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I. INTRODUCTION

Aggregation in self-associating polymer systems [1] has
been an area of increasing interest during the past several
years due to the unusual rheological properties associated
with the generated structures and the potential techno-
logical applications of these materials [2]. Self-associating
polymers are flexible macromolecules that contain a num-
ber of functional groups distributed along the chain that
favors aggregation. These groups interact via short-range
forces which mediate the formation of structures such as
block copolymers, gels (3], and microemulsions [4]. The
functional groups could be ionic [5], so that the nature
of the interactions is electrostatic, or they could be hy-
drophobic [6], in which case the interactions between
them take place in a polar solvent. Of special interest
is the case where the associating sites or “stickers” are
located at both ends of a flexible polymer chain. This
is the architecture of the associative thickener molecules
[7,8]. In these systems, the molecules have a long hy-
drophilic chain, soluble in water, and contain a number
of hydrophobic functional groups at each end. The pres-
ence of the functional groups make these molecules capa-
ble of producing networks and have been the subject of
extensive research due to their potential use as viscosity
modifiers.

General growth models, such as diffusion-limited ag-
gregation [9,10] and Eden models [11], have been suc-
cessfully extended to self-associating polymer systems
[12,13]. Previous work focused on the morphology char-
acterization and developed scaling relations between the
size of the aggregates (given in terms of the radius of gy-
ration) and the relevant parameters of the system such
as the degree of polymerization N and the number of
chains contained in a cluster. Both irreversible [12] and
reversible aggregation [13] have been considered. In the
latter case, the reversible binding between the functional
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groups models the more realistic situation, in which the
bonds have a characteristic lifetime, related to the ther-
mal fluctuations. The dynamics of the cluster forma-
tion was considered in Ref. [14] in which an irreversible
aggregation model for associative thickeners was intro-
duced. The main result in this irreversible case is that,
for different initial monodisperse systems with a fixed
monomer concentration, the mean cluster size S(N,t)
behaves as S(N,t) ~ N™7t® and the cluster size distri-
bution n,(V,t), defined as the number of clusters of size
s per unit volume at time ¢, obeys a scaling form in the
following way:

'n,,(N,t) =N_IS(N,t)—2¢(3/S(N,t)) ) (1)

where N is the chain length and v = s/S(N,t).

A more general and realistic description of the aggre-
gation process should include the possibility that the ag-
gregates could break into small pieces. This is the well
known reversible aggregation process, which has been the
subject of extensive theoretical and computer work in
cluster formation of single-particle systems [15-19]. Poly-
mers, in contrast to single particles, do have an intrinsic
geometry associated with each single-chain conformation.
This additional degree of freedom enters the cluster size
distribution functions through N, the degree of polymer-
ization. Furthermore, the screening effect, due to the hy-
drophilic part of the chain, inhibits aggregation and may
lead to a dramatically different cluster size distribution
function. It is the purpose of this paper to study how
the chain geometry, in the presence of a limited number
of functional groups, affects the cluster formation of self-
associating polymer systems in a reversible aggregation
process.

The reversible aggregation process can be schemati-
cally represented by the following reaction mechanism:
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K(N,4,j3)
Ai+-Aj =
F(N’ i?j)

A4+j.

where A; denotes a cluster containing ¢ elementary units
(an i-mer) and K(N,i,5) and F(N,4,j) are forward and
reverse rate coefficients representing the coagulation and
fragmentation processes, respectively. An elementary
unit should be understood in our case as a polymer of
chain length N. In a mean field description, the evolu-
tion of the cluster size distribution in this process, under
the assumption of binary collisions, is given by the gen-
eralized Smoluchowski equation (to be referred as GS)
[20]

dn,
dt

- % 3 (KN, )mn; = F(Ni, )]

i+j=s

— Y [K(N,s,5)n,n; — F(N,s,j)ness] - (2)

=1

This equation provides the time variation of the s-mer
concentration n,(NV,t) in terms of gains and losses due
to different reactions in the sample. K(N,i,7) is the
coagulation kernel, giving the aggregation reaction rate
of an i-mer with a j-mer. This kernel contains the ¢
and j dependence of the meeting probability of an i-mer
and a j-mer and includes effects such as the mass de-
pendence of the collision cross section and the diffusion
constant. F'(N,1,j) is the fragmentation kernel describ-
ing the breakup of an (¢ + j)-mer into an i-mer and a
j-mer.

