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We propose a variant of the simulated annealing method for optimization in the 
multivhriate analysis of differentiable functions. The method uses global 
actualizations via the hybrid Monte Carlo algorithm in their generalized version 
for the proposal of new configurations. We show how this choice can improve 
upon the performance of simulated annealing methods (mainly when the num- 
ber of variables is large) by allowing a more effective searching scheme and a 
faster annealing schedule. 

KEY WORDS: Simulated annealing; hybrid Monte Carlo; multivariate mini- 
mization. 

1. I N T R O D U C T I O N  

An important class of problems can be formulated as the search of the 
absolute minimum of a function of a large number of variables. These 
problems include applications in different fields such as Physics, Chemistry, 
Biology, Economy, Computer Design, Image processing, etc. ~) Although 
in some occasions, such as the NP-complete class of problems, (z) it is 
known that no algorithm can surely find the absolute minimum in a poly- 
nomial time with the number of variables, some very successful heuristic 
algorithms have been developed. Amongst those, the Simulated Annealing 
(SA) method of Kirkpatrick, Gelatt and Vecchi, ~3) has proven to be very 
successful in a broad class of situations. The problem can be precisely 
defined as finding the value of the N-dimensional vector x = (x~, Xz,..., xN), 
which is an absolute minimum of the real/ 'unction E(x). For large N, 
a direct search method is not effective due to the large configuration space 
available. Moreover, more sophisticated methods, such as downhill simplex 
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or those using the gradient of E(x) ,  (4) are likely to get stuck in local min- 
ima and, hence, might not able to reach the absolute minimum. 

SA is one of the most effective methods devised to overcome these dif- 
ficulties. It allows escaping from local minima through tunnelling and also 
by accepting higher values of E(x) with a carefully chosen probability, t3) 
The method is based on an analogy with Statistical Physics: the set of 
variables (x~,..., x2v) form the phase space of a fictitious physical system. 
The function E(x) is considered to be the system's energy and the problem 
is reduced to that of finding the ground state configuration of the system. 
It is known that if a system is heated to a very high temperature T and 
then it is slowly cooled down to the absolute zero (a process known as 
annealing), the system will find itself in the ground state. The cooling rate 
must be slow enough in order to avoid getting trapped in some metastable 
state. At temperature T, the probability of being on a state with energy 
E(x) is given by the Gibbs factor: 

P(x) oc exp ( -E(x ) /T )  (1) 

From this relation we can see that high energy states can appear with a 
finite probability at high T. If the temperature is lowered, those high energy 
states become less probable and, as T--, 0, only the states near the mini- 
mum of E(x) have a non-vanishing probability to appear. In this way, by 
appropriately decreasing the temperature we can arrive, when T--. 0, to the 
(absolute) minimum energy state. In practice, the method proceeds as 
follows: at each annealing step k there is a well defined temperature T(k) and 
the system is let to evolve long enough such that it thermalizes at temperature 
T(k). The temperature is then lowered according to a given annealing schedule 
T(k) and the process is repeated until the temperature reaches T=  0. 

To completely specify the SA method, one should give a way of 
generating representative configurations at temperature T, and also the 
variation of the temperature with annealing step, T(k). For the generation 
of the configurations, the Monte Carlo method (MC) is widely used. ~5' 6. 7) 
MC introduces an stochastic dynamics in the system by proposing con- 
figuration changes x--. x' with probability density function (pdf) g(x' I x), 
i.e, if the system variables adopt presently the value x, the probability that 
the new proposed value lies in the interval (x', x' +dx ' )  is g(x' I x)dx' .  
This proposal is accepted with a probability; h(x' I x). Much freedom is 
allowed in the choice of the proposal and acceptance probabilities. A suf- 
ficient condition in order to guarantee that the Gibbs distribution is 
properly sampled, is the detailed balance condition: 

g(x' I x)h(x '  I x ) e x p ( - E ( x ) / T ) =  g(x [ x ' )h(x ] x ' ) e x p ( - E ( x ' ) / T )  (2) 
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Once the proposal pdf g(x' [ x) has been conveniently specified, the accep- 
tance probability h (x ' [ x )  is given as a convenient solution of the previous 
detailed balance equation. Usually (see next section) the proposal probabil- 
ity g(x' [ x ) =  g(Ax) is a symmetric function of the difference Ax = x ' - x ,  
g(Ax) = g(--Ax) and a commonly used solution to the detailed balance 
equation is the Metropolis choice: 

