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Monte Carlo study of polymer chains end-grafted onto a spherical interface
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We report results from a Monte Carlo simulation of many polymer chains end-grafted onto the outer
surface of a sphere. We find that for small values of the radius of the grafting sphere, the monomer den-
sity profiles are quite different from what is obtained in the case of a flat interface. As the radius of the
sphere is increased further, we find that the profiles resemble those obtained in the flat case. However,
even for a large value of the radius, the density profiles cannot be described by a parabolic form. We
have also studied the scaling behavior of the density profile and find that the scaling hypothesis works
reasonably well to describe the height of the polymer brush and the density of monomers at the grafting
surface. We also investigated the density profile of the free chain ends for different values of the radius
of the spherical interface, different chain lengths, and different surface coverages. Self-consistent-field
theory suggests the existence of an exclusion zone near the surface from which the chain ends are ex-
pelled. We do not observe a definite exclusion zone for most of the values of chain length, radius, and
surface coverage studied here. However, some evidence of an exclusion zone is found in one case with
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high surface coverage.

PACS number(s): 36.20.—r, 82.70.—y, 87.15.—v, 81.60.Jw

I. INTRODUCTION

Recently, there has been considerable interest in the
study of configurational properties of polymer chains ter-
minally attached or end-grafted to an interface. This
study is relevant to many aspects of polymer science and
technology [1,2] because the long-range repulsion provid-
ed by the polymer brushes modify the interaction be-
tween two such grafted surfaces. Earlier studies focused
on the case of a planar interface mainly because it is the
easiest situation to analyze theoretically. Analytical as
well as numerical studies have provided a reasonable un-
derstanding of the structure of the brushes formed in the
case of a planar interface. Polymers end-grafted onto
spherical interfaces, however, are particularly important
for stabilization of colloidal suspensions. For example,
stabilization can be achieved in a standard latex paint by
grafting polymers onto the spherical latex particles.
Thus a proper understanding of the conformational prop-
erties of polymers grafted onto a spherical interface is ex-
tremely important.

For a planar interface, theoretical treatments of the
grafted polymer brush have been carried out by using
phenomenological scaling arguments [3,4] and self-
consistent-field (SCF) method [5-8]. The SCF method is
essentially a mean-field approach but it offers a detailed
prediction of the brush properties such as the monomer
density profile. Usually, this quantity needs to be evalu-
ated numerically [6,9] within the SCF formalism. Re-
cently, however, a simplified SCF method has been
developed by Milner, Witten, and Cates (MWC) [8] and
by Zhulina and co-workers [10,11]. The MWC theory is
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based on the assumption of long, strongly stretched
chains and weak excluded-volume interactions and is ar-
gued to be exact in the long-chain limit. The MWC cal-
culations predict a parabolic form for the density profile,
which is well supported by recent Monte Carlo [12,13]
and molecular-dynamics [14] simulations. These simula-
tions found general agreement to the parabolic form ex-
cept for a depletion zone very near the grafting surface.
It is also found that the free ends of the chains are not ex-
cluded from the region near the grafting surface, which is
in agreement with the results of the SCF model. The
quantitative agreement between numerical studies and
the SCF theory is also quite good for more complicated
situations such as polydisperse chains [12,13,15] grafted
on a flat surface and chains grafted on an interacting sur-
face [16-18].

Recently, the SCF method has been extended to the
case of chains grafted on a curved surface. For a convex
surface and melt condition, Semenov [7] finds that the
parabolic form is no longer a self-consistent solution and
suggests that the free chain ends should be excluded from
a zone near the grafting surface in order to regain self-
consistency. Ball, Marko, Milner, and Witten (BMMW)
[19] have developed a quantitative theory under melt
conditions, where they find the chain configurations and
free energy in a closed form for a convex cylindrical sur-
face. They also find the existence of an exclusion zone
from which the free chain ends are expelled. Although
the good solvent case and the spherical interface case
have not been solved in detail, the above authors expect a
similar behavior in these situations as well.

Numerical studies have been carried recently to test
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some of these predictions for convex interfaces. Murat
and Grest [20] carried out molecular-dynamics simula-
tions for a cylindrical grafting surface but found no evi-
dence of an exclusion zone except in the extreme situa-
tion where the cylinder is replaced by a line. Such ex-
clusion zones have also been observed in another special
limiting case of star polymers [21]. It should be noted
here that definite exclusion zones have only been ob-
served in the case of an interacting planar grafting sur-
face [18].