The competition between coagulation and fragmenta-
tion processes may lead to a final steady-state configu-
ration. There the mean cluster size S(N,k,t = o0) is
expected to be determined by the breakup constant x,
measuring the relative strength of the kernels for frag-
mentation and coagulation reactions and the chain length
N. For small « or for sufficiently large mean cluster size,
we will assume that S(IV,k,t = co) decreases according
to the expression

S(N,k,t =00) ~N'kY, (3)

which is a generalization of the behavior observed in the
single-particle reversible aggregation [16]: S(x,t = co) ~
k™Y, We also assume that the dynamical scaling ansatz,
known to be valid for pure aggregation processes [14],
holds in a reversible process for all times up to the steady
state regime, namely, n,(N, &,t) ~ N"1S(N, k,t) " 2¢(u),
with u = s/S(N, &, t).

To determine the validity of the description of the evo-
lution process in terms of scaling laws and mean field
equations, we present in this paper the results of an ex-
tensive numerical study of a three-dimensional model for
reversible aggregation of polymers. In this model, which
is an off-lattice extension of the chain coalescence model
introduced in Ref. [14], polymers are represented by a

TOMAS SINTES, RAUL TORAL, AND AMITABHA CHAKRABARTI 50

succession of hard spheres (“pearl-necklace” model [21]).
When two end spheres (stickers) belonging to different
chains meet, the two chains coalesce and adopt the spa-
tial configuration of one of them (chosen at random) with
a mass equal to the sum of the masses of the initial chains.
We have paid attention to both dynamical and steady-
state scaling behaviors. We find that the mean cluster
size and the size distribution at the steady state can be
described in terms of scaling relations. The time evolu-
tion of the mean cluster size, starting from the aggrega-
tion dominated regime to the steady-state limit, is com-
patible with the predictions arising from the GS equation
and the proposed scaling relations.

The rest of the paper is organized as follows. In Sec.
IT we deduce the Smoluchowski equation from the mas-
ter equation obtained from probability considerations. In
Sec. III we present a theoretical review of the reversible
aggregation process for polymer systems. In Sec. IV we
describe the numerical procedure. In Sec. V A we present
a study of the irreversible aggregation process. In Sec.
V B we compute the time evolution of the mean cluster
size from the aggregation-dominated regime to equilib-
rium. Section V C deals with the steady-state limit for
the cluster size distribution and the mean size. Section
VI concludes with a discussion of the results.

II. DERIVATION OF THE SMOLUCHOWSKI
EQUATION

In order to compare the dynamical evolution of the
system toward the steady-state regime with the theoret-
ical predictions coming from the GS equation, we find
it interesting to develop the correspondence between the
simulations and the GS equation. The objective is two-
fold: to outline the approximations necessary to obtain
the GS equation from the microscopic rules governing
the reversible aggregation process and to precisely estab-
lish the correct time unit needed for comparison. Our
reasoning is rather general and independent of whether
the constituent elements of the clusters are polymers or
single-particle-like.

Let us define N,(t) as the mean number of clusters of
size s at time t. The Smoluchowski equation is usually
written in terms of the number density of clusters n,(¢),
defined as N,(t)/V, where V is the (constant) volume
of the system. We shall derive now the Smoluchowski
equation from probabilistic considerations. For the sake
of clarity we shall consider separately the fragmentation
and aggregation process.

A. Pure fragmentation

Let us assume first that only fragmentation processes
take place. Consider a cluster of size s, selected at ran-
dom according to a probability 7,(7), and fragment it



50 REVERSIBLE AGGREGATION IN SELF-ASSOCIATING . ..

into two pieces 7,7 such that ¢ + j = s. We define
P(N,(t) = M) to be the probability that at the sim-
ulation time 7 the number of clusters of size s is exactly
equal to M. We can write an evolution equation for this
probability. Every time we select and try to fragment a
cluster, time increases by a constant amount §7. With
the above definitions we have the relation

J

p1 = prob[that N,(7) is not changed],
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P(N,(7 +67) = M) = P(N,(r) = M)p,
+P(N,(1) = M + 1)p,
+P(N,(r) = M — 1)ps
+P(Ny(1) =M —2)ps, (4)

where

p2 = prob(of selecting a cluster of size s and fragment it),
p3 = prob(of selecting a cluster of size s’ > s and fragment it in 5,5’ — s # s),
pa = prob(of selecting a cluster of size 2s and fragment it in s, s).

