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Scaling Laws for a System with Long-Range Interactions within Tsallis Statistics
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We study the one-dimensional Ising model with long-range interactions in the context of Tsallis
nonextensive statistics by computing numerically the number of states with a given energy. We find
that the internal energy, magnetization, entropy, and free energy follow nontrivial scaling laws with the
number of constituents N and temperature T . Each of the scaling functions for the internal energy, the
magnetization, and the free energy, adopts three different forms corresponding to q . 1, q � 1, and
q , 1, q being the nonextensivity parameter of Tsallis statistics.

PACS numbers: 05.20.–y, 05.50.+q, 05.70.Ce, 75.10.Hk
It is generally assumed that thermodynamics and sta-
tistical mechanics necessarily imply that the entropy, the
internal energy, and other thermodynamic potentials are
extensive quantities. For instance, the internal energy E,
as a function of temperature T and number of constituents
N , scales usually as

E�N , T � � Ne�T � . (1)

Within the theoretical framework of statistical mechanics,
this is indeed a widespread consequence when the inter-
molecular potentials are short range. For the so-called nor-
mal systems [1], the number of microscopic states with a
given energy scales as V�E, N� � exp�Ns�E�N��, from
where it follows the entropy behavior S�E, N� � lnV �
Ns�E�N� [2]. The thermodynamic relation T21 � � ≠S

≠E �N

then leads to the scaling law (1) for the internal energy.
However, it has also been realized that long-range po-
tentials can lead to nonextensive behavior and, recently,
there has been some interest in finding the correct scaling
laws for the thermodynamic potentials for systems whose
nonextensive behavior arises from a long-range interaction
[3,4]. Let us be more specific and consider the ferromag-
netic Ising model with long-range interactions:

H �
NX

i,j�1

1 2 SiSj

ra
i,j

, �Si � 61, ;i� , (2)

where indexes i, j run over the N sites on a d-dimensional
lattice and ri,j is the distance between sites i and j. It can
be easily shown that the energy levels scale as

NN� � N
N12a�d 2 1

1 2 a�d
. (3)

In the case of a . d, N� tends to a constant in the limit
of large N and the energy recovers its usual extensive
behavior, whereas in the case a # d the behavior is
nonextensive (for a � d the limit N� � lnN is assumed).
Therefore one expects the failure of the scaling law (1) for
a # d. This is indeed the case as Cannas and Tamarit [4]
have shown by performing Monte Carlo simulations of the
Hamiltonian (2) in a d � 1 system. Their results show
that the Boltzmann-Gibbs canonical ensemble statistics
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lead to the following scaling laws for the internal energy,
spontaneous magnetization, entropy, and free energy:

E�N , T � � NN�e�T�N�� , (4)

M�N , T � � Nm�T�N�� , (5)

S�N , T � � Ns�T�N�� , (6)

F�N , T � � NN�f�T�N�� , (7)

The argument justifying these scaling laws can be summa-
rized as follows [3]: the internal energy and the entropy
appear in the definition of the Helmholtz free energy as
F � E 2 TS; therefore one expects that E and TS should
have the same behavior for large N . Since E scales as
NN� and S scales as N , one finds that T must scale as N�;
thus leading to the previous scaling Ansätze.

Although the above scaling laws have been verified in
[4] by application of the Boltzmann-Gibbs statistics, it has
been argued that the appropriate frame to describe sys-
tems with long-range interactions should be that of Tsal-
lis nonextensive statistics, since nonextensivity properties
appear in this formulation in a natural way [5]. Tsallis
statistics depend on a parameter q in such a way that the
limit q � 1 retrieves the results of Boltzmann-Gibbs sta-
tistics, whereas for q , 1, the entropy is superextensive
and for q . 1 it is subextensive.

