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Abstract

We have analyzed di�usion in a double well potential driven by a colored non-Gaussian noise.
Using a path-integral approach we have obtained a consistent Markovian approximation to the
initially non-Markovian problem. Such an approximation allows us to get analytical expressions
for the “mean-8rst-passage-time” that has been tested against extensive numerical simulations.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Non-Gaussian processes; Non-Markovian processes; First passage time;
Path integrals

1. Introduction

The consideration of noise sources with 8nite correlation time (i.e. colored noise) has
become a subject of current study in the context of realistic models of physical systems
[1–3]. Some authors have focused on the obtention of Markovian approximations, trying
to capture the essential features of the original non-Markovian problem. One particular
case is the “uni8ed colored noise approximation” (UCNA) of HBanggi and collabora-
tors [4,5]. The original formulation of the problem is in terms of a non-Markovian
stochastic di�erential equation in the relevant variable. However, this problem can be
transformed into a Markovian one by extending the number of variables and equations.
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The UCNA consists of an adiabatic elimination-like procedure [6–8], that allows us to
reduce this extended problem to an “e�ective” Markovian one in the original variable
space. The ultimate goal of this procedure is achieving a consistent single variable
Fokker–Planck approximation for the probability distribution of the original variable.
The UCNA approximation has been justi8ed as a reliable Markovian approximation by
means of path integral techniques [9,10].
Although, for the sake of mathematical simplicity, a majority of studies treats the

white-noise case only, it is expected that, because of their nature, Juctuations coupled
multiplicatively to the system will show some degree of time correlation or “color”
[1–3], and hence give rise to new e�ects. A few examples are: reentrant behavior as
a consequence of color in a noise-induced transition [11], an ordering non-equilibrium
phase transition induced in a Ginzburg–Landau model by varying the correlation time of
the additive noise [12,13], and a new reentrant phenomenon found in a simple model of
noise induced phase transitions when multiplicative colored noise is considered [14,15].
In another context, most studies of the phenomenon of stochastic resonance (SR)

[16] have been done assuming white noise sources, with a few exceptions that studied
the e�ect of colored noises [17,18]. In all cases the noises are assumed to be Gaussian
[6–8]. However, some experimental results in sensory systems, particularly for one kind
of cray8sh [19] as well as recent results for rat skin [20], o�er strong indications that the
noise source in these systems could be non-Gaussian. This point of view is supported by
the results obtained in a recent contribution [21], where the study of a particular class of
Langevin equations having non-Gaussian stationary distribution functions [22,23] was
made use of. The work in Refs. [22,23] is based on the generalized thermostatistics
proposed by Tsallis [24–26] which has been successfully applied to a wide variety of
physical systems [27–35].
Here we present an UCNA-like approximation to the problem of non-Gaussian col-

ored noise. We exploit a scheme, based on a path integral description of the problem
for Gaussian colored noise, analogous to that used for the obtention of the UCNA
and its generalizations [9,10,36–38]. Such a procedure allows us to obtain an “e�ec-
tive Markovian” approximation to the original non-Markovian problem. Our aim is to
obtain analytical expressions for some relevant quantities (particularly the mean 8rst
passage time) that could be exploited to predict qualitatively the behavior, due to the
presence of non-Gaussian colored noise, of many relevant systems.
We consider the following problem:

ẋ=f(x) + g(x)�(t) ; (1)

�̇=− 1
�
d
d�

Vq(�) +
1
�
�(t) ; (2)

where �(t) is a Gaussian white noise of zero mean and correlation 〈�(t)�(t′)〉=
2D(t − t′); Vq(�) is given by [22]

Vq(�)=
1

�(q− 1)
ln
[
1 + �(q− 1)

�2

2

]
; (3)
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where �= �=D. The function f(x) is derived from a double well potential U (x),
f(x)=− dU (x)=dx=−U ′(x). This problem corresponds to the case of di�usion in a
potential U (x), induced by �, a colored non-Gaussian noise. Clearly, when q → 1 we
recover the limit of � being a Gaussian colored noise.
The outline of the paper is as follows: in Section 2 we brieJy analyze the properties

of the process �. In Section 3, we show how to obtain the e�ective Markovian Fokker–
Planck equation using a path integral treatment similar to the case of Gaussian colored
noises [9,10,36,37] and derive the stationary probability. In Section 4, we derive the
expression for the mean 8rst passage time (MFPT). In Section 5, the latter results are
compared with exhaustive Monte Carlo simulations. Finally, in Section 6, we draw
some conclusions.

