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NUCLEATION THEORY AND THE CLOUD-POINT * 
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On the basis of a recent proposal for the droplet distribution in the lattice-gas model, we 
evaluate completion times and scaled supersaturations which are consistent with existing observa- 
tions in cloud-point experiments near the critical temperature. Some general concepts in nuclea- 
tion theory are also reviewed. 

1. Introduction 

Nucleation theory [l-4] deals with that general class of phenomena which 
can be mapped onto the familiar condensation of a supercooled vapor and, in 
its present form, it heavily rests’upon the concept of clusters (droplets, grains, 
etc.). Although a set of basic ideas is now rather well-established, the theory 
still uses many phenomenological ideas and approximations so that, in order 
to minimize the lack of precision, it can be better discussed in relation with 
simple, well-defined models. A convenient model for this purpose is the 
lattice-gas version of the Ising model where, for instance, precise definitions 
for a cluster are possible [5]. 

The lattice-gas model [6] consists of a regular lattice, say a simple cubic 
lattice, whose sites are associated to a set of occupation variables each capable 
of only two values, n, = 1 (particle) or 0 (hole). The system presents a 
(configurational) energy given by 

H = -4J&;n,, J> 0, (1.1) 
1-I 

where the sum runs over all bonds, i.e. pairs of nearest-neighbor sites in the 
lattice. Any given system configuration {n,, i = 1, 2,. . , N } has a set of pN 
occupied sites which can be partitioned into connected subsets called clusters; 
that is, no member of one cluster is a nearest neighbor of a member of another 
and if a cluster is divided into two parts then at least one member of one part 
is a nearest neighbor of a member of the other part. The size k of a given 
cluster is defined as the number of particles which belong to it; its energy s is 
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defined as the number of particle-hole bonds (including both, surface and 
interior ones) incident on the cluster. The average degree of compactness of 
clusters may be measured, at least partially, in terms of sk, the average value 
of s over all clusters of size k. This information is to be combined with the 
knowledge of ck, the probability for the occurrence of a cluster of size k in the 
system. The physical relevance of the concept of clusters comes in part from 
the fact that they are related in some cases to the droplets or grains observed 
by microscopy whose formation and subsequent growth is studied by nuclea- 
tion theory. Consequently, a basic problem is to describe the system, for 
instance its equilibrium state at temperature T and density p, via explicit 
expressions for ck and sk. 

Recent previous work by us [7] provides a description of the lattice-gas 
model in terms of clusters which, unlike classical droplet models, seems very 
accurate at high temperatures. It is the purpose of this paper to relate this 
description to the usual one in terms of the clusters free energy and to show its 
relevance for the analysis of some familiar concepts in nucleation theory. In 
particular, we apply our ideas to the homogeneous nucleation in the critical 
region and, following the suggestion in ref. [7b], we compute nucleation rates 
and completion times in reasonable agreement with recent experiments on 
fluids. 

2. Droplet model and clusters free energy 

A typical situation studied by nucleation theory [8] is the decay of metasta- 
ble states, e.g. in a supercooled vapor. These states can be maintained for a 
very long time under appropriate experimental conditions but, eventually, they 
will decay into more stable, equilibrium liquid states. This occurs through an 
initial, nucleation regime where density fluctuations develop at least one 
droplet or cluster of critical size (by overcoming an energy barrier). Liquid 
clusters that form which are larger that this critical size will then grow with 
time, while smaller clusters will tend to shrink. These processes are determined 
by the transport of matter and energy to or from the interfaces and by the 
energy of the interfaces itself. In the nucleation regime the surface energy 
predominates: as the clusters are then very small their surface energy is a large 
fraction of their total energy. Once the new liquid phase is present in a 
significant amount, what becomes more important is the rate at which energy 
and matter are supplied to or removed from the interfaces. 