The aim of this paper is to derive and compute nu-
merically the scaling laws for the entropy, internal en-
ergy, free energy, and magnetization that follow from the
application of Tsallis statistics to the long-range d � 1
Ising model defined by (2) in the nonextensive regime
a # d. Our main result is that we can write scaling laws
[see Eqs. (15)–(18) below] which depend on appropri-
ate scaling factors Aq�N�, AE

q �N�, AS
q�N�, and N�. In the

limit q ! 1 the scaling laws for Boltzmann-Gibbs statis-
tics (4)–(7) are recovered. Furthermore, the scaling func-
tions eq, mq, and fq depend on the parameter q in such
a way that they collapse onto only three scaling functions
for each magnitude: those of q . 1, q � 1, and q , 1.
© 1999 The American Physical Society 4233
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Let us summarize the basic ingredients of Tsallis statis-
tics: Each of the W system configurations (W � 2N for
the Ising model used here) is assigned a probability pi ,
which is obtained by finding the extrema of the general-
ized entropy

Sq �
1 2

PW
i�1 p

q
i

q 2 1
, (8)

subject to appropriate constraints. Once the pi’s have
been obtained, the quantities of interest are computed as
generalized averages of microscopic functions Oi [6,7]:

�O�q �
PW

i�1 p
q
i OiPW

i�1 p
q
i

. (9)

In the canonical ensemble, the main constraint (besides
the normalization condition

P
i pi � 1) is that the mean

value of the energy is fixed to a given value Eq. This
variational problem has the implicit solution for the
configuration probabilities:

pi �
�1 2 �1 2 q�b0ei�1�12q

PW
j�1�1 2 �1 2 q�b0ej�1�12q

, (10)

where ei is the energy of the ith configuration. We have
used the notation

b0 �
b

�1 2 q�b
PW

i�1 p
q
i ei�

PW
i�1 p

q
i 1

PW
j�1 p

q
j

,

(11)

and the Lagrange multiplier b � 1�T (the equivalent of
the inverse temperature for the Boltzmann-Gibbs can-
nonical ensemble) has to be found by imposing that the
mean value of the Hamiltonian is equal to the given value
Eq � �H �q. The usual procedure, however, is to give
a value for T � 1�b and to derive, using Eqs. (10) and
(11), the probabilities pi�b� as a function of the (in-
verse) temperature b and then compute the mean value
Eq�b� �

PW
i�1 pi�b�qei�

PW
i�1 pi�b�q. This procedure is

hampered by the fact that one cannot write a closed ex-
pression for the probabilities pi�b�, since the nonlinear
coupled equations (10)–(11) have no explicit solution.
Of course, in the case of q � 1 we do know the so-
lution (up to a normalization factor) which is nothing
but the celebrated Boltzmann factor: pi�b� � Z21e2bei ,
where Z is the partition function. The explicit knowl-
edge of the probabilities pi�b� in the case q � 1 al-
lows the use of Monte-Carlo techniques for the numerical
calculation of the averages (9). In its simplest version
[8], the Metropolis algorithm proposes a new configura-
tion j by randomly flipping one spin in configuration i.
The new configuration j is accepted with a probability
min�1, pj�pi� � min�1, e2b�ej2ei��. Notice that the parti-
tion function cancels out in the calculation of the accep-
tance probabilities. Unfortunately, since for q fi 1 the
probabilities pi are not known as a function of b, there
is no trivial generalization of the Monte-Carlo method to
4234
perform the averages in (9) at a fixed temperature b. One
can, however, perform Monte Carlo simulations at fixed
b0 [9], but then the physical temperature b is not known.
Another interesting approach (close in spirit to our method
here) is that of Lima et al. [10] who have used the broad
histogram method [11] to study the 2-d short-range Ising
model, focusing mainly on the possibility of the existence
of a phase transition for q fi 1.