2. Process �

In this section in order to determine the properties of the process � and the range
of validity of the present study, we brieJy analyze the stochastic process characterized
by the Langevin equation given in Eq. (2), that is

�̇=− 1
�

d
d�

Vq(�) +
1
�
�(t) : (4)

This has the following associated Fokker–Planck equation (FPE) for the time-dependent
probability density function Pq(�; t):

@tPq(�; t)=
1
�
@�

(
Pq

dVq
d�

)
+

D
2�2

@2�Pq : (5)

It turns out that the stationary distribution Pst
q (�) is only well-de8ned for q∈ (−∞; 3),

whereas for q¿ 3; Pst
q (�) is not normalizable and cannot be accepted as a true

probability function. The 8nal expression for Pst
q (�) depends on q:

• For q∈ (1; 3), we obtain a Tsallis-exponential type form

Pst
q (�)=

1
Zq

[
1 + �(q− 1)

�2

2

]−1=(q−1)

∀�∈ (−∞;∞) (6)

with the normalization

Zq =
∫ ∞

−∞
d�
[
1 + �(q− 1)

�2

2

]−1=(q−1)

=
√

�
�(q− 1)

�(1=(q− 1)− 1=2)
�(1=(q− 1))

: (7)

(� indicates the Gamma function.) The asymptotic behavior is Pst
q (�) ∼ �−2=(q−1)

for |�| → ∞. As anticipated, for q¿ 3 the normalization factor, Zq, diverges.
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• For q=1 we recover the Gaussian distribution

Pst
1 (�)=

1
Z1

exp
(
−�

�2

2

)
(8)

with Z1 =
√
�=�. In this case of q=1 the process � is nothing but an Ornstein–

Uhlenbeck noise.
• Finally, for q∈ (−∞; 1) we obtain a cut-o� distribution, namely

Pst
q (�)=




1
Zq
[1− ( �w )

2]1=(1−q) if |�|¡w ;

0 otherwise
(9)

with the cut-o� value given by w= [(1−q)�=2]−1=2, and the normalizing factor being

Zq =
∫ w

−w
d�
[
1−

( �
w

)2]1=(1−q)

=
√

�
�(1− q)

�(1=(1− q) + 1)
�(1=(1− q) + 3=2)

: (10)

The distribution Pst
q (�) is an even function and therefore the mean value is 〈�〉=0.

It can be easily veri8ed that the second moment 〈�2〉 is 8nite for q¡ 5
3 and diverges

for q∈ [ 53 ; 3). More precisely we have

〈�2〉=
{ 2

�(5−3q) if q∈ (−∞; 53 ) ;

∞ if q∈ [ 53 ; 3) :
(11)

In order to characterize even further the stochastic process �, we now consider its
normalized time correlation function C(t)= 〈�(t+t′)�(t′)〉=〈�2〉, in the stationary regime
t′ → ∞. It is not possible to obtain exact analytical expressions for C(t). However,
given the form of Eq. (4) it is possible to scale out the parameters � and D. De8ning
z=
√
(�=D)� and s= t=�, we arrive at an equation independent of � and D:

dz
ds

=
−z

1 + (q− 1)z2=2
+ �̂(s) (12)

with 〈�̂(s)�̂(s′)〉=2(s−s′). This leads to C(t)=Cq(t=�) where Cq(s)= 〈z(s+s′)z(s′)〉=
〈z2〉 is a universal function depending only on the parameter q. In the case q=1, pro-
cess z is an Ornstein–Uhlenbeck noise and the correlation function is easily obtained
as C1(s)= exp(−s). We have observed, numerically, that this exponential decay of the
correlations is still valid for q¡ 1 where we can write Cq(s)= exp(−s=sq). This expo-
nential behavior fails for q¿ 1 where, on the other hand, Cq(s) can be approximated
by a Tsallis-like exponential [24–26] Cq(s)= [1+(q−1)s=sq]1=(1−q). The characteristic
correlation time sq de8ned, for instance as

sq =
∫ ∞

0
ds Cq(s) ; (13)

is such that it diverges for q→ 5
3 as sq =2=(5 − 3q). As shown in Fig. 1, this phe-

nomenological relation is clearly consistent from the numerical simulations of the
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Fig. 1. Correlation time sq of Cq(s), the correlation function of the process �, as a function of q. Simulations
are indicated by dots and theory by a full line.