In a recent publication, Dan and Tirrell [22] used a nu-
merical SCF method for chains grafted on cylindrical and
spherical interfaces. The authors found good agreement
with the theoretical predictions of BMMW including
some evidence of an exclusion zone. However, we should
point out that SCF calculations make a mean-field ap-
proximation, i.e., they replace the full statistical-
mechanical problem by a single-chain self-consistent
problem. Thus the SCF calculations neglect effects of
correlations between chains, which might be important in
many real experimental situations.

In this paper, we carry out a detailed Monte Carlo
study of polymer chains grafted onto a sphere. The ad-
vantage of a Monte Carlo study is that these calculations
do not make any mean-field approximations, although it
is difficult to investigate large-chain-length, high-surface-
coverage systems, due to the massive amount of comput-
er time required in such a study. The chain lengths and
surface coverages accessed in this study, however, com-
pare well to those used in the numerical self-consistent-
field calculations of Dan and Tirrell and are relevant in
many experimental situations. We calculate the mono-
mer density profile and the density of the free chain ends
for various surface converges as well as different chain
lengths. In Sec. II we describe the numerical model and
the methods of calculations. In Sec. III we present the
results and in Sec. IV we conclude with a brief summary
and discussion of the results.

II. MODEL AND NUMERICAL PROCEDURE

We consider polymer chains grafted onto the outer sur-
face of a sphere of radius R. The polymer chains are
modeled by the so-called pearl-necklace model [23]. In
this model one considers the polymer chains to be made
out of N monomers connected by rigid rods. Each mono-
mer is modeled as a hard sphere of diameter unity. The
distance between successive monomer centers along a
chain is set to be /=1.1 times the diameter. The first
(“head””) monomer of each chain is permanently an-
chored onto the sphere and consecutive monomers are
added by executing a self-avoiding random walk starting
from the first monomer. The only interactions con-
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sidered are the self- and mutually avoiding ones: the
monomer spheres cannot penetrate each other or the
grafting sphere. In order to be able to achieve all the pos-
sible configurations of the system, a Monte Carlo dynam-
ics is introduced. In such dynamics, the monomer move-
ments are simulated by “kink jumps” appropriate for this
off-lattice model [23].

We have considered two different values for the radius
R of the grafting sphere, two different values for the
chain length N, and three different values for N,, the
number of grafted chains. The total number of mono-
mers in the system is given by N,=N, X N. The surface
coverage o is defined as

Np
U=4 7 (1)
T

To put the chains onto the sphere we use a modified ver-
sion of the existing method of growing and equilibrating
chains simultaneously [24]. One by one, the chains are
grafted at random locations on the sphere in the follow-
ing way: first, one tries to place the head monomer at
some location on the surface of the grafting sphere such
that it does not overlap with any other existing mono-
mers. The center of the head sphere is at a distance of
R +1 from the center of the grafting sphere. If it has not
been possible to put the head in N;=1000 trials, the
whole existing system is equilibrated N, =2 units of time.
We define our unit of time as N, XN kink-jump move-
ments (where, in this case, Np is the number of chains
present in the system at that time). Once the head is in
location, we put on the remaining N —1 monomers one
by one. Every monomer is placed randomly with its
center at a distance / from the center of the previous
monomer. If the monomer overlaps with either the
sphere or any of the existing monomers, it is removed
and we try to put it on again. If, after N, =35 trials, we
fail to put on a monomer, the whole chain is removed and
the system is equilibrated N, units of time and the pro-
cess starts again.

Once all the chains have been placed the final equili-
bration starts. In this equilibration process, every mono-
mer is tried to move N, units of time (i.e., a total of
Ny XN, trials). We have used for N, a number much
larger than the relaxation time of a single chain. For ex-
ample, Ny,= 10° for run 3 (see Table I). After this initial
equilibration, different quantities of interest are recorded
every N;=10 steps over a total length of N, units of
time, which depends on the particular run (for example,
N,=6X10’ for run 1 and N, = 6000 for run 12.

Among other quantities, we have computed the mono-
mer density profile ¢(r), defined as

(number of monomers with distance to origin between r—1 and r+1)

o(r)= 5

47r

(2)

The definition of ¢(r) is such that the following normalization holds:

[ dretr)=n,.

(3)
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The end-chain density €(r) is defined as

(number of end monomers with distance to origin between » — and r+1)

e(r)=
47r?
which is also normalized such that
[ “d*re(n=N, . ()
0

We have also monitored the behavior of the average ra-
dius of gyration (R,) and the average end-to-end dis-
tance {R,). Special care has been taken that the com-
puted  magnitudes correspond to equilibrium
configurations by ensuring that the results do not depend
on time.

