sinai entropy computed including
different wavelet levels.

Wavelet levels Lyapunov dimension Kolmogorov–Sinai entropy

including j = 0–8 52.31 5.27
including j = 0–7 51.89 5.15
including j = 0–6 51.40 4.81
including j = 0–5 57.42 6.82
including j = 0–4 79.64 3.28
including j = 4–8 57.10 8.48
including j = 4–6 57.00 7.95
including j = 0–2, 4–8 55.13 8.01

removing j = 7 and j = 8. The Lyapunov spectrum for the Nikolaevskii model is also shown
for comparison. In table 1 we show the Lyapunov dimension D and the Kolmogorov–Sinai
entropy H for these different cases. It seems that to a very good approximation the chaotic
behaviour of the system does not depend on the j = 8 level. Thus a simplified statistical
description of the Nikolaevskii equation can be obtained by excluding the j = 8 level, without
altering the chaotic dynamics for the system. However, it is also clear from inspection of
table 1 that removing any additional levels significantly alters the behaviour. Thus all these
levels play an important role in the spatiotemporal chaotic dynamics of the system.

3.4. Wavelet decomposition of the KS model

As mentioned in the introduction, Wittenberg and Holmes [6] performed a wavelet
decomposition of the KS model, using an orthogonal spline basis. The KS model has the
form

∂v

∂t
−

[
ε −

(
1 +

∂2

∂x2

)2
]

v + v
∂v

∂x
= 0. (7)

They found that the PDFs for the most energetic modes were non-Gaussian. This differs
from our results for the Nikolaevskii model, in which the distribution functions for the most
energetic modes are Gaussian (to a very good approximation and excluding the peak near
zero). To see whether this difference is significant or simply results from a different choice of
basis functions in the two studies, we have calculated the PDFs for the same KS model using
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Figure 7. The probability distribution function for the wavelet coefficients ajk for levels j = 1 to
j = 7 in the KS model, averaged over time.

the Daub4 basis. We found that with this choice of basis the PDFs for the most energetic
modes are in fact Gaussian as shown in figure 7. We find non-Gaussian behaviour only at
the small j levels. Thus it seems that any non-Gaussian behaviour of the wavelet coefficients
depends on the basis chosen for the wavelet decomposition.
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4. Conclusions

We have shown that the dynamics of the one-dimensional Nikolaevskii equation in the
spatiotemporally chaotic regime may be approached in terms of localized dynamics in both
space and scale (wave number). Specifically, a projection onto a particular Daubechies basis
(Daub4) yields a good separation of scales, as shown by an examination of the contribution of
different wavelet levels to the power spectrum. At most scales, including the most energetic
ones, we find essentially Gaussian dynamics. Perhaps most importantly, we also found that
removal of certain wavelet modes can be made without altering the chaotic dynamics of the
system as described by the Lyapunov spectrum.

Many different length scales have been proposed for the description of spatiotemporal
chaos [2]. These include the usual correlation length ξ2 for the (two point) order parameter
and the dimension correlation length ξδ, obtained from the Lyapunov dimension D(L) as
(ξδ)

d = limL→∞ Ld/D(L). Here d denotes the space dimensionality and L the linear
dimension of the system. We have studied both of these lengths as a function of the control
parameter ε for this model. The results of these calculations, as well as for other quantities
characterizing the spatiotemporal chaos will be presented elsewhere [13]. Since it is difficult
to calculate the Lyapunov dimension for high-dimensional systems, Zoldi and Greenside have
proposed using a Karhunen–Loeve dimension DKL, defined by the number of eigenmodes in
a proper orthogonal decomposition necessary to capture a given fraction f of the total energy.
From this dimension one can define a Karhunen–Loeve correlation length ξKL. However, for
a translationally invariant system, such as the Nikolaevskii equation with periodic boundary
conditions, the Karhunen–Loeve eigenmodes are Fourier modes. Thus the Karhunen–Loeve
dimension length for any f can be computed directly from the power spectrum S(q) and thus
contains no more dynamical information than ξ2. As Wittenberg and Holmes have pointed out
[6] all these lengths (with the possible exception of the dimension correlation length ξδ) are
measures only of spatial disorder and thus yield no information about the temporally chaotic
dynamics responsible for the disorder. As a consequence, Wittenberg and Holmes introduced
another length scale, the so-called dynamical interaction length. This is a length scale lc
such that if one deletes interactions for length scales greater than lc in the wavelet Galerkin
projection of the model equation of interest, one alters the chaotic dynamics of the model
(i.e. changes the Lyapunov spectrum). Although this is in principle a very interesting length
scale to study, it involves a numerical calculation which for our model is computationally
expensive and beyond our current resources. As a consequence, we leave this important issue
for future investigation.