process z. Notice that in the limit q→ 1 it gives the exact result s1 = 1 (corresponding
to the Ornstein–Uhlenbeck process). Although we have not been able to derive this
result analytically, a very simple calculation is able to predict the divergence of sq for
q= qc = 5

3 . We have

dCq(s)
ds

=−
〈

z(s)z(0)
1 + (q− 1)z(s)2=2

〉
≈ − 1

sq
Cq(s) ; (14)

where we have approximated

sq ≈ 1
1 + (q− 1)〈z2〉=2 =

2(2− q)
5− 3q

; (15)

which indeed diverges as sq ∼ (5− 3q)−1 although with a di�erent prefactor from the
one observed numerically.
To conclude, in this section we have characterized the process � by computing its

stationary probability distribution and correlation function. It turns out that the pdf
does not exist for q¿ 3 while the second moment diverges for q¿ 5

3 . The distribution
extends to ±∞ if q¿ 1 while for q¡ 1 there is a cut-o�. Finally, the correlation
function can be 8tted by an exponential decay for q6 1, while for q¿ 1 it is 8tted by
a Tsallis exponential. The characteristic time for the decay of the correlations diverges
as q→ qc = 5

3 as sq ∼ (qc − q)−1.

3. E�ective Markovian approximation

As indicated in Section 1, applying the path-integral formalism to the Langevin
equations given in Eqs. (1) and (2), and making an adiabatic-like elimination procedure
[9,10,36,37] it is possible to arrive to an e5ective Markovian approximation. Here we
sketch such a procedure.



96 M.A. Fuentes et al. / Physica A 303 (2002) 91–104

The FPE associated to Eqs. (1) and (2) is

@Pq(x; �; �; t)
@t

=− @
@x

([f(x) + g(x)�]Pq(x; �; �; t))

+
@
@�

(
�−1

[
d
d�

Vq(�)
]
Pq(x; �; �; t)

)
+

D
�2

@2

@�2
Pq(x; �; �; t) :

(16)

The path-integral representation for the transition probability, corresponding to the
Langevin equations given in Eqs. (1) and (2) or to the associated FPE in Eq. (16) is
[9,10]

Pq(xb; �b; tb | xa; �a; ta; �)=
∫ x(tb)=xb; �=�a

x(ta)=xa; �=�b

D[x(t)]D [�(t)]D[px(t)]D[p�(t)]eSq; 1 ;

(17)

where px(t) and p�(t) are the canonically conjugate variables to x(t) and �(t), respec-
tively. Sq;1 is the stochastic action given by

Sq;1 =
∫ tb

ta
ds

(
ipx(s)[ẋ(s)− f(x(s))− g(x(s))�(s)]

+ ip�(s)
[
�̇(s) + �−1

[
d
d�

Vq(�(s))
]]

+
D
�2
(ip�(s))2

)
: (18)

The Gaussian integration over p�(s) yields

Pq(xb; �b; tb | xa; �a; ta; �)=
∫ x(tb)=xb; �=�a

x(ta)=xa; �=�b

D[x(t)]D[�(t)]D[px(t)]eSq; 2 (19)

with

Sq;2 =
∫ tb

ta
ds
(
ipx(s)[ẋ(s)− f(x(s))− g(x(s))�(s)] +

�2

4D

∫ tb

ta
ds′

×
[
�̇(s) + �−1

[
d
d�

Vq(�(s))
]
(s− s′)

] [
�̇(s′) + �−1

[
d
d�

Vq(�(s′))
]])

:

(20)

The integration over px(s) is also immediate, yielding

Pq(xb; �b; tb | xa; �a; ta; �)∼
∫ x(tb)=xb; �=�a

x(ta)=xa; �=�b

D[x(t)]D[�(t)]

×
[∫

ds(ẋ(s)− f(x(s))− g(x(s))�(s))
]
eSq; 3 (21)
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with

Sq;3 =
∫ tb

ta
ds

(
�2

4D

[
�̇(s) + �−1

[
d
d�

Vq(�(s))
]2])

(22)

and [
∫
ds(ẋ − f(x)− g(x)�)] indicates that, at each instant of time, we have

�(s)=
(ẋ(s)− f(x(s)))

g(x(s))
: (23)

The last condition makes trivial the integration over �(s). It corresponds to replacing
�(s) and �̇(s) by Eq. (22) and by

�̇(s)=− 1
g(x)2

dg(x)
dx

ẋ(s)(ẋ(s)− f(x(s))) +
1

g(x)

(
Bx(s)− d

dx
f(x(s)ẋ(s))

)
;