Let F(i,7) be the conditional probability that, once
selected, a cluster of size i + j is fragmented into two
clusters, the first one of size 7 and the second one of size
j, considering the reverse order in ¢ and j to be a differ-
ent outcome. We can then write explicitly the probabil-
ities appearing in the above expression as follows: p;=
[probability of selecting any size i < s and do whatever
(fragment or not fragment)| + (probability of selecting a
cluster of size s and do not fragment it) + (probability
of selecting a cluster of size 7 > s and do not fragment it
into pieces of sizes i,7 — s). This in equation form reads

pL = .z_:ﬁi(T) + 71 (7) (1 - ZF(i,s — z))

+ Zﬁi(r) [1 —2F(s,i — s)] + N2, F(s,5) , (5)

1>8

where 71,(7) is the probability of selecting a cluster of size
s at time 7. Reasoning in this way, the other probabilities
appearing in Eq. (4) are given by

P2 = Au(r) 3 Flis ), (6)

=1
ps =2 #i(1)F(s,i — 5) — 202,(T)F(s,5) ,  (7)
i>s
Pa = Nige(T)F (s, 8) . (8)

Introducing these expressions in Eq. (4) and applying
the relation

N,(1) =Y MP(N,(r) = M), (9)
M
we arrive, after some algebra, at
s—1
Ny(T+067) = Ny(7) = —#o(1) Y F(i, 5 — i)
=1

+2) Ai(T)F(s,i — s).

i>8

(10)

The standard procedure used in numerical simulations is
such that a cluster is selected at random with a prob-
ability independent of its size. We can then, in the

[

mean field spirit of the Smoluchowski equation, take
fi(1) = N;i(7)/N(r), where N(7) = 3. N;(7) is the to-
tal number of clusters at time 7. By using this relation,
it follows that

Ny (14 61) — Ny(7)
N(r)—?

= —N,(7) ZF(i,s —1)

=1

+2)  Ni(r)F(s,i—s). (1)

i>8
If we introduce the unit of rescaled time ét as

ot

= N

(12)

we have (substituting the difference by a derivative and
setting 67 = 1, which stands for a trial in the simulation)

al\gt(t) = —N,(t) ;F(i,s —i)+ 2§;Ni(t)p(s’i — ).

(13)

Dividing by the system volume V one obtains exactly the
fragmentation part of the GS equation for the cluster size
distribution density except for a factor of 2 because in the
definition given above F(i,j) and F(j,t) are considered
to be different events. This double counting has to be
taken into proper account in the definition of the frag-
mentation probability in the numerical model.

The relevant point we may notice here is that the el-
ementary time §t is related to the simulation time in a
natural way. Every time we choose a cluster and try to
break it, time should be incremented by a quantity equal
to the inverse of the total number of clusters present at
that time. We shall call this time a Monte Carlo time
step.

B. Pure aggregation

It is possible to get the aggregation part of the Smolu-
chowski equation using a method similar to the one above
and considering some mean-field-like hypothesis. If one
notes that the probability that two clusters of sizes i and
J aggregate to form a cluster of size ¢+ is proportional to
the probability of selecting these two clusters times the
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probability that the proposed aggregation is accepted,
then the resulting equation is

Ny(T+01) — Ng(7) = Z K (i, j)ni(m)n;(7)

t+j=s
~2 3 K(s.d)(r)as(r)  (14)
=1

(again, double counting is present in the reaction ker-
nels). Now we have to decide whether a numerical simu-
lation satisfies the hypothesis that leads to this equation.
Let us consider only the term K(i,j)7;(7)7;(7), which
represents the probability that clusters of sizes ¢ and j ag-
gregate. Suppose that in the simulation, a cluster of size 7
is selected first and then it is moved randomly to another
location, uncorrelated to the previous position. Then the
probability of finding a cluster of size j is N;(7)v/V, v
being the effective volume of a single cluster and V the
total volume of the system. Finally these two clusters do
aggregate with probability k(Z,j). In this case we have
then