Finally, as mentioned earlier, Wittenberg and Holmes [6] performed a wavelet
decomposition of the Kuramoto–Sivashinsky (KS) model, using an orthogonal spline basis.
They found that the PDFs for the most energetic modes were non-Gaussian. To see whether
the choice of basis functions makes a difference for the PDFs, we calculated the PDFs for the
KS model using the Daub4 basis. We found that with this choice of basis the PDFs for the most
energetic modes are in fact Gaussian. We found non-Gaussian behaviour only at the small
j levels. Thus it would seem that any non-Gaussian behaviour of the wavelet coefficients
depends on the basis chosen for the wavelet decomposition.
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Appendix

In this appendix we give some details of the algorithm, based on the pseudospectral method,
which we have used for the numerical integration of the Nikolaevskii equation (1). We assume
that the field v(x, t) satisfies periodic boundary conditions in the interval [0, L] and define its
Fourier transform as [14]

v̂(q, t) ≡ F [v(x, t)] = 1

L

∫ L

0
dx v(x, t) eiqx . (A.1)

The inverse transform is given by

v(x, t) ≡ F−1[v̂(q, t)] =
∞∑

k=−∞
v̂k(t) e−iqkx (A.2)

with the notation v̂k(t) = v̂(qk, t), qk = 2πk/L. These exact expressions are approximated
by using the discrete Fourier transform,

v̂k(t) = 1

N

N−1∑
n=0

vn(t) ei 2π
N

kn (A.3)

and

vn(t) =
N
2∑

k=− N
2 +1

v̂k(t) e−i 2π
N

kn (A.4)

where the real space discretization step is �x, and vn(t) = v(n�x, t), L = N�x (we assume
that the number of points in real space, N, is an even number).

After applying the Fourier operator, we obtain a set of N coupled ordinary differential
equations for the Fourier coefficients vk(t),

dv̂k(t)

dt
= ωkv̂k(t) + âk(t) k = −N

2
+ 1, . . . ,

N

2
(A.5)

where ωk = ω(qk) and

ω(q) ≡ q2(ε − (1 − q2)2) (A.6)

and the non-linear term is

âk(t) = − 1
2F[(F−1[qv̂(q, t)])2]|q=qk

. (A.7)

Next, we make a change of variables based upon the exact solution of the linear part of
equation (A.5). The new variables ẑk(t) are defined by

ẑk(t) = e−ωkt v̂k(t). (A.8)

The equations for the new variables are
dẑ

dt
= e−ωkt âk(t) k = −N

2
+ 1, . . . ,

N

2
. (A.9)

To this set of equations we apply the fourth-order Adams–Bashforth four-step predictor–
corrector method [15] with time step h,

ẑk(t + h) = ẑk(t) +
h

24
[55 e−ωkt âk(t) − 59 e−ωk(t−h)âk(t − h)

+ 37 e−ωk(t−2h)âk(t − 2h) − 9 e−ωk(t−3h)âk(t − 3h)] (A.10)



Wavelet description of the Nikolaevskii model 1335

and

ẑk(t + h) = ẑk(t) +
h

24
[9 e−ωk(t+h)âk(t + h) + 19 e−ωkt âk(t)

− 5 e−ωk(t−h)âk(t − h) + e−ωk(t−2h)âk(t − 2h)]. (A.11)

We now undo the change of variables in equation (A.8). Therefore, the previous equations
written in terms of the original variables v̂k , give us the final integration algorithm as the
combination of the predictor step

v̂k(t + h) = ehωk

[
v̂k(t) +

h

24
(55âk(t) − 59 ehωk âk(t − h)

+ 37 e2hωk âk(t − 2h) − 9 e3hωk âk(t − 3h))

]
(A.12)

and the corrector step

v̂k(t + h) = ehωk v̂k(t) +
h

24
[9âk(t + h) + 19 ehωk âk(t) − 5 e2hωk âk(t − h) + e3hωk âk(t − 2h)].

(A.13)

We have used this algorithm as given by equations (A.12)–(A.13) with a space
discretization step �x = 0.31 and a number of points N = 8192. We have found that
the algorithm is stable for a rather large time step. Most of our simulations presented in this
paper use a time step h = 0.1 although we have checked that a smaller time step h = 0.01 in
the numerical scheme gives basically the same results as far as the global quantities analysed
in this paper are concerned.
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