h(x' I x)=min(1 ,  e x p [ - ( E ( x ' ) - E ( x ) ) / T ] )  (3) 

although other solutions have been also widely used in the literature. 
The various SA methods differ essentially in the choice of the proposal 

probability g(Ax) and the annealing schedule T(k). One can reason that 
the cooling schedule T(k) might not be independent of the proposal prob- 
ability g(Ax), i.e. T(k) should be chosen consistently with the selected 
g(Ax) in such,a way that the configuration space is efficiently sampled. In 
the next section we briefly review the main choices used in the literature. 
We mention here that most of them involve only the change of one single 
variable x~ at a time, i.e. they consist generally of small local moves. N of 
these local moves constitute what is called a Monte Carlo Step (MCS). The 
reason for using only local moves is that the acceptance probability given 
by (3) is very small if all the variables are randomly changed at once, 
because the change in energy E ( x ' ) - E ( x )  is an extensive quantity that 
scales as the number of variables N. Hence, the acceptance probability near 
a minimum of E(x) becomes exponentially small. Since Ax is a small quan- 
tity, the cooling schedule must be consequently small, because a large cooling 
rate would not allow the variables to thermalize at the given temperature. 
It is then conceivable that the use of a global update scheme could improve 
upon the existing methods by allowing the use of larger cooling rates. 

In this paper we investigate the effect of such a global update 
dynamics. Specifically, we use the Hybrid Monte Carlo (HMC) algo- 
rithm (s) for the generation of the representative configurations at a given 
temperature. By studying some examples, we show that the use of this 
global dynamics allows quite generally an exponentially decreasing cooling 
schedule, which is the best one can probably reach with other methods. 
Another advantage of the use of the HMC is that the number of evalua- 
tions of the energy function E(x) is greatly reduced. Finally, we mention 
that the use of a generalized HMC r ~o) allows to treat efficiently minimiza- 
tion problems in which the range of variation is different for each variable. 

The rest of the paper is organized as follows: in Section 2 we briefly 
review some of the existing SA methods; in Section 3 we explain how to 
implement Hybrid Monte Carlo in an optimization problem; in Section 4 
we use some standard test functions to compare our method with previous 
ones; and in Section 5 we end with some conclusions and outlooks. 
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2. REVIEW OF S I M U L A T E D  A N N E A L I N G  M E T H O D S  

Amongst the many choices proposed in the literature, we mention the 
following: 

Boltzmann Simulated Annealing (BSA)(~): Based on a functional 
form derived for many physical systems belonging to the class of Gaussian- 
Markovian systems, at each annealing step k the algorithm chooses a 
proposal probability given by local moves governed by a Gaussian dis- 
tribution" 

[ !A_xj2] (4) 
g(dx) ~exp 2T(k)J 

The Metropolis choice (3) is then used for the acceptance. This choice for 
the proposal probability and the use of purely local moves imply that the 
annealing schedule must be particularly slow: T(k)= T0/In(1 +2k), for 
some value of the cooling rate 2. 

M Fast Simulated Annealing (FSA)(12). " States are generated with a 
proposal probability that has a Gaussian-like peak and Lorentzian long- 
range tails that imply occasional long jumps in configuration space. These 
eventual long jumps make FSA more efficient than any algorithm based on 
any bounded variance distribution (in particular, BSA). The proposal 
probability at annealing step k is a N-dimensional Lorentzian distribution- 

g(dx) ~ T(k)( ldxl  2 + T(k)2) -uv+ l)/2 (5) 

One of the most significant consequences of this choice is that it is possible 
to use a cooling schedule inversely proportional to the annealing step k, 
T(k) = To/( 1 + 2k), which is exponentially faster than the BSA. 

u Very Fast Simulated Reannealing (VFSR)(t3): In the basic form of 
this method, the change Ax is generated using the set of random variables 
Y-(Yl .... ,Y~r) 

A x i = ( B i - A i )  Yi (6) 

(At and Bi are the minimum and maximum value of the ith dimension 
range). The proposal probability is defined as 

N 1 

g(Y) = ,=1-I1 2(]y,] + T~(k))In(1 + 1/T~(k)) (7) 
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Notice that different temperatures Ti(k) can be in principle used for the 
updating of different variables xi. For the acceptance probability, one uses 
the Metropolis choice (3) with yet another temperature To(k). This proposal 
allows the following annealing schedule: Ti(k)=Ti(O)exp(-2ik~m), 
i = 0, 1 ..... N, which is not very efficient for large number of variables N. 
A more detailed description of the VFSR algorithm can be found in [ 13 ]. 