K (2, 5)7i (1) (1) = fs(T) N; (1)

Substituting this in Eq. (14), multiplying by N (7), using
the same definition of time ¢, and dividing by V', one gets
the aggregation part of the Smoluchowski equation

ong (T ..
W7 2 Hlidmttng(o
_22 k(s,j)ung(t)n;(t). (16)

Again this is the usual way of writing the Smoluchowski
equation, but now the aggregation kernel is identified as a
geometric factor, giving the volume occupied by a cluster
times the probability that these two clusters do aggregate
when brought into contact. Note again that the natural
time that appears here is the time which is increased by
an amount inverse to the number of present clusters.

III. THEORETICAL REVIEW

We briefly review the main predictions of the GS equa-
tion for the the mean cluster size evolution. We incorpo-
rate the polymer effect by assuming that the chain struc-
ture is reflected via a power-law dependence on the chain
length for the reaction kernels, so that the coagulation
and fragmentation kernels are represented by

K(N,i,j) = vk(N,1,7) = vecN %9 (3, 5) (17)
and

F(N,i,j):h?wa@(i,j), (18)
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with ¥(1,1) = ®(1,1) = 1 and &, and k¢ being the coag-
ulation and breakup constants, respectively. We assume
a scaling behavior for the cluster size distribution as

ne(N,k,t) = M1S(N,k,t) 2p(u) , (19)

with u = s/S(N, k,t). M is the first moment in the size
distribution and represents the total density of chains in
the system. As we are interested in the N dependence
of the mean size evolution and the time to reach equilib-
rium, we consider systems with constant density pr, such
that the total number of monomers is preserved. There-
fore, M; = prN~!. The moments are calculated in the
usual way

M; = Z sin,(N, K,t) (20)

s=1

and the mean cluster size is defined as
S(N,k,t) = My /M,. (21)

As commonly assumed in literature [16-19], the kernels
are taken to be homogeneous functions of their argu-
ments, so that v(ai,aj) = a*¢(i,j) and ®(ai,aj) =
a®® (i, 7). After writing the equation for the time deriva-
tive of the zeroth moment, one finally finds a differential
equation for S(N, k,t):

diltS(N, Kk, t) = LMy N70S* — L N*S*+2 | (22)
where
L= / de / dy ¥(z, y)e(z)eY) (23)
0 0
I = / dz / dy ®(2,y)p( + ) - (24)
0 0

Rewriting Eq. (22) in terms of the reduced variables

,_ S0k |
5= S(N, Kk, 00) (25)

and

- t
t=—, 26
¢ (26)

one obtains the scaled equation
d
—§ =35 — 5%t (27)
dt

Then the mean cluster size at steady state is found to be

IlpTUKcN_(0+U+1) y
I2Kf )

S(N,k,00) = ( (28)

and the characteristic time to approach equilibrium is

S(N,k,00)1 >

= iR, NG (29)

where
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y=(a—-A+2)"L (30)

Also, from Eq. (3) we get a relation for the exponent ~y
as

Y=yl +1+w). (31)
IV. NUMERICAL MODEL

To test the scaling predictions for the cluster size dis-
tribution and the time evolution of the mean cluster size,
we have carried out extensive numerical simulations in
three-dimensional off-lattice systems. We have consid-
ered a pearl-necklace model [21] for the polymer chains,
enclosed in a cubic cell of dimensions L x L x L, where L is
equal to 50 times the monomer diameter. Our simulation
starts with a monodisperse initial configuration. This has
been obtained by randomly placing a number of chains
of length N in the cell in such a way that the monomers
cover 15% of the total volume available. The initial con-
figuration is equilibrated by random movements without
aggregation. The excluded-volume criterion is assumed,
so that none of the monomers is allowed to overlap with
each other.

We choose, at random, one of the clusters, initially
identified with chains, and try to move it by executing a
reptation-type motion in a forward or reverse direction,
also chosen at random. The excluded-volume criterion
is also applied here, except for the sticker sites, which
may overlap with another sticker belonging to a different
chain. If this overlap between stickers takes place, then
the corresponding chains aggregate and form a cluster.