III. RESULTS

As mentioned earlier, we have considered two different
values for the radius of the grafting sphere (R =5,11.18),
two different values for the chain length (N =50,100),
and three different values for the number of grafted
chains (Np=25,50,100). Thus in all we have studied
twelve different cases, as listed in Table I. In this table
we show the average radius of gyration (Rg> and the
average end-to-end distance (R, ) of the chains in each

TABLE 1. Some characteristics of the polymer brush grafted
on a spherical interface for various surface coverage (o) and
chain lengths (N). Here R is the radius of the grafting sphere,
N, is the total number of grafted polymer chains, (R, ) is the
average radius of gyration of the chains, and (R, ) is the aver-
age end-to-end distance of the chains. Note that runs a and b
corresponding to one free chain in solution are also included for
comparison. Density profiles for runs 1-12 are analyzed in the
text.

Run R N, o N (R,) (R.) R/(R.)
a 50 516 12.77
b 100 7.77 1895
c 5.0 1 50 523 1347
1 50 25 008 50 541 1475 034
2 50 50 016 50 572 1619 031
3 50 100 032 50 614 1809 028
d 50 1 100 790 19.96
4 50 25 008 100 856 2395 021
5 50 50 016 100 9.05 2578  0.19
6 50 100 032 100 9.68 29.10  0.17
e 1118 1 50 523  13.66
7 1118 25 0016 50 536 1442  0.78
8 1118 50 0032 50 544 1481  0.75
9 11.18 100 0064 50 564 1586  0.70
f 118 1 100 7.95 2044
10 1118 25 0016 100 821 2242  0.50
11 1118 50 0032 100 849 2345 048
12 11.18 100 0064 100 9.19 2652 042

case. We find that for both R =5 and 11.18, the chains
stretch more and more as the surface coverage increases.

In Figs. 1 and 2 the monomer density profile ¢(r) is
plotted versus distance r, after subtracting the minimum
distance to the origin, i.e., r=ry— (R +1) where r, is the
distance measured from the center of the grafting sphere.
In Fig. 1(a) we show the monomer density profile for
chain length N =50 for different surface coverages and
for the grafting sphere radius R =5. We find that the
shape of the profile is very different from that obtained
for a flat grafting surface [12]. For flat surfaces, the den-
sity profile is given by a parabolic form except for dis-
tances very near the grafting surface, where a small de-
pletion zone is found. In the present case, we find that
the profiles are concave downward and the depletion
zone near the grafting surface is less pronounced. It is
also clear from this figure that the extent of the depletion
zone increases with decreasing o. The corresponding
density profiles for N =100 (and R =5) are shown in Fig.
1(b). A similar dependence of the density profile curves
on surface coverage is observed in this figure.

04 T T T T

(@) Rr=s0

o(r)

o(r)

40

FIG. 1. (a) Density profile from Monte Carlo simulations for
polymer chains grafted on a sphere of radius R =5 for different
coverages and chain length N=50. (b) Same as in (a) except
N=100.
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FIG. 2. (a) Same as in Fig. 1(a) except R =11.18. (b) Same as
in (a) except N =100.

We now show the monomer density profiles for
different surface coverages in the case of a grafting sphere
radius R =11.18. In Fig. 2(a) we show such profiles for
N =50 and in Fig. 2(b) we show the corresponding results
for N=100. In each of these cases we have the same
number of polymer chains N, as in the case of R =5, but
since the surface area is now five times larger, the surface
coverages are smaller in each case by the same factor of
5. In Figs. 2(a) and 2(b) we observe that the profiles are
concave upward in contrast to what is found when R =5.
In this respect the shape of the profile is similar to the
one obtained for a flat grafting surface although the
profiles in the present case cannot be properly represent-
ed by a parabolic form. Thus, even when the radius of
the grafting surface is only about ten times larger than
the monomer size, the profiles start to resemble those for
the flat interface, particularly for the moderate surface
coverages considered here. Another interesting observa-
tion is that now the depletion zone near the grafting sur-
face is larger than what is seen before for R =5 and
resembles again those seen for a flat interface.