The above picture suggests that the concepts of clusters and clusters free 
energy may play indeed a fundamental role in a quantitative description; for 
example to evaluate the number of liquid droplets as a function of their size in 
a quasi-stationary condition, the rate at which critical droplets or clusters are 
formed, the lifetime of a given metastable state, etc.; see, e.g., refs. [2,9,10]. 
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A description of the lattice-gas model states in terms of clusters was 
considered by us in previous papers [7] where we proposed a modification of 
Fisher’s droplet model [ll], namely one has at the coexistence line 

ck = c,k-’ exp( - ak2j3)[ 1 - (Y exp( - ak213)], (2.1) 

where a = a(r), T and a! are temperature (and density) independent, and c0 is 
determined by the sum rule 

p =xkc,. 
k 

(2.2) 

The last factor in eq. (2.1) aims to represent approximately the probability of 
holes surrounding the “average cluster”. In addition, it seems interesting to 
make the extra assumption that eq. (2.1) is consistent near the critical 
temperature T, with the scaling behavior 

c 
k 

= k-(*+y/G)f(Ck.Y/PS), (2.3) 

where e = (T, - T)/T, and y is Binder’s critical exponent [5] defining a 
cluster effective size ky. By combining the above three equations one is forced 
to write r = 2 + y/8, a(f) = a,~’ and t = 2pS/3y. Moreover, the data inde- 
pendently evidences [12] y = 0.45 so that the cluster distribution is determined 
in this way by the usual critical exponents p and 6, by the constants a,, and (Y 
and by the parameter c,(T) which are to be determined consistently with the 
sum rule (2.2). That is, no temperature dependent parameters are left in eq. 
(2.1). At points in the one-phase region and for metastable states, on the other 
hand, we found a scaling form - hk-F with the same exponent as before 
(h E pH/k,T with the usual notation) [12] and 

Ck(h)/Ck(h=O)=exp(-~k), (2.4) 

where TJ = bh’/-” for small “fields”, say 1 y 1 < 0.1; contrarily, it follows the 
classical prediction, eq. (2.4) with n a h for ) h ) > 0.2 [13]. 

Unlike classical nucleation theory, the above droplet model based on eqs. 
(2.1)-(2.4) with y = 0.45 was shown to reproduce very convincingly the Monte 
Carlo equilibrium cluster distributions for the lattice-gas model over a broad 
range of temperatures and to contain other interesting theoretical features 
[7,=1. 

There are in practice several ways to define a relevant clusters free energy, 
on the other hand. A related basic quantity is the partition function for 
k-particles clusters. This is defined as 

Q,=C”exp(-E(K)/kaT), 
K 

(2.5) 

where the sum goes now over all translationally inequivalent k-particles 
clusters K, E(K) is the energy of cluster K, and k, is Boltzmann’s constant. 
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From Qk one may define an internal free energy for k-particles clusters as 

Fk = -k,T In Qk. (2.6) 
One should notice at his point that Fk usually differs from the clusters 

free-energy concepts involved in most semiphenomenological approaches. In 
order to discuss this matter, we may consider the approximate expression 

(2.7) 

where ps and w, are respectively the density and a renormalized fugacity at 
the coexistence curve, and mk is a parameter slightly dependent on k, e.g. 
mk = cte for k a 3 [7]; this expression was used before in several different 
problems [7,14-171. A very familiar concept in nucleation theory [2,9] is what 
can be termed as formation free energy for k-particles clusters, Fk:,, defined as 

ck = cl eXp( -&‘k,T), (2.8) 
which can then be related to the more rigorous concept Fk by using eqs. (2.6) 
and (2.7); it thus follows some differences between Fk and Fk. Similar 
conclusions may follow in the case of other phenomenological definitions for 
the clusters free energy density [7]. 

We can also use eq. (2.7) in order to obtain explicit expressions for Qk or, 
equivalently, for Fk corresponding to the droplet model eqs. (2.1)-(2.4); the 
result is [7] 

Fk/kBT = ak2j3 + bk + 7 In k - ln[ 1 - (Y exp( -ak2i3)] + c, (2.9) 

where r = 2.1, b = In w, and c = mk ln(1 - p,) - In cO. Note that eq. (2.9) is 
expected to have the same range of validity as eq. (2.7); see ref. [17] for a 
detailed discussion. 