In order to avoid the complexity arising from the ge-
ometrical structure of the clusters, which should be re-
flected in the functional form of the reaction kernels, we
employ the so-called chain coalescence model [14]. In this
model, the clusters are defined to be single chains with
the same length as the initial ones. When two clusters of
masses ¢ and j interact, they coalesce into a heavier clus-
ter which has the shape of either the ith or the jth chain,
but a mass of i+ j. The rate of this interaction is propor-
tional to the reaction kernel K (NV,1, j). Since the clusters
have the same chain geometry, the functional form of the
reaction kernel can be specified exactly. In our simulation
we have assumed a mass-independent sticking probabil-
ity, so that the aggregation kernel is constant and ¥ (3, 5)
is set to 1. This gives A = 0. Furthermore we consider
kc = 1 (and then & should be identified with kz), which
yields simply, for the aggregation kernel,

K(N,i,j) =uvN7%. (32)

The probability of choosing a cluster of mass s = ¢+ j
is given by 7i,(V, k,t), and we consider that any of the
s —1 bonds can be broken with equal probability. Then,
the probability of breaking one of the s — 1 bonds of a
cluster of size s can be written as

'ﬁ,,(N, K,y t) S_i—lp(s) ) (33)

where p(s) is considered to have the functional form
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p(s) = Kp(s — 1) 57, (34)

so that
F(N,i,j) = kg N“®(2,7) = k5 (i + ) (35)

and w = 0. Note that double counting in our probabil-
ity definition is present, in agreement with the deduc-
tion of the pure fragmentation equation (13). Therefore
Egs. (30) and (31) become

y=(a+2)7" (36)
and
vy=y(6+1) (37)

and the constants o and k are the only parameters in
the model. In the simulation, a cluster is picked at ran-
dom and an attempt is made either to break it or to
move it in a random fashion. If we attempt to break a
cluster of size s = ¢ + 7, it will break with a probability
given by p(s). The new position of one of the two frag-
ments will remain the same as the original cluster and
the other one, represented by a new chain of length NV,
is placed at a random location inside the cell, preserving
the excluded-volume criteria. This situation corresponds
to the so-called uncorrelated fission: the resulting frag-
ments are placed at random, uncorrelated positions, in
the spirit of the mean field theory [18]. This choice of
uncorrelated fission, with the fact that the resulting ge-
ometry of clusters is neglected, makes it plausible that
the process is described by the GS equation with single
choices for the fragmentation and aggregation kernels.

In a general computer simulation, where long-range
forces are present, each cluster C; can potentially in-
teract with any of the remaining aggregates. However,
for short-range interactions, a significant amount of com-
puter time, used in determining which pairs of clusters
are close enough to interact, can be reduced. In order
to achieve this, one should be able to efficiently compute
the subset of clusters with which C; interacts. For this
reason we have implemented a link cell method [22]. In
this scheme the simulation cell is broken into N, smaller
subcells. Then to each subcell we assign a list of clus-
ters belonging to it. If the edge length of each cell L.
is chosen to be larger than the diameter of the particles,
then all interacting pairs are located within the same
cell or in one of the 26 adjoining cells. Therefore, the
time to find all interacting pairs of clusters scales with
the actual number of clusters, say C;, instead of C2 for
the standard method. For each pair of values (&, a), the
maximum number of subcells N, is chosen in order to
minimize the CPU time.

V. RESULTS AND DISCUSSION
A. Irreversible fragmentation process

Before studying the more general reversible aggrega-
tion case, we have focused on the irreversible fragmenta-
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tion process. Our purpose is to check, first, the equiv-
alence between the Monte Carlo time step and the ele-
mentary time unit in the GS equation and, second, the
validity of the fragmentation kernel under the assump-
tion of an effective probability to break a cluster given
by p(s) [Eq. (34)].