Downhill Simplex with Annealing (DSA)(4): This method combines 
the Downhill Simplex (DS) method (which is basically a searcher for local 
minima) with a Metropolis like procedure for the acceptance. The DS sam- 
ples the configuration space by proposing moves of the "simplex". A simplex 
being a geometrical figure with N + 1 vertices in the N-dimensional phase 
space. The moves are usually reflections, expansions, and contractions. The 
acceptance part is implemented by adding logarithmically distributed 
random variables proportional to the temperature to the energy before the 
move and subtracting a similar random variable after the move. The move 
is accepted if the energy difference is negative. According to reference (4) dif- 
ferent annealing schedules T(k) should be used for different problems. In 
the implementation we have made of this method (see Section 4) an exponen- 
tial decay has been used. 

3. HYBRID  S I M U L A T E D  A N N E A L I N G  

The alternative method we proposemHybrid Simulated Annealing 
(HSA)--uses the Hybrid Monte Carlo (HMC) (s) in their generalized ver- 
sion(9, ~o) to generate the representative configurations. We first review the 
HMC method. 

In its simplest and original form, HMC introduces a set of auxiliary 
momenta variables p=(p~ ..... PN) and the related Hamiltonian function 
~ff(x, p): 

/v  

J~'(x, p )=  E(x, ..... X~v) +  89 ~ p~ = E(x) + p2/2 (8) 
i - - - I  

From the Gibbs factor: 

P(x, p) oc exp[ - Jr(x,  p)/T] =exp[  -E(x) /T]  e x p [ - p 2 / 2 T ]  (9) 

we deduce that, from the statistical point of view, the momenta p are nothing 
but a set of independent, Gaussian distributed, random variables of zero 
mean and variance equal to the system temperature T. There is no simple 
closed form for the proposal probability g (x ' l x ) ,  and the proposal change 
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x--* x' is done in the following way: first, a set of initial values for the 
momenta p are generated by using the Gaussian distribution e x p [ -  p2/2T] 
as suggested by the equation (9); next, Hamilton's equations of motion, 
~ = p ~ ,  p~=F~, where F~(x)=-aE(x)/Ox~ is the "force" acting on the 
variable x~, are integrated numerically using the leap-frog algorithm with 
a time step ~t: 

~t 2 
x',= xi + gtpi +"~  F,(x) 

t~t p;=p,+-~ [F~(x)+ F~(x')], i= l  .... , N  
(10) 

The proposal x' is obtained after n iterations of the previous basic integra- 
tion step. In other words: by numerical integration of Hamilton's equations 
during a "time" n~t. The value x' must now be accepted with a probability 
given by: 

h(x' [ x) = min( 1, exp[ - (.Jrf(x', p') - .g'(x, p))/T]) (11) 

Notice that this acceptance probability uses the total Hamiltonian function 
~ ( x ,  p) instead of simply the function E(x) as in the methods of last sec- 
tion (compare (11) and (3)). (14) Although Hamilton's equations exactly 
conserve the energy ~ = 0, the difference Ao,~ = ~ '(x ' ,  p') - a~'(x, p) is not 
equal to zero due to the finite time step discretization errors and one has 
quite generally A~ '  = O(N~t t) for some value of/ .  In this way, although 
the mapping is a global one, i.e. all the variables are updated at once, it is 
still possible to have an acceptance probability of order unity by properly 
choosing the time step gt and one can have large changes in phase space 
at a small cost in the Hamiltonian. Notice that the Hamiltonian difference 
zl~e being small, does not necessarily imply that AE is small and once can 
in principle accept moves which imply a large change in the energy E(x). 

In order to generate configurations at temperature T, one still must 
satisfy the detailed balance condition, Eq. (2). One can prove that sufficient 
requirements for this detailed balance condition to hold are that the map- 
ping given by Eqs. (10) satisfies time reversibility and area preserving. ~6) 
These two properties are exactly satisfied by Hamilton's equations and are 
also kept by the leap-frog integration scheme. Under those conditions, the 
Gibbs distribution (1) for the original variables x is properly sampled. It is 
possible to further generalize the HMC method by using more general 
mappings satisfying the conditions of time reversibility and area preserving. 
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In reference [ 10] it was shown that those conditions were satisfied by the 
mapping induced by n iterations of the following basic step: 