3. Nucleation rate versus completion time 

Nucleation theory aims to predict, for example, whether a set of values for 
T and p in a given system correspond or not to a metastable state. This can be 
investigated by computing the corresponding nucleation rate, that is, the rate 
at which critical clusters are formed. The simplest situation, the so-called 
homogeneous nucleation occurs when these clusters form within the super- 
cooled phase itself as the result of a fluctuation (and not at the surface of the 
container or at any other surface strange to the system). This situation can in 
principle be studied in the context of classical nucleation theory [18] which, 
albeit admittedly crude, was thought to predict accurately the limit of metasta- 
bility. Actual computations [19], however, did not seem to confirm that 
expectation always and the discrepancies are sometimes very dramatic [20-241; 
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more involved computations [25,26] are also unable to explain very low 
nucleation rates near T, [27]. 

Binder and Stauffer [2] made an observation which may in principle 
reconcile theory and experiment; namely, they realized that the quantity 
measured by experimentalists is not the nucleation rate itself but the time 
required for the phase separation process to go to completion. Two calcula- 
tions along these lines [2,28] have shown that the reported discrepancies may 
be caused by the effect on cluster growth of the critical slowing down of 
diffusion. However, there is still some room for a noticeable disagreement 
between theory and experiment [23,27,29,30]. We shall show in the following 
section how the use of our droplet model in the estimation of the completion 
time may indeed produce a reasonable description of existing experimental 
data near T,. We first need to introduce some related definitions and to 
consider some details of the experiments. 

I T/Tc 

Fig. 1. Temperature-composition section of the phase diagram in a cloud-point experiment. The 
full line represents the coexistence curve of the system; the dashed line is the cloud-point curve 
obtained experimentally as described in the text, which is expected to represent somehow the 
metastability limit. For a given composition of the mixture, AT represents the minimum quench 
depth below T, to observe phase separation, while ST is the limit below the equilibrium 
separation temperature T, to obtain supercooling. Actual experimental quenches usually proceed 
in several steps; the final step may begin at T, with phases of composition X’ and x” present 
(two-phase quenches), or above the coexistence curve at a temperature such as T, (one-phase 
quenches). An ideal quench would start at “infinite” temperature (T, B T,) and the system would 
then be “instantaneously” cooled to a final temperature, say T,, the quench being instantaneous 
meaning that the system stays homogeneous inmediately after the quench to a temperature where 

the equilibrium state is one of two coexisting phases. 
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Fig. 1 schematically represents the conditions of a typical experiment [27]. 
The liquid mixture is cooled from some initial equilibrium state (T;) into the 
metastable region (the region between T, and T, at composition x’); the 
cooling proceeds until a sudden clouding of the sample /is observed. This 
cloud-point is assumed to correspond to the metastability limit at the given 
composition. A cloud-point curve (represented by the dashed line in fig. 1) can 
then be determined by studying a number of mixtures that differ in composi- 
tion. Although the supercooling (or superheating in the case of a system with a 
lower critical solution temperature) is accomplished in most experiments by 
changing the temperature of the sample at nearly constant pressure (the 
so-called temperature quenches), it is also possible to perform quenches at 
constant temperature by altering the applied presure [31] (pressure quenches) 
thus moving to a different temperature-composition section of the phase 
diagram. For purposes of nucleation experiments, there is no fundamental 
distinction between these two procedures. 

The cloud-point can be located by specifying the scaled supersaturation 
defined as A = ST/Ar one may also define the relative supercooling as 
X = AT/CT, = l/(1 + A). 