(24)

respectively. The resulting stochastic action corresponds to a non-Markovian descrip-
tion as it involves Bx(s). In order to obtain an e5ective Markovian approximation we
resort to the same kind of approximations and arguments used in relation with col-
ored Gaussian noise [9,10,36,38], that allows us to get a result resembling the UCNA.
In simple words, such an approximation corresponds to neglecting all contributions
including Bx(s) and=or ẋ(s)n with n¿ 1. Doing this we get the approximate relation

�̇+ �−1
[
d
d�

Vq(�)
]
≈− 1

g(x)

(
d
dx

f(x)ẋ − f(x)
d
dx

ln g(x)ẋ
)

+
1

�g(x)
ẋ(s)− f(x(s))

1 + �(q−1)
2 (f(x)g(x) )

2
− 1

�g(x)
�(q− 1)f(x)2ẋ(s)

(1 + �(q−1)
2 (f(x)g(x) )

2)2
:

(25)

As in the case of UCNA, this approximation will give reliable results for small values
of �.
The 8nal result for the transition probability is

Pq(xb; �b; tb | xa; �a; ta; �)=
∫ x(tb)=xb; �=�a

x(ta)=xa; �=�b

D[x(t)]eSq; 4 (26)

with (for the simple case g(x)= 1)

Sq;4 =
1
4D

∫ tb

ta
ds

([
−�

d
dx

f(x) +
[1− �(q−1)

2 f(x)2]

[1 + �(q−1)
2 f(x)2]2

]
ẋ

− f(x)

[1 + �(q−1)
2 f(x)2]

)2
: (27)

It is immediate to recover some known limits. For �¿ 0 and q→ 1 we get the known
Gaussian colored noise result (Ornstein–Uhlenbeck process) [9], while for q �=1 and
�→ 0 we 8nd the case of Gaussian white noise.
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The FPE for the evolution of the probability P(x; t) corresponding to the above
indicated path-integral representation is

@tP(x; t)=− @x[A(x)P(x; t)] + 1
2@

2
x[B(x)P(x; t)] ; (28)

where

A(x)=
U ′(

1−(�=2D) (q−1)U ′2

1+(�=2D) (q−1)U ′2

)
+ �U ′′[1 + (�=2D) (q− 1)U ′2]

(29)

and

B(x)=D
(

[1 + (�=2D) (q− 1)U ′2]2

�U ′′[1 + (�=2D) (q− 1)U ′2]2 + [1− (�=2D) (q− 1)U ′2]

)2
: (30)

The stationary distribution of the FPE in Eq. (28) results in

Pst(x)=
ℵ
B
exp[− #(x)] ; (31)

where ℵ is the normalization factor, and

#(x)= 2
∫

A
B
dy : (32)

The indicated FPE and its associated stationary distribution allow us to obtain the
MFPT through a Kramers-like approximation. This quantity is the necessary ingredient
to work in a large variety of problems.

4. Mean �rst passage time

The MFPT can be obtained, in a Kramers-like approximation [6–8,39] from

T (x0)=
∫ x0

a

dy
&

∫ y

−∞

dz &
B

; (33)

where

&(x)= exp
(
−2
∫

dy
A
B

)
: (34)

We will focus on polynomial-like forms for the potential and adopt

U (x)=
x4

4
− x2

2
: (35)

For this kind of potential the normalization constant ℵ diverges for any value of
�¿ 0. This can be seen from the asymptotic behavior of #(x), for x→∞: #(x)→ 0,
while B−1 →∞, resulting in an ill-de8ned stationary probability density in Eq. (31).
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In order to 8nd approximate relations for the MFPT, and other related quantities,
we assume that Eq. (28) is valid only for values of x near the wells and when the
dispersion of the � process is 8nite, that is 〈�2〉¡∞ (or q∈ (−∞; 53 )). Such a cuto� is
justi8ed a posteriori, analyzing the probability distributions that can be obtained from
the simulations.
In order to obtain the MFPT and related quantities, we have integrated Eq. (33),

replacing the potential given by Eq. (35) in the expressions for A(x) and B(x).
It is worth remarking here that the relevant quantity is not the white noise intensity

D but the non-Gaussian noise intensity DnG. Both quantities are related through (for
instance see Eq. (11))

DnG =2D(5− 3q)−1 :

We will use DnG in all our results.

5. Theoretical results and simulations

In this section we analyze the di�erent results for the MFPT and PDF obtained in
the previous section, as a function of the noise intensity D for di�erent situations: 8xed
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Fig. 2. PDF as a function of the variable x for: (a) q=1:25, �=1; (b) q=1:25, �=0:5; (c) q=0:75, �=1;
(d) q=0:75, �=0:5.