We overcome these problems by using a method of
histogram by overlapping windows initially devised to
study short-range lattice models [12]. In this method,
one computes numerically the number V�E, N ; dE� [13]
of microscopic states whose energy lies in the interval
�E, E 1 dE�. The histogram with the overlapping win-
dows method performs a microcanonical simulation by
fixing the energy in a window �E, E 1 DE� and com-
puting the ratios V�E1, N ; dE��V�E2, N ; dE� for ener-
gies E1, E2 within this window. Once those ratios have
been computed with a given accuracy, we perform an-
other microcanonical simulation in a different window
�E0, E0 1 DE� which overlaps the previous energy win-
dow. The method proceeds until the windows have swept
over all of the possible energy values. The exact knowl-
edge of the degeneracy for the ground state V�E0, N� � 2
allows the recursive calculation of the number of states
V�E, N ; dE� for all values of E. For the long-range Ising
model, the size of the window DE has to be chosen care-
fully in order to avoid the lack of ergodicity. A full ac-
count of the method details will be given elsewhere [14].
Here we just report on the results we obtain for the afore-
mentioned scaling laws.

Using this method we have computed the number of
states V�Ek� for the d � 1 Hamiltonian defined in (2)
with a � 0.8 and system sizes N � 34, 100, 200, 400,
and 1000. Once the number of states V�Ek� is known,
one can use a recursive method [15] to solve Eqs. (10) and
(11) in order to find the probabilities pi�b�. Equivalently,
one can compute the probabilities pi�b0� as a function
of the parameter b0 using (10), where the sum over
configurations is now replaced by a sum over all possible
energy bins of size dE. The entropy Sq�b0�, the internal
energy Eq�b0�, and the magnetization Mq�b0� [16] are
computed in the same way as a function of b0 using
relations (8) and (9). The physical temperature T � 1�b

can be obtained by inverting Eq. (11):

b � b0
1 2 �q 2 1�Sq�b0�

1 2 �1 2 q�b0Eq�b0�
, (12)

thus allowing a parametric plot of the internal energy, en-
tropy, and magnetization as a function of the temperature
T . We have also computed the free energy defined as
Fq � Eq 2 TSq. It is important to remark that in the
case of q , 1, and for large values of system size N , the
raw data show a hysteresis loop with temperature. This
is similar to what happens in the short-range Ising model
and we have adopted the same criterion as in [15]: to use
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a Maxwell-type construction that replaces the loop of the
curve by a straight line joining the two points with the
same value of the free energy.

In Fig. 1 we plot the computed values for the number of
states V�E, N� as a function of the energy E for different
system sizes. In this figure, the data have been scaled
to show that the number of states follows the scaling law
that one would expect given that the total number of states
scales as 2N and the energy levels scale as NN�, namely,

V�E, N� � exp�Nf�E�NN��� . (13)

In order to generalize the scaling functions for the ther-
modynamic potentials in the case of Tsallis statistics, we
notice that, in the case of equiprobability (corresponding
to very high temperature), Eq. (8) implies that the entropy
scales as Sq�N� 	 Aq�N�, where

Aq�N� �
1 2 2N�12q�

q 2 1
. (14)

Keeping in mind that the energy scales as NN� and
assuming that Eq and TSq scale in the same way, we see
that the temperature must scale as NN��Aq�N� and hence
we are led to the Ansätze:

Eq�N , T � � NN�eq�TAE
q �N��NN�� , (15)

Mq�N , T � � Nmq�TAE
q �N��NN�� , (16)

Sq�N , T � � Aq�N�sq�TAS
q�N��NN�� , (17)

Fq�N , T � � NN�fq�TAq�N��NN�� , (18)

Here, in view of later results, we have introduced new
scaling factors AE

q �N� and AS
q�N�. The previous argument

would imply simply AE
q �N� � AS

q�N� � Aq�N�. Notice
that in the limit q ! 1 it is A1�N� 	 AE

1 �N� 	 AS
1 �N� 	

N , and the scaling laws, Eqs. (4)–(7), are recovered.
In Figs. 2 and 3 we scale the energy, magnetization,