4. An explicit calculation 

Metastability is essentially a dynamical phenomenon which should in 
principle follow from kinetic equations for the evolution of the cluster distri- 
bution ck such as the one proposed by Becker and Dbring [32,1,18]. These can 
be written as a continuity equation, 

ac, (t )/at + U, (t)/S = 0, (4.1) 

where Jk is a current given by 

J,(t) = -akck ak eq-5 [Ck(t),C;q ; (4.2) 
here c:q is the equilibrium value for c,(t), which is related to the clusters 
formation free energy Fk by eq. (2.8), and ak is the rate at which k-particles 
clusters absorb monomers to form (k + I)-particles clusters. Jk = 0 at equi- 
librium, while Jk = J = constant in the simplest nonequilibrium steady-state 
situation. These equations are solved by Becker and Doring [32,18] assuming 
the boundary conditions: 

lim cE* 
k-0 

= ciq, lim ci’ = 0, 
k+a, 

(4.3) 

which correspond to a steady state with a source of clusters at k = 0; 
consequently it is also assumed that once a cluster grows to a specified large 
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size (say, k > k,), it is removed from the system. The nucleation rate is then 
given by 

J= wdk (a&q)-’ 
I 

-l, (4.4) 

and it follows that 

I 
o”dk 

k’-” exp( -bh’/Yk + aoc’k2/3) -’ 
J = c,,q / 0 1 - a exp( -aoc’k2/3) 

J 
' 

(4.5) 

where we have introduced the equilibrium cluster distribution properties 
(2.1)-(2.3) and the usual hypothesis [15,16] uk = a,k”; E = 1 - T/q as before. 
The integral in eq. (4.5) can then be evaluated by the saddle-point method to 
obtain [33]: 

(4.6a) 

where 

,,.,= +;b-2c3'h-2/Y (4.6b) 

The exponent m has the classical scaling behavior [28] when y = 1 (the 
classical value), as expected, so that y < 1 introduces a correction to that. The 
prefactor in eq. (4.6) also differs from previous computations [2,28], mainly 
due to our explicit introduction of the exponent x associated to the rate uk. 
Our nucleation rate expression also differs from previous ones in the correc- 
tion (1 - ae-3m) which is expected to contribute (by decreasing J) at large 
relative supercoolings. 

Now, we may relate the constants in eq. (4.6) to the characteristic constants 
associated to the critical behaviour, i.e. 

(P,-P)/P~=B@, h=O, (4.7a) 

(p, - p)/p, = D-““h”“, c = 0, (4.7b) 

and 

p= g kc,; (4.7c) 
k=l 

having in mind that t = 2@/3y, r = 2 + y/S, and that 

~,=c,(l-a)Ek?+‘=c,(l-C+(A), 
k=l 

(4.7d) 

where l(x) represents Riemann’s zeta function, which follows from eqs. (4.7~) 
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(2.1) and (2.3) when E = h = 0, one has after some algebra [33] 

~Yrb-lNl-4 I 2613~ 

a’ = W(1 - 3y/26)(1 - (~2~~‘~~) 

and 

I S/Y 
b, = YS(T - 1) 

6D”V(l -y/S) ’ 

(4.8a) 

(4.8b) 

where r(x) represents the gamma function. Here 7, y and (Y are to be 
interpreted as parameters of the droplet model in section 2, and the thermody- 
namic amplitudes B and D and the critical exponent 6 are expected to be 
given by the experiments; that is, no free parameters are left in eqs. (4.6). 

The completion time t,, defined as the time required for the phase sep- 
aration to go halfway to completion, may now be related to the nucleation rate 
J; for instance [28] 

(4.9) 
where b = Dot” represents the diffusion coefficient and cL = 1.7/_-‘j5. Binder 
and Stauffer [2] proposed 

tp = CBS jj3/5(1 + A)-3/5~2/5, (4.10) 

where ens = 1.23 p3i5, which gives essentially the same order of magnitude 
estimate for the less rigorous “typical time of observation” t,. By introducing 
eq. (4.6) in eq. (4.9) a relation between tc and A follows (involving c and h) 
where the parameters are given, for instance, by experimental data obtained in 
critical point measurements which are independent 
tions. 