100 M.A. Fuentes et al. / Physica A 303 (2002) 91–104

0.2 0.4 0.6 0.8 1.0

10

20

30

T
 

 (
ar

b.
 u

ni
ts

)

D
nG

 (arb. units)

0.2 0.4 0.6 0.8 1.0

10

20

30

40

T
  

(a
rb

. u
ni

ts
)

D
nG

 (arb. units)(b)

(a)

Fig. 3. MFPT as a function of the noise intensity for q=1 and (a) �=0:025 (squares indicate simulations
while the full line indicates theory); (b) �=0:1 (simulations are indicated by dots and theory by a broken
line).

q and various �, 8xed � and various q, etc. In order to test our theoretical predictions
we have carried out numerical simulations to calculate both the MFPT and the PDF.
Starting from the initial condition (x; �)= (−1; 0), we consider MFPT as the time

in which the variable x reaches the value 0. The numerical simulations have been
carried out considering Eqs. (1) and (2), which in discrete-time representation were
characterized by the Heun method [40] using the random variables generated by the
Box–Mueller algorithm [41]. All our simulations were performed using a time step
Rt=10−4 and averaging over 5× 104 realizations.

Fig. 2 shows the results for the PDF obtained from the simulations for the parameters
indicated in the caption. We can see that the assumption in Eq. (28) becomes a good
approximation only for values of x near the wells. The e�ect of the non-Gaussian noise
(q �=1) on the PDF is apparent.
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triangles and theory by a broken line); (b) q=1; circles (simulations) and full line (theory); (c) q=1:5,
squares (simulations) and dotted line (theory).
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Figs. 3 and 4 show both simulation and theoretical results for the MFPT. In the
case of 8xed q, that is in Fig. 3, we see good qualitative agreement between theory
and simulations, and a reasonable agreement with the results of previous works for
the case of Gaussian noises [42–46]. Fig. 4 depicts the other situation, that is 8xed �
and di�erent values of q, where the theory shows a behavior similar to the numerical
experiments for DnG6 0:5. For larger values of DnG, the noise intensity becomes the
order of the barrier height and the Kramers-like approximation breaks down. For this
reason the theoretical results, presenting a crossing between curves with di�erent values
of q depart slightly from the behavior indicated by simulations.

6. Conclusions

We have studied the problem of di�usion in a double well potential driven by a
non-Gaussian colored noise source. We started analyzing a particular class of Langevin
equations (Eq. (2)) having non-Gaussian stationary distribution functions [22,23]. In
order to obtain an e�ective (UCNA-like) Markovian approximation to the original
non-Markovian problem, we have approached Eqs. (1) and (2) exploiting a scheme,
based on a path-integral description of the problem for Gaussian colored noise, analo-
gous to that used for the obtention of the UCNA and its generalizations [9,10,36,38].
Such an e�ective Markovian approximation allows us to obtain analytical expressions

for some relevant quantities, particularly the MFPT. The comparison of the theoreti-
cal results for the MFPT with those obtained from Monte Carlo simulations show a
good agreement indicating that the analytical expressions can be used to predict qual-
itatively the behavior of systems submitted to such kinds of non-Gaussian colored
noises.
Regarding the behavior of T , the MFPT, for DnG → 0 (or D→ 0), as we use a

Kramers-like scheme, the present e�ective Markovian approximation gives the typical
exponential dependence. That is, plotting ln T vs. 1=DnG we 8nd a linear behavior, only
the slope depends on q. The analysis of such a dependence through detailed simulations
could be extremely time consuming and it is doubtfully can give a sound answer. If
we look at the original system Eqs. (1) and (2), even though it is well known that the
underlying two-dimensional potential (even for the colored Gaussian case) cannot be
determined in general, the form of the force in Eq. (2) (or �’s potential, see Eq. (3)),
suggests the possibility that for q �=1 such a dependence could be potential. However,
such a study is beyond the scope of the present work.
Preliminary studies on the phenomenon of stochastic resonance [47] have shown the

strong e�ect of such type of noise making possible a signi8cant enhancement of the
system response, an aspect of great technological relevance. In addition, this kind of
noise source could have biological implications as some experimental results in sensory
systems [19,20] o�er strong indications that the noise source in these systems could be
non-Gaussian. A detailed study of the phenomenon of stochastic resonance in systems
driven by such types of noise will be the subject of further work.
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