N ~ t 2  N 
X'i----Xi+6t 2 AiJPJ+'~- ~'~ AikAjkFY (x) 

j - - - I  j ,  k----- 1 
N 

, 3t ~ Aji[Fi(x ) +F/(x ' )] ,  i= 1 .... , N Pi=Pi+'2 /=1 
(12) 

where A ij is an arbitrary matrix. This mapping can be thought as the leap- 
frog numerical integration of the following equations of motion: 

 ,=Zaupj 
J (13) 

P, = X aj ,6  Y 
An straightforward calculation shows that these equations, although not 
being Hamiltonian, still conserve energy, ~ - 0 ,  and the main features 
mentioned above of the standard HMC method are still maintained. Con- 
venient choices for matrix A v are: diagonal in Fourier space (Fourier 
acceleration), or a diagonal matrix: A e =  A~3 0. This last choice allows an 
effective integration time step fit i=  aC~t different for each variable (com- 
pare with ( 10)): 

fit 2 
x't= xi + 6tip~ + - 7  F~(x) 

~ti x' p ' ,=p ,+ - - f  [F~(x)+F,(  )1, i = l , . . . , N  
(14) 

The possibility of using different time steps for each variable accounts for 
the fact that the range of variation might differ for each variable. This is the 
case, for instance, of Corana's function (see next section). 

Summing up, the HMC proceeds by generating representative con- 
figurations by using a proposal obtained by some of the mappings given 
above. This proposal must now be accepted with a probability given by 
(11). In this paper, we have used mainly the basic mapping given by (10) 
except in one case (Corana's function) in which the mapping (14) has been 
used instead. The temperature must then be decreased towards zero as in 
other SA methods. Notice that in the case T =  0 the random component of 
the evolution (the momenta variables) in Eq. (10) is zero and then the 
proposal coincides with that of gradient methods. 
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The HMC has been extensively used in problems of Statistical 
Physics. ~7) For our purpose here, we have found that the use of the pre- 
vious Hamiltonian based global update of the statistical system associated 
with the energy E(x), allows a much more effective annealing schedule and 
searching scheme than, for instance, the Boltzmann, Fast annealing and 
Very Fast Reannealing methods mentioned above. In particular we have 
been able to use quite generally an exponential annealing schedule: 
T(k)  = To e-~k. Moreover, since in HMC the acceptance decision is taken 
after all the N variables have been updated, the number of energy function 
evaluations is greatly reduced. This turns out to be important in those 
problems in which the calculation of the energy function E(x) takes com- 
paratively a large amount of computer time. 

4. RESULTS 

In order to compare our algorithm with the different ones proposed in 
the literature, we have used a set of five test functions: a multidimensional 
paraboloid, a function from De Jong's test, t~s) Corana's highly multi-modal 
functibn t19) and two other functions with many local minima. We now 
define and describe in some detail these functions. 

The first function, fl(x), is a N-dimensional paraboloid: 

N 
fl(x) = Y' x 2 (15) 

i = 1  

Here we use the test value N =  200 and to compare with the results in 
[20], we also use the value N =  3. Although this is a particularly simple 
function with a single minimum f~ = 0  located at x t=0,  i=  1...N, it 
ultimately describes the late stages of the behaviour of the SA algorithm 
when we are near a local or global minimum of any differentiable function. 

The second function, fe(x), is a two dimensional (N = 2) function 
taken from De Jong's test typically used for benchmarking Genetic Algo- 
rithms(IS): 

25 I -- I f2(x)= 0.002+ ~ [ j + ( x ~ - a y ) 6 + ( x 2 - b y ) 6 ]  - I  (16) 
j - - 1  

where the vectors a, b have the following 25 components: 

a: = { -32 ,  - 16, 0, 16, 32, -32 ,  - 16, 0, 16, 32 ..... -32 ,  - 16, 0, 16, 32}, 

b:= { -32 ,  -32 ,  -32 ,  -32 ,  -32 ,  -16 ,  -16 ,  -16 ,  

-16 ,  - 1 6  ..... 32, 32, 32, 32, 32} 
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this function has 25 local minima, and the global minimum is f 2 =  
0.998004, at x~ = x2 = - 32. 

The f3(x) function is the Corana's function: 

iv ~0.15 (0.05 sgn(z~)+ zi)  2 d~ 
f3 (x)=  Z (dix2 

i = l  

z, = 0.2 t_lgx, I + 0.49999_] sgn(x~) 

if Ixi-zil <0.05 
otherwise (17) 

(~8) 

d~ is an N-dimensional vector. In our tests (and following [20] we have 
used N = 10 and d = ( 1, 1000, 10, 100, 1, 1000, 10, 100, 1, 1000). This func- 
tion, which has many local minima and is discontinuous and piecewise dif- 
ferentiable, turns out to be one of the most difficult test functions, because 
the different variables have different scales of variation. The global mini- 
mum is f3(x)=  0, at x~ = 0, i = 1...N. 