For the present purpose we write the fragmentation
kernel F(N,i,j) as

F(N,i,j) = k(i +3)% (38)

For this particular choice of F'(N,z,j), the equation for
the pure fragmentation process reads

dng

dt

=Kp —xa(x~1)nm+22(x+i)"nr+i . (39)

=1

This equation can be solved approximately [23] and for
a monodisperse initial condition n, (¢t = 0) = é(z — ) the
solution is

a+1

2k ptl®e  "FIT , <l
ng(t) = q 8z — e ~rt="""  p =] (40)
0, Tz >1.

In order to test the range of validity of the above solu-
tion, we have integrated numerically the set of equations
(39) by using a fourth-order Runge-Kutta method with
a variable time step. This set was truncated to a finite
number of equations by setting the initial condition to a
single cluster of mass equal to [. We have computed the
mean cluster size S(t), defined in Eq. (21), both from
the approximate solution and by numerically integrating
Eq. (39). We have also carried out numerical simulations
for the irreversible aggregation process by itself. We set
the initial configuration to be a single cluster of mass
l. In this model we pick a cluster at random (if there
is more than one cluster) and attempt to break it with
a probability given by p(s), where s is the cluster size.
Care must be taken as how [/, kg, and « are chosen since
p(s), interpreted as a probability, must satisfy p(l) < 1.
The results show excellent agreement between the nu-
merically integrated system, the approximate analytical
solution, and the simulation data, as can be seen in Fig.
1. In this figure we have plotted, in a logarithmic scale,
the mean cluster size S(t) as a function of time for these
particular values: [ = 1000, a = 1, and kg = 1075, Fur-
thermore, in the case of | — oo, the mean cluster size
coming from the approximate solution is found to scale
as

S(t) ~ (kgt) et (41)

This behavior is also shown in Fig. 1, where we get a
slope of —0.5, which corresponds to the exponent —a—i-l
for a = 1.

B. Dynamical evolution
In order to test the validity of Eq. (27), we have

solved it for different values of o ranging from a = —0.5
to @« = 2. The initial condition for the mean cluster
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size is §(t = 0) = 1/S(N,k,o0), corresponding to the
monodisperse distribution considered before. We have
also performed numerical simulations for the same val-
ues of a and computed the mean cluster size S(N,k,t)
from t = 0 up to the steady-state regime. The results
have been averaged over ten different initial configura-
tions. We have also varied the breakup constant from
x = 1073 to k = 1072 and considered chain lengths of
N = 5,10, 20,30, and 40.

To rescale the simulation data we must determine I
and the exponent 6. Since K(N,i,j) = vN~% and
Y(i,7) = 1 in our system, Eq. (23) reads

o 2
I = [/0 dz @(m)} . (42)

It is straightforward to see that I; = 1. The exponent
6 can be obtained by considering the pure aggregation
process. It is well known that the Smoluchowski equa-
tion for the irreversible aggregation process, that is, for
F(N,i,7) = 0, and for a constant reaction kernel K (V)
can be solved explicitly. The exact solution predicts [9]

|
]
|
|
1

8¢ T ‘ T ™

f t=1000 1

7F e _ =

[ -~ -~ a=1 :

E b K=10" 1

: > :

% 1

6 E _%% i

— & / 4

= ]

o5k / i

3 slope=—-0.5 j

S 4E :

: ]

: ]

‘ 1

3r 1

_ approz. analytical sol.

: exact numerical sol.

2F + MC simulation E

1 i TN S| L 1 S E
-10 -5 0 5

In(t)

FIG. 1. Logarithmic plot of S(t) vs t corresponding to an
irreversible fragmentation process for an initial monodisperse
distribution n, (¢ = 0) = é6(x —1). The dashed line comes from
the numerical integration of Eq. (39). The dotted line is the
approximated solution of S(t) calculated from Eq. (40). We
also plot (+) the result of a Monte Carlo simulation of an
irreversible fragmentation process with a breakup probability
given by p(s) = k(s — 1) s, where s is the size of the cluster
trying to be broken. We have considered the particular case
of | =1000, « =1, and Ky = 107°. Observe that for t > 1 the
slope of the curve corresponds to the value — supporting
the scaling relation (41).