In Fig. 3 we study the scaling behavior of the density
profile for R =5 and N =50 and 100. Scaling theory sug-
gests that in the limit of star polymers [25] (R —0) the
density profile should scale as

d(r)~o?3r=43 (6)

In this same limit the average brush height is expected to
scale as
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FIG. 3. (a) Test of scaling predictions [Egs. (6) and (7); see
text] for a fixed sphere radius R =5, by plotting the rescaled
monomer density ¢(r)/c*® vs the rescaled distance
r/(N3/3a'/%). (b) Same as in (a) except R =11.18.

h~N3/50_1/5R2/5 . (7)

In order to test these predictions for a fixed value of R,
we plot ¢(r)/a2’® vs r /(N*/°01/3) in Figs. 3(a) and 3(b)
for R =35 and 11.18, respectively. We find that the scal-
ing hypothesis works particularly well for the brush
height as the scaled density goes to zero at the same point
for different chain lengths and surface coverages. Scaling
also seems to work around the peak of the profile close to
the grafting surface. However, the details of the density
profile for intermediate values of » do not seem to scale
well. This is probably due to the fact that for the R
values considered here, the scaling regime is not properly
accessed yet for chain lengths N=50 and 100. Also,
there seems to be definite differences for the shape of the
scaled profiles for R =5 and 11.18. This is evident in Fig.
4, where we plot ¢(r) /0?3 vs r /(N3/30'/>R?/5) in order
to scale out the R dependence of the brush height. As
mentioned earlier, the shape of the profiles are quite
different for R =5 and 11.18. It seems, then, that the
above general scaling description developed for star poly-
mers does not work over the range of values of R and N
considered here. In fact, for the star polymer description
to be valid, the radius of the grafting sphere must be
much smaller than the average brush height. If we con-
sider the average end-to-end distance (R, ) to be a mea-
sure of the brush height, the above criterion implies that



4244
08
o + N=50, 6=0.08, R=5.0
"’ x N=50, 6=0.32, R=5.0
Og:ﬁ', 8o x N=100, 6=0.08, R=5.0
I\ OX+ ,3 °Ep o N=100, 6=0.32, R=5.0
o~ = -
) ok + l‘ 8 o N=50, 0=0.016, R=11.18
=M o+ '*4 o N=50, 6=0.064, R=11.18
= Ooxf(’;‘( .t "\- 4 N=100, 6=0.016, R=11.18
+
%o XX X ot %.ﬁ » N=100, 6=0.064, R=11.18
0 OX X * %
o038,
Ty
00 .~ I (LT J
0 1 2
3/5 1/5.,2/5
r/(N" "¢ "R™)

FIG. 4. Test of scaling predictions [Egs. (6) and (7); see text]
by plotting the rescaled monomer density ¢(r)/o>”* vs the res-
caled distance r /(N*/°c''/°r?/%) for both R =5 and 11.18.

the ratio R /(R,) must be much smaller (larger) than
unity in the star (flat) limit. This ratio of R /{R,) for
different runs is listed in Table I. We point out that our
values for this ratio are far from the limiting value for the
star polymer and so it is not surprising that the scaling
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FIG. 5. Log-log plot of the density profile in Fig. 3(a) (R =5).
The slope of the lines for small values of the scaling variables
r/(N3/3g17%) yields an exponent in the range (—0.6, —0.5). (b)
Log-log plot of the density profile in Fig. 3(b) (R =11.18). The
slope of the lines for small values of the scaling variables
r /(N*/3g1/%) yields an exponent in the range (—0.4, —0.3).
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relations do not hold satisfactorily for the simulation re-
sults.

In Figs. 5(a) and 5(b) we show log-log plots of the scal-
ing data from Figs. 3(a) and 3(b), respectively. If we fit
the data with a straight line for small values of the scal-
ing variable r /(N3/301/%), we find corresponding power-
law exponents in the density profile in the range
(—0.6,—0.5) for R=5 and (—0.4,—0.3) for R=11.18.
These values of the exponents are much smaller than the
expected value of — 4 obtained from scaling arguments in
star polymers. Again, we point out that the scaling re-
gime for which Egs. (6) and (7) are valid has not been ac-
cessed for the chain lengths and surface coverage con-
sidered here for each value of R.