The f4(x) function is defined by: 

1 ~ sin(41rKx~) 
f 4 ( x )  = 2 " N  sin(2zcx/) i---1 

(19) 

with N =  200, K =  2. This function is periodic and has ( 2 K - l ) ~ r  local 
minima per period. The absolute minima are at x~=(2m + 1 )/2, me  Z, 
i = 1...N, and the minimum value is f4 (x )=  - K  (see Fig. 1 ). 

And, finally, the fs(x) function is defined by: 

N N 
A ( I ) =  ~ Ix, I ~ -  1-I cos(41rx,) (20) 

i=1 i=1 

with N = 10 and 0c = 1.3. Again, this function has many local minima. The 
absolute minimum is f5 = - 1  at x~= 0, i = 1...N. 

We present results of the optimization of these typical test functions 
performed with the methods described above: Fast Simulated Annealing 
(FSA), Very Fast Simulated Reannealing (VFSR), Downhill Simplex with 
annealing (DSA) and the Hybrid Simulated Annealing (HSA). Amongst 
other quantities, we have focused, as usual in this field, on the number of 
evaluations of the function and the CPU time needed to achieve a given 
accuracy e in the minimum value of each function. These minimum values 
being exactly known for the test functions used. The results are summarized 
in Tables I and II after averaging over 10 realizations. An accuracy value 
of e - 1 0  -3 has been used, although similar results hold for other values 
of e. We have programmed the algorithms for the FSA, DSA and HSA 
methods, whereas the results for VFSR have been taken directly from [ 20 ]. 

822/89/5-6-11 



1056 Salazar and Toral 

2 

1 

 9 ~ 

Fig. 1. Plot of./4 function, Eq. (19) for N--2, in one period. Notice the presence of many 
relative minima, but only one absolute minimum at x~--x2--0.5. 

For a given test function, we have used the same initial condition, x~,iat, 
for each method. As a general trend, we can see that HSA performs better 
than the other methods when the number of variables N is large. This does 
not imply that HSA performs extremely worse for small values of N. An 
important ad-,/antage of HSA in front of other methods is that the number 
of function evaluations is much smaller (in Table I the number of function 
evaluations includes also the calculation of the forces necessary in the HSA 
method). This might turn out to be very important in those problems in 
which the function evaluation takes a long computer time. We now report 
in some detail the results of each test function: 

As mentioned before, the f~ function, a parabolic function with a single 
minimum, serves to model the behavior close to a minimum of any func- 
tion, i.e. the situation for low enough temperature. When the number of 
variables is small, N = 3, it turns out that the- fastest method (in the sense 
that it reaches the minimum in less computer time) is DSA although HSA 
needs less function evaluations. However, when the number of variables is 
large, N = 200, the cost in CPU time and number of function evaluations 
is very favorable to HSA. In general, the performance of the DSA method 
worsens when the problem has many minima. This is obvious when looking 
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Table I. Number of Function Evaluations Averaged over 10 Realizations, 
for Each of the Simulated Annealing Methods Used for Optimization 

of the Different Functions to Reach the Absolute Min imum with 
an Accuracy of E= 10 -3 (o) 

Function Dimension FSA VFSR DSA HSA 

fl 3 480 4875 79 18 
fl 200 8420000 --  474000 30 
./2 2 9900 1476 (*) 165000 
f3 10 2100000 319483 (*) 720000 
./4 200 12925000 --  (*) 163000 
fs 10 7230000 - -  570000 118000 

to) Those cases marked (*) it was not possible to reach the absolute minimum. For the HSA, 
the displayed number is the number of function evaluations including the calculations of 
the force. 

at the results for the De Jong 's  f2,  the C o r a n a  f3 and the f4 functions for 
which the DSA could not  even find the absolute  minimum.  

The ./2 function is ano ther  example in which the HSA can not  offer a 
better  al ternative than other  methods ,  stressing the fact again that  for small 
numb e r  of  variables the use of  a global actual izat ion turns out  to be irrele- 
vant. In this case, VFSR needs less n u m b e r  of  function evaluat ions than 
any other  method.  However ,  for large nu mbe r  of  variables N, the cooling 
schedule required for V F S R  is necessarily slow (see the discussion in 
Section 2) making  it inefficient for large N. 