1
a+1
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S(N,t) = S(N,t = 0) + MyK(N)t . (43)

Substituting K (N) by its actual expression, the relation
(43) can be written as

S(N,t) = S(N,t = 0) + ppuN~ O+t (44)

We have simulated the irreversible aggregation process
for different values of the chain length N. In Fig. 2 we
represent S(N,t) as a function of t. According to the
expression (44), the slopes of the curves are given by
&(N) = pruN—+1) (note that they are independent
of @ and k). We can rewrite Eq. (29) to obtain the
characteristic time { to reach the steady state, in terms

of £(N):
¢= £(N)_IS(N’ K,00) . (45)

Once {(N) and S(N, k, c0) have been directly determined
from the simulation data, we can compare the theoreti-
cal evolution of the mean cluster size with the simulation
data. We have plotted in Fig. 3 the result for different
choices of N, k, and a. Observe the excellent agreement
between simulation and the integration of Eq. (27) with-
out any further parameter fitting. As expected, after a
sufficient long time, the mean cluster size becomes time
independent and reaches its saturation value S(NV, k, 00).

By fitting £(N) = prvN~©+1) we can determine the
value 8 = 0.1 £ 0.02. Moreover, from Eq. (44) we know

50- T T T T T T L ‘ T T T I T T T ]

i ]

[ N slope ]

[ ¢ 10 0.026 ]

b 20 0.012 ]

[ O 30 0.008 ]

E x40 0.005 1

30 -
> [
0
oo
20E
10}

FIG. 2. Plot of the mean cluster size S(V,t) as a function
of time t. The solid lines correspond to the slopes of the
curves also indicated in the figure. These values are the ones
assigned to {(IV) used in determining the characteristic time

¢ [Eq. (45)].
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that the mean cluster size scales as S(N,t) ~ N—¢+1)¢,
To be able to compare results for different values of N,
we need to set the same time scale for all systems. This
is simply done taking { = t/N as the time unit, since
we consider systems with constant density pr. In Fig. 4
we have plotted S(N,t )N® vs t in a logarithmic scale.
It seems clear that the data collapse on a single master
curve. The estimated value of the exponent 6 is § =
0.1 +£0.01.

C. Steady-state limit

Because of the fragmentation process, the system
reaches a steady-state regime after a sufficiently long
time. Afterward, the mean number of clusters and hence
the mean cluster size remain constant. In this regime the
theory predicts that the exponents y and v obey the alge-
braic relations (36) and (37), respectively. Once we have
determined the value of 6, we turn back to the reversible
aggregation mechanism. Our purpose is to determine the
value of the exponents y and v and to test the scaling
relation Eq. (28). To this end we have computed, for
different sets of N, x, and «, the mean size S(N, &, 00)
and cluster size distribution n,(N, k, ), once the sys-
tem reaches the steady state. We have averaged these
quantities over 1000 measurements.

To compute the exponent y we have plotted the mean
cluster size S(IV, k,c0) versus the breakup constant x in

T T T T T

1.0

-

—

s(t)

(0) N=10, a=2, k=1.25E—-4
(x) N=30, a=-0.5, k=1.E—3

0.1F (+) N=40, a=1, k=2.5E-5 1
1 1 11 IALIII 1 1 1 lJ_I_ALL 1 11 L 111
0.01 0.10 1.00 10.00

£

FIG. 3. Log-log plots of the reduced variable 3 vs ¢ for
different values of N, o, and k. Each plot has been shifted an
arbitrary amount in the vertical axis for the sake of clarity.
Observe the good agreement between simulation data and the
curves coming from the solution of Eq. (27) (dotted lines).
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FIG. 4. Logarithmic plot of S(N,f )N? vs t = t/N for
different values of N. This plot corresponds to the simu-
lation of the irreversible aggregation process. We obtained
6 = 0.1 + 0.01. Note that all data collapse reasonably well in
a single master curve, supporting Eq. (44)
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FIG. 5. Logarithmic plot of the mean -cluster size

S(N,k,00) vs the breakup constant x for a = 2. We have
considered the chain length to be N = 5,10,20, 30, and 40.
The slope of the curves gives the value of the exponent y. The
best least-squares fit to the data gives y = 0.22 £ 0.01. The
expected theoretical value is y = 0.25.
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TABLE I. y and ~ values obtained with our numer-
ical model compared with the theoretical mean-field ex-
pected ones for different a’s. The asterisk denotes setting