We now analyze the data for the chain-end density
€(r). In Figs. 6(a) and 6(b) we plot €(r) vs » for R =5 and
for different surface coverages. The chain lengths con-
sidered in these figures are N =50 and 100, respectively.
The corresponding figures for R =11.18 are shown in
Figs. 7(a) and 7(b) for N =50 and 100, respectively. For a
convex interface, the self-consistent-field theory of
BMMW generally suggests the existence of an exclusion
zone near the surface from which the chain ends are ex-
pelled. For R =11.18 we do not find any evidence of an
exclusion zone near the grafting surface either for N =50
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FIG. 6. (a) Density of free chain ends from Monte Carlo

simulations for polymer chains grafted on a sphere of radius
R =S5 for different surface coverages and chain length N=50.
There is no strong evidence of an exclusion zone here. (b) Same
as in (a) except N =100. Note the existence of an exclusion zone
for the largest surface coverage (o =0.32).
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or for N=100. For R =35, there is no strong signature of
an exclusion zone for N =50 either, for any of the three
different surface coverages considered here. However, in
Fig. 6(b) one finds some evidence of an exclusion zone for
N=100 and 0 =0.32. This exclusion zone is reasonably
large and extends to about 7-8 times the size of a mono-
mer. We point out that the monomer density near the
grafting surface is only about 0.3 in this case and thus the
exclusion of end monomers does not seem to be due to
the crowding of many monomers near the grafting sur-
face [20]. It is also interesting to note that the exclusion
zone is only prominent for the most “starlike” of all the
runs in which the ratio R /{R,) takes the smallest value
(0.17), as shown in Table 1.

We note that the SCF predictions of the presence of an
exclusion zone might not be applicable for a typical
Monte Carlo simulation with chain lengths of N =50 or
100 due to finite-chain-length effects on the chain-end
density profile. The theoretical values of the width of the
exclusion zone for such ratios of brush height to sphere
radius % /R is expected to be only a small fraction of the
brush height, i.e., a few monomer sizes. On the other
hand, finite-chain-length effects (not considered in analyt-
ical SCF theories) may modify the chain-end density
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FIG. 7. (a) Density of free chain ends from Monte Carlo
simulations for polymer chains grafted on a sphere of radius
R =11.18 for different coverages and chain length N=50. We
do not see any strong evidence of an exclusion zone here. (b)
Same as in (a) except N=100. We do not see any strong evi-
dence of an exclusion zone here.
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profile near the surface over a distance of the same order
of magnitude [26]. Thus, unless one can consider much
larger chain lengths and higher values of surface cover-
age, a definite confirmation of the exclusion zone will not
be possible. An estimate [26] of the fraction of the brush
height over which one expects chains to fluctuate away
from the SCF distributions is given by f=(R,/h )43
where R is the “free chain radius” in solution conditions
similar to that in the brush. If we consider R ;=N 172 and
h =R, then f varies in the range 0.2-0.3 for the different
cases considered here. For the case of N=100 and
0=0.32 £=0.24, (R,)=29.1 and the distance over
which finite-chain-length effects are important is about
0.24X29.1=7 monomer sizes. Since the dead zone ob-
served in Fig. 6(b) is of the same order of magnitude, we
believe that we are just approaching the regime where
BMMW theory is applicable. Thus simulations with
much larger chain lengths are necessary to resolve this
important issue definitely. Such a simulation seems to be
beyond reach at this point due to computer time limita-
tions.

IV. CONCLUSIONS

We have carried out a Monte Carlo simulation of many
polymer chains grafted onto a spherical interface. We
have studied the monomer density profile and the density
of the free chain ends for various values of surface cover-
ages, chain length, and radius of the grafting sphere. For
small values of the radius of the grafting sphere, we find
that the density profiles are quite different from those ob-
tained in the case of a flat interface. As the radius of the
sphere is increased further, we find that the profiles
resemble those obtained in the flat case, although the
former cannot be described by a parabolic form.

We have also studied the scaling behavior of the densi-
ty profile. The star scaling description discussed here is
appropriate only in the limit of R /h—0. We find that
the scaling hypothesis works reasonably well to describe
the height of the polymer brush and the density of mono-
mers near the grafting surface. However, we find sys-
tematic deviations from scaling for intermediate values of
the rescaled distance, indicating that the details of the
scaled density profile still depend on parameters such as
the radius of the spherical interface for the values of
chain lengths and surface coverages considered in this
simulation.

Finally, we have investigated the density of the free
chain ends for different values of the radius of the spheri-
cal interface, chain lengths, and surface coverage. Self-
consistent-field theory suggests the existence of an ex-
clusion zone near the surface from which the chain ends
are expelled. We do not observe a definite exclusion zone
for most of the values of chain length, radius and surface
coverage studied here. However, some evidence of an ex-
clusion zone is found in one case, namely, for R =5,
N =100, and 0 =0.32. We note that exclusion zones are
difficult to detect in a Monte Carlo simulation since the
width of the exclusion zone is comparable to the length
scale over which finite-chain-length effects in density are
important.
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