The functions in which the variables have a wide range of  var ia t ion (for 
instance Corana ' s  function f3) can be bet ter  handled  using the generalized 

Table II. Similar to Table I, but Showing the CPU Time (in seconds) Needed 
to Reach the Absolute Min imum with an Accuracy G= 10 -3 for Each of 

the Simulated Annealing Methods Explained in the Text (~ 

Function Dimension FSA DSA HSA 

f~ 3 0.023 0.003 0.021 
f~ 200 182.898 163.763 0.039 
f2 2 0.181 (*) 5.834 
f3 10 29.454 (*) 11.730 
f4 200 1662.177 (*) 61.863 
f5 10 119.434 13.929 4.00 

(o) The programs were run on a Silicon Graphics Origin200 (CPU: R10000 running at 
180 MHz, Speed: 15.5 SPECfp95). 
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version of HSA. Remember that the rescaling in (14) allows an effective 
integration time step &ti= ~&t different for each variable. So, one can tune 
A i to solve efficiently this kind of problems. In our case, the range of varia- 
tion of the variables come essentially from the part  V ( x ) = d i x  2 of the 
Corana's function. Then, from the equations of motion .~i-~AiPi and 
pi=AiFi w e  have xi---.42Fi. The force is F i = - 2 d i x  i and we have 
~= -,42d~xi, so we chose ,4~= 1 / ~ , .  in order that each variable has the 
same effective time scale for evolution. 

The f4 and f5 functions have the feature of possessing a large number 
of minima (for example, f4 has ( 2 K - 1  )~v local minima in a period). The 
results show again that HSA is a much better alternative when the number 
of variables is large, both from the point of view of C PU time used or the 
number of function evaluations. We have chosen the f4 function to com- 
pare in Fig. 2,the evolution of the minimum value of the function with the 
actual number of function evaluations, for both the FSA and HSA 
methods, showing again in a different manner  that HSA can find a better 
minimum with a less number of function evaluations. From the results for 
these functions we infer that in minimization problems with a large number 
of variables and a large number of local minima, the HSA has the best per- 
formance. Needless to say, we have made our best effort to use the optimal 
values for the parameters in each method. It is possible, though, that these 
values could be further improved and the results of Tables I and II slightly 

1.000 

W <] 0 .100  

0 .010  

0.001 , 
~0 4 7 

. . . . . . .  i , . , , , . . ,  

6 10 10 

"1 
'1 

\ 

i 

lO 5 

10 .000  

N u m b e r  of  Func t ion  Eva lua t ions  

Fig. 2. Plot of"energy" difference with respect to the ground state value, versus the number 
of function evaluations, for the f4 function (19) with N = 200 using HSA (dotted line) and 
FSA (continuous line), both initialized in x,,m,,i = 1.0, the other parameters have the following 
values, for FSA: To -- 0.8, m = 100, 2 = 100; and for HSA: To = 1.0, m = 10, n = 10, ~t = 0.3, 
2 =0.007, where m is the number of MCS used for thermalization at temperature T(k). 
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modified. We believe, though, that this will not affect the main conclusions 
of this paper. 

5. CONCLUSIONS 

We have shown by some examples how the use of the global update 
using Hybrid Monte Carlo algorithm can indeed improve the performance 
of simulated annealing methods. The global updating implicit in HSA 
allows an effective searching scheme and fast annealing schedules and 
becomes highly effective, mainly in those problems with a large number of 
variables and a large number of metastable minima. 

It is clear from the results in the previous section that HSA requires 
in some cases orders of magnitude less evaluations of the function than 
other methodsand can, therefore, give a solutions in less computer time. 
This conclusion remains despite the fact that HSA requires some extra 
work when computing the evolution equations since it needs to compute 
also the forces F~ acting on the different variables. In those cases in which 
the evaluation of the function takes a considerable amount of computer 
time, HSA will have an optimal performance, since the number of function 
evaluations is greatly reduced as compared to other simulated annealing 
methods. It is conceivable also that one could then use efficiently some of 
the acceleration schemes (Fourier, wavelet, etc.) available for Monte Carlo 
methods in order to improve upon the convergence of the simulated 
annealing techniques. Further developments include applying HSA to 
techniques such as the Car-Parrinello method for finding the ground state 
of quantum many body systems, for which the calculation of the energy 
function is very time consuming. Work on this direction is under progress. 
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