6 =0.1+0.02.
a Yth Y Yen” Y
0.5 0.67 0.62 +0.03 0.733 +0.013 0.65 £+ 0.05
0.5 0.40 0.35 £ 0.02 0.440 + 0.008 0.40 £ 0.02
1.0 0.33 0.29 £+ 0.02 0.367 + 0.006 0.33 £0.02
2.0 0.25 0.22 +£0.01 0.275 + 0.005 0.25 £ 0.02

a logarithmic scale. We have considered the chain length
N to take the values N = 5,10,20, 30, and 40. In Table
I we list the values obtained from the best least-square
fit to the data compared with the theoretical predicted
ones from Eq. (36). We observe reasonable agreement
between them, although the simulation obtained values
tend to be smaller than the predicted ones. In Fig. 5 we
show a plot corresponding to the case for a = 2.

To estimate the value of the exponent v, we have com-
puted the slope of S(IV,k,00) vs N curve, plotted in a
logarithmic scale. For each a value we have considered
seven different values of x ranging from 107° to 1073.
In Table I we tabulate the corresponding results. To
obtain the theoretically expected ~ value we have set
0 = 0.1 £ 0.02. Observe the good agreement between
the theoretical prediction and the numerical results for
v, within the error bars. In Fig. 6 we represent one

Fo 3 AL B AL B AL LN AL B LA AL AL

I 4

4 * N _
. \ {units of 107%) 1

o

In[S(N, k)]

/ ? |

e bt ks Lo

500 1
17000
a=0.5 *
0:4.l;....-I.H.,..L.uHl.u..l...x.,“.‘x
1 2 3 4 5
In(N)
FIG. 6. Logarithmic plot of the mean cluster size

S(N,k,00) vs the chain length N for « = 0.5. We have
considered seven different values of the breakup constant s
ranging from 107% to 1073. The slopes of the curves give
vy = 0.40 & 0.02. The theoretically expected value for this
particular « is v = 0.44.
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FIG. 7. Plot in a  logarithmic scale of
ns(N, k,00)NS?(N, k,00) vs s/S(N, &, 00) for different values
of Kk and N. a = 2. Note that all data collapse reasonably
well in a single master curve, supporting the scaling relation
for the cluster size distribution at the steady-state region [Eq.

(19)].

particular case corresponding to a = 0.5.

To test the relationship (19) at the steady state
(t —» o0) we have plotted on a logarithmic scale
ns(N, k,00)NS2(N,k,00) vs s/S(N,k,00). Figure 7
show these results for = 2 and for all pairs (N, k).
For simplicity, we have used different symbols just for
different chain lengths V. We observe that all the data
collapse reasonably well onto a single master curve, thus
supporting the predicted scaling relation.
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VI. CONCLUSIONS

In this paper we have studied the reversible aggrega-
tion process in associative thickener systems. We have
developed a numerical model based on an off-lattice co-
alescence model in three dimensions. We have shown,
by an explicit derivation of the generalized Smoluchowski
equation, that the natural time that appears in the equa-
tion is the time which is increased by an amount inversely
proportional to the number of clusters present in the nu-
merical simulation at that particular instant.

We have carried out simulations for the pure irre-
versible fragmentation process, where we have found a
scaling relation for the mean cluster size. For the re-
versible aggregation process we have paid attention to
both dynamical and steady-state scaling behaviors. In
the former case, we have studied the mean cluster size
evolution from the aggregation dominated regime to the
steady-state regime. We have found excellent agreement
between theoretical predictions and numerical simula-
tions, supporting the mean field description. We have
computed the exponents y and v from the data for the
mean cluster size at equilibrium. The results obtained
are in good agreement, within the errors, with the theo-
retically predicted ones derived from proposed scaling re-
lations and mean field theory. Small deviations observed
might be explained in terms of the restriction imposed on
the aggregation reaction kernel, on the basis of the as-
sumption that the new position occupied by the cluster
is uncorrelated to the previous location. This fact makes
the theoretical model less realistic but, on the other hand,
allows one to specify the value of the reaction kernel ex-
plicitly. Finally, we have verified the scaling ansatz for
the size distribution at the steady-state regime.
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