of cloud-point observa- 

5. Numerical results and comparison with experiment 

The above relation between t,, A, c and h can be reduced to a more useful 
one by introducing the equation of state, that is, h = A(&)~’ [34]. We then 
have an explicit relation between E and A, namely 

E = yg(A)A_6e(‘-x+2/3)/5~ exp(2@XAe2/y,/5) (5.la) 

with the notation 

g(A) = I[1 - [&)Bl”‘[1 _ ae-3+2/~]1~5je 

and 

(S.lb) 

I9 = 5[3V + 3ps(7 - x + 1)/y] -l. (5.lc) 
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One may notice here that eq. (5.1) seems to imply A + cc as e + 0 according 
to A - e-7 where n = 0.69. This is smaller than the value we obtain following 
the assumptions in previous work, namely we obtain 1) = 0.90 [2] and 0.78 [28]. 
Unfortunately, we do not know of any experimental data close enough to T, to 
determine the exponent 11 (see fig. 2); nor is it clear to us whether one should 
expect shuch a sharp divergence near T,. 

The constants y and X in eq. (5.1) are related to the previous ones by 

y = ( t,c,D,3’5A2’5) -e (5.2a) 

and 

A= +.+-*C^-*P6/Y, 

where 

(5.2b) 

3(7-x)+1 (b~b~/Y)r-x+2/3 

-3(~--x+1/2) ' 
a0 

(5.2~) 

In order to extract numerical consequences we thus need some values for the 
involved experimental parameters. This fact prevents one from performing a 
stringent test of the result (5.1): the most of what is available in the literature 
are order-of-magnitude estimates and the above equations are rather sensitive 
to the values of those parameters. Nevertheless, an outstanding agreement 
between theory and experiment follows with the information at hand. This can 
be showed, for instance, by interpreting X and y in eq. (5.1) as two adjustable 
parameters, trying to fit the available experimental data with that equation, 
and checking a posteriori whether the resulting values for h and y are 
consistent with eq. (5.2) and the known values for the experimental constants. 
The first evidence in favor of eq. (5.1) is the fact that a single pair of values for 
X and y, independently of the temperature and the substance investigated, 
describes very satisfactorily all the available data; this is shown in fig. 2. Even 
more, the values needed to reach that agreement (A = 7.5 X 10P3, y = 8 X 10A6) 
can be explained at the light of the reported values of the constants in eqs. 
(5.2), namely assuming the current experimental values for the critical expo- 
nents (/3 = 0.355, v = 0.64 and 6 = 4.5) and for the critical amplitudes (B = 2, 
D = 0.61) [35], the parameters y = 0.45, 7 = 2 +y/6 = 2.1 and (Y = 0.95, which 
are consistent with the droplet model parameters found independently [7], the 
kinetic coefficient exponent x = l/3 [16], the diffusion coefficient amplitude 

Do - 1O-3 cm*/s for CO, 1361, the completion time which is t, - l-100 s for 
different substances [28], the critical density for CO, p, = 6.38 X lO*l crnm3 
[35], and c^ = 5.3 in CO, [34]. We thus conclude that further investigation 
along the present lines might indeed lead to the interpretation of a large class 
of experiments and clarify some underlying questions in nucleation theory; 
more accurate experiments as the ones described in fig. 1 will be needed for 
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Fig. 2. Scaled supersaturation A versus reduced temperature e = 1 - T/T,. The solid line corre- 
sponds to the prediction eq. (5.1) with X = 7.5 X 10F3 and y = 8 x 10m6, both in agreement with 
eqs. (5.2). The symbols represent experimental data as follows: (A) isobutyric acid+ water 
mixtures (271, (+ ) perfluoromethylcyclohexane + methylcyclohexane mixtures [20,27], (0) 

methanol + cyclohexane mixtures [Zl], and (* ) CO, [23,27]. 

that purpose. Finally, we also notice that the availability of more accurate 
experimental data should finally allow to test the predictions from more 
elaborated and detailed theory [15,17,37] for the nucleation rates and for the 
time evolution of the cluster distribution. 
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