and entropy data by using factors Aq�N�, AE
q �N�, AS

q�N�,

FIG. 1. Number of states V�E, N� plotted to check the scaling
law (13). The results for N � 34 have been obtained by an
exact enumeration of the W � 234 possible states, whereas the
results for the other system sizes have been obtained by the
histogram with the overlapping windows method described in
the text [17]
and N� as implied by Eqs. (15)–(18). In Fig. 2 we
concentrate on the validity of scaling for different values
of N , whereas in Fig. 3 we compare the scaling functions
for different values of q using the scaling functions
obtained for the largest value N � 1000. These figures
give evidence that, in the case q # 1, scaling is well
satisfied by using AE

q �N� � AS
q�N� � Aq�N� as argued

before. However, the data for q . 1 do not follow this
scaling description. In order to obtain a good scaling for
q . 1, one observes numerically that it is necessary to
assume instead the limits AE

q �N� 	 2N�12q���q 2 1� and
AS

q�N� 	 2N�q21���q 2 1�. A unifying description that
reproduces the required limits for all values of q is

AS
q�N� �

2N j12qj 2 1
�1 2 q�

, AE
q �N� �

Aq�N�2

AS
q�N�

, (19)

and these expressions have been used to scale data as
shown in the figures. We observe (see Fig. 2 for the
internal energy) that the quality of the scaling is rather
good, and improves, as expected, with increasing system
size. A very interesting feature is that, as shown in Fig. 3,
the scaling functions group into three different forms
corresponding to q , 1, q � 1, and q . 1. The only
exception is that of the entropy for which the collapse
for q . 1 is very poor. This is easily understood by
noticing that the low temperature limit of the entropy
for infinite system size is Sq�T � 0� � �1 2 212q���q 2

1�, whereas the high temperature limit is Sq�T ! `� �
1��q 2 1�, and those two finite values cannot be rescaled
simultaneously. The scaling for the free energy follows
directly from its definition Fq � Eq 2 TSq. For q # 1,
it is fq�x� � eq�x� 2 xsq�x�, whereas for q . 1, and in
the limit of large N , the scaling function is given simply
by fq�x� � eq�0� 2 xsq�`� � 2x.

In summary, the scaling laws given by Eqs. (15)–(18)
work for all values of q when one uses the scaling factors
given by Eqs. (14), and (19). Moreover, the scaling
functions eq, mq, and fq adopt only three different forms
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FIG. 2. Internal energy plotted to check the scaling relation
(15) by using different values of q and system sizes N . The
scaling factors used are those defined in (14) and (19).
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FIG. 3. Internal energy (top graph), magnetization (middle
graph), and entropy (lower graph) plotted in order to check
the proposed scaling behavior. In all of the curves, we have
used the value N � 1000 and varied the parameter q. For
clarity, in the entropy curve, the inset shows all of the values
of q, whereas the main plot takes only q . 1. The curves
with q . 1 include q � 1.2, 1.4, 1.6, and 1.8, and the curves
with q , 1 include q � 0.2, 0.4, and 0.6, and 0.8, although the
different curves are almost indistinguishable with the resolution
of this figure.

for each magnitude: one valid for q . 1, one valid for
q � 1, and another valid for q , 1.

Several final comments are in order. First, it is dis-
tressing that the scaling forms for q . 1 do not follow the
scaling Ansatz that follows naively from the argument that
T should scale as Eq�Sq 	 NN��Aq�N�. We have not
been able to find a convincing argument that reproduces
the scaling forms found in this paper for q . 1. It seems
that the transformation b0 ! b given by Eq. (12) has two
special points where the slope changes abruptly and which
4236
scale precisely as NN��AS
q�N� and NN��AE

q �N�, although
the exact implication for the scaling functions is not clear
to us at this moment. Second, since the scaling func-
tions are very different for q , 1, q � 1, and q . 1, it
should be easy to determine which value of the parameter
q needs to be used when analyzing experimental data. In
this sense, it is relevant to mention that preliminary results
for a long-range Lennard-Jones system [18] indicate that
similar scaling laws might hold also in this case. Finally,
we would like to stress the power of the histogram by the
overlapping windows method to study systems with long-
range forces